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Inference in Bayesian networks



Bayesian networks: Notations

Le

Li S

Conditional 
probability tables 
(CPTs)

P(Lo) = 0.5
Conditional 
dependency

P(S | Lo) = 0.6

P(S | ¬Lo) = 0.2
P(Li | Lo) = 0.4

P(Li | ¬Lo) = 0.7

Random variables



A example problem
• An alarm system

B – Did a burglary occur?
E – Did an earthquake occur?
A – Did the alarm sound off?
M – Mary calls
J – John calls

A

J M

B E



Constructing a Bayesian network: 
Revisited

• Step 1: Identify the random variables
• Step 2: Determine the conditional dependencies

- Select on ordering of the variables
- Add them one at a time
- For each new variable X added select the minimal subset of nodes 
as parents such that X is independent from all other nodes in the 
current network given its parents.

• Step 3: Populate the CPTs
- We will discuss this when we talk about density estimations



Reconstructing a network

Suppose we wanted to add 
a new variable to the 
network:

R – Did the radio announce 
that there was an 
earthquake? 

How should we insert it? A

J M

B E

R



Bayesian networks: Restrictions 
and joint distributions

• Bayesian networks are directed acyclic graphs 
(DAGs)

- Otherwise a node will impact (indirectly) its 
own probability making inference hard

x3

x6 x5

x1 x2

x4

This is NOT a valid Bayesian 
network!



Bayesian networks: Restrictions 
and joint distributions

• Bayesian networks are directed acyclic graphs 
(DAGs)

- Otherwise a node will impact (indirectly) its 
own probability making inference hard

• Given a Bayesian network the joint probability 
distribution can be factored as:

where X is a vector of observations and Pa(xi) is 
the set of parent nodes of xi
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Using Bayesian networks
• Inference

- Computing joint distributions
- Inferring values of unobserved variables

• Structure learning



Bayesian network: Inference
• Once the network is constructed, we 

can use algorithms for inferring the 
values of unobserved variables.

• For example, in our previous network 
the only observed variables are the 
phone calls. However, what we are 
really interested in is whether there 
was a burglary or not.

• How can we determine that?

A

J M

B E

P(B=1 | J, ¬M)?



Inference
• Lets start with a simpler question

- How can we compute a joint distribution from the 
network?

- For example, P(B,¬E,A,J, ¬M)?
• Answer:

- That’s easy, lets use the network



Computing: P(B,¬E,A,J, ¬M)
P(B,¬E,A,J, ¬M) = 

P(B)P(¬E)P(A | B, ¬E) 
P(J | A)P(¬M | A)

= 0.05*0.9*.85*.7*.2

= 0.005355

P(B)=.05

A

J M

B E
P(E)=.1

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15



Computing: P(B,¬E,A,J, ¬M)

A

J M

B E
P(B)=.05

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(B,¬E,A,J, ¬M) = 

P(B)P(¬E)P(A | B, ¬E) 
P(J | A)P(¬M | A)

= 0.05*0.9*.85*.7*.2

= 0.005355

P(E)=.1

We can easily compute a  
complete joint distribution. 
What about partial 
distributions?  Conditional 
distributions?

P(M|A) )=.8
P(M|¬A) = .15



Inference
• We are interested in queries of the form:

P(B | J,¬M)
• This can also be written as a joint:

• How do we compute the new joint?
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J M
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chain rule



Computing partial joints
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Sum all instances with these settings (the 
sum is over the possible assignments to the 
other two variables, E and A)



Computing: P(B,J, ¬M)
P(B,J, ¬M) = 

P(B,J, ¬M,A,E)+ 

P(B,J, ¬M, ¬ A,E) + 
P(B,J, ¬M,A, ¬ E) + 
P(B,J, ¬M, ¬ A, ¬ E) =

0.0007+0.00001+0.005+0.
0003 = 0.00601

P(B)=.05

A

J M

B E
P(E)=.1

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15



Computing partial joints
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MJBPMJBP
MJBPMJBP

¬¬+¬
¬

=¬

Sum all 
instances with 
these settings

Done!



Computing: P(¬ B,J, ¬M)
P(¬ B,J, ¬M) = 

P(¬ B,J, ¬M,A,E)+ 

P(¬ B,J, ¬M, ¬ A,E) + 
P(¬ B,J, ¬M,A, ¬ E) + 
P(¬ B,J, ¬M, ¬ A, ¬ E) =

0.00665+0.002+0.006+0.0
345 = 0.049

P(B)=.05

A

J M

B E
P(E)=.1

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15



Computing partial joints
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Computing partial joints
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MJBPMJBP
MJBPMJBP

¬¬+¬
¬

=¬

Sum all instances with these settings (the 
sum is over the possible assignments to the 
other two variables, E and A)

But the number of possible assignments is exponential in 
the unobserved variables?

That is, unfortunately, the best we can do. General querying 
of Bayesian networks is NP-complete



Inference