15-780: Graduate Artificial Intelligence

Inference in Bayesian networks

Bayesian networks: Notations

A example problem

- An alarm system
 - B Did a burglary occur?
 - E Did an earthquake occur?
 - A Did the alarm sound off?
 - M Mary calls
 - J John calls

Constructing a Bayesian network: Revisited

- Step 1: Identify the random variables
- Step 2: Determine the conditional dependencies
 - Select on ordering of the variables
 - Add them one at a time
 - For each new variable X added select the minimal subset of nodes as parents such that X is independent from all other nodes in the current network given its parents.
- Step 3: Populate the CPTs
 - We will discuss this when we talk about density estimations

Reconstructing a network

Suppose we wanted to add a new variable to the network:

R – Did the radio announce that there was an earthquake?

How should we insert it?

Bayesian networks: Restrictions and joint distributions

- Bayesian networks are directed acyclic graphs (DAGs)
 - Otherwise a node will impact (indirectly) its own probability making inference hard

This is NOT a valid Bayesian network!

Bayesian networks: Restrictions and joint distributions

- Bayesian networks are directed acyclic graphs (DAGs)
 - Otherwise a node will impact (indirectly) its own probability making inference hard
- Given a Bayesian network the joint probability distribution can be factored as:

$$P(X) = \prod_{i} p(x_i \mid Pa(x_i))$$

where X is a vector of observations and $Pa(x_i)$ is the set of parent nodes of x_i

Using Bayesian networks

- Inference
 - Computing joint distributions
 - Inferring values of unobserved variables
- Structure learning

Bayesian network: Inference

- Once the network is constructed, we can use algorithms for inferring the values of unobserved variables.
- For example, in our previous network the only observed variables are the phone calls. However, what we are really interested in is whether there was a burglary or not.
- How can we determine that?

Inference

- Lets start with a simpler question
 - How can we compute a joint distribution from the network?
 - For example, $P(B, \neg E, A, J, \neg M)$?
- Answer:
 - That's easy, lets use the network

Computing: $P(B, \neg E, A, J, \neg M)$

 $P(B, \neg E, A, J, \neg M) =$

 $P(B)P(\neg E)P(A \mid B, \neg E)$ $P(J \mid A)P(\neg M \mid A)$

= 0.05*0.9*.85*.7*.2

= 0.005355

Computing: $P(B, \neg E, A, J, \neg M)$

$$P(B, \neg E, A, J, \neg M) =$$

 $P(B)P(\neg E)P(A \mid B, \neg E)$ $P(J \mid A)P(\neg M \mid A)$

= 0.05*0.9*.85*.7* 2

= 0.005355

P(B) = .05

В

We can easily compute a complete joint distribution. What about partial distributions? Conditional distributions?

$$P(J|A) = .7$$

 $P(J|A) = .05$

P(M|A) = .8P(M|A) = .15

Inference

- We are interested in queries of the form:
 - $P(B \mid J, \neg M)$
- This can also be written as a joint:

$$P(B \mid J, \neg M) = \frac{P(B, J, \neg M)}{P(J, \neg M, B) + P(J, \neg M, \neg B)}$$

chain rule

How do we compute the new joint?

Computing partial joints

$$P(B \mid J, \neg M) = \frac{P(B, J, \neg M)}{P(B, J, \neg M) + P(\neg B, J, \neg M)}$$

Sum all instances with these settings (the sum is over the possible assignments to the other two variables, E and A)

Computing: $P(B,J, \neg M)$

Computing partial joints

Computing: $P(\neg B,J, \neg M)$

Computing partial joints

$$P(B | J, \neg M) = \frac{P(B, J, \neg M)}{P(B, J, \neg M) + P(\neg B, J, \neg M)}$$
$$= \frac{0.006}{0.006 + 0.049} = 0.11$$

Computing partial joints

$$P(B \mid J, \neg M) = \frac{P(B, J, \neg M)}{P(B, J, \neg M) + P(\neg B, J, \neg M)}$$

Sum all instances with these settings (the sum is over the possible assignments to the other two variables, E and A)

But the number of possible assignments is exponential in the unobserved variables?

That is, unfortunately, the best we can do. General querying of Bayesian networks is NP-complete

Inference in Bayesian networks if NP complete (sketch)

- Reduction from 3SAT
- Recall: 3SAT, find satisfying assignments to the following problem: (a ∨ b ∨ c) ∧ (d ∨ ¬ b ∨ ¬ c) ...

What is P(Y)?

Other inference methods

- Convert network to a polytree
 - In a polytree no two nodes have more than one path between them
 - For such a graph there is a linear time algorithm
 - However, converting into a polytree requires a large increase in the size of the graph (number of nodes)

Why is inference in polytrees easy?

 In polytrees, given a variable X we can always divide the other variables into two sets:

E+: Variables 'above' X

E-: Variables 'below' X

- These sets are mutually exclusive (why?)
- Using these sets we can efficiently compute conditional and joint distributions

Stochastic inference

- We can easily sample the joint distribution to obtain possible instances
- 1. Sample the free variable
- 2. For every other variable:
 - If all parents have been sampled, sample based on conditional distribution

We end up with a new set of assignments for B,E,A,J and M which are a random sample from the joint

Stochastic inference

- We can easily sample the joint distribution to obtain possible instances
- 1. Sample the free variable
- 2. For every other variable:
 - If all parents have been sampled, sample based on conditional distribution

Is it always possible to carry out this sampling procedure? why?

Using sampling for inference

- Lets revisit our problem: Compute P(B | J,¬M)
- Looking at the samples we can cound:
 - N: total number of samples
 - N_c : total number of samples in which the condition holds (J, \neg M)
 - N_B : total number of samples where the joint is true (B,J, \neg M)
- For a large enough N
 - N_c / N \approx P(J, \neg M)
 - N_B / N \approx P(B,J, \neg M)
- And so, we can set

$$P(B \mid J, \neg M) = P(B, J, \neg M) / P(J, \neg M) \approx N_B / N_C$$

Using sampling for inference

- Lets revisit our problem: Compute P(B | J,¬M)
- Looking at the samples we can cound:
 - N: total number o
 - N_c: total number
 - N_B: total number
- For a large enoug
 - N_c / N \approx P(J, \neg M)
 - N_B / N \approx P(B,J, \neg M)
- And so, we can set

$$P(B \mid J, \neg M) = P(B, J, \neg M) / P(J, \neg M) \approx N_B / N_c$$

Problem: What if the condition rarely happens?

We would need lots and lots of samples, and most would be wasted

Weighted sampling

- Compute P(B | J,¬M)
- We can manually set the value of J to 1 and M to 0
- This way, all samples will contain the correct values for the conditional variables
- Problems?

Weighted sampling

- Compute P(B | J,¬M)
- Given an assignment to parents, we assign a value of 1 to J and 0 to M.
- We record the *probability* of this assignment ($w = p_1p_2$) and we weight the new joint sample by w

Weighted sampling algorithm for computing P(B | J,¬M)

- Set N_B , $N_c = 0$
- Sample the joint setting the values for *J* and *M*, compute the weight, *w*, of this sample
- $N_c = N_c + w$
- If B = 1, $N_B = N_B + w$
- After many iterations, set

$$P(B \mid J, \neg M) = N_B / N_c$$

Bayesian networks for cancer detection

Constructing networks

- So far we assumed that the network is derived from domain knowledge.
- That's not always easy to do
- Examples:
 - How are different regions in the brain related?
 - How are terrorists related (social networks)?

Inferring structure from data

- It is possible to infer structure if enough data is provided
- The goal would be to find a structure that leads to a maximal likelihood*

 $Max_SP(D \mid S)$

Problems?

Inferring structure using maximum likelihood principle

 The more edges we have, the higher the likelihood!

 $P(M \mid A, E) \ge P(M \mid A)$

Why?

- If the two are independent and we have perfect data, trivially holds
- We have more parameters to fit. If there is some noise in the measurements, we would likely overfit the data

Inferring structure using maximum likelihood principle

 The more edges we have, the higher the likelihood!

$$P(M \mid A, E) \ge P(M \mid A)$$

Solutions:

- Statistical tests
- Penalty functions

Likelihood ratio test

Given two competing models we can compute their likelihood ratio

$$T(D) = 2\log \frac{P(D \mid B)}{P(D \mid A)}$$

Always ≥ 0 , but by how much?

Model A

Model B

Likelihood ratio test

Given two competing models we can compute their likelihood ratio

$$T(D) = 2\log \frac{P(D \mid B)}{P(D \mid A)} \sim \chi^{2}$$

Always ≥ 0 , but by how much?

The result is distributed according to χ^2 , which is a distribution defined by the number of free parameters (the difference in complexity of the two models)

Model A Y

Likelihood ratio test

Given two competing models we can compute their likelihood ratio

$$T(D) = 2\log \frac{P(D \mid B)}{P(D \mid A)} \sim \chi^{2}$$

Reject the more complicated model, unless the ratio is high enough (can use, for example, the Matlab function CHI2PDF to compute the probability of seeing this ratio as a result of noise).

Model A

Model B

Penalty functions

- Likelihood ratio tests are appropriate for relatively small problems (few variables)
- For larger problems we usually use a penalty function
- This function penalizes the likelihood based on the complexity of the model

$$L(D \mid M) = P(D \mid M)-f(n)$$

where n is related to the number of parameters

- Most commonly used penalty function:
 - AIC: Akaike's Information Criterion
 - BIC: Bayesian information criterion

Structure learning for biology

Important points

- Bayes rule
- Joint distribution, independence, conditional independence
- Definition Bayesian networks
- Inference in Bayesian networks
- Constructing a Bayesian network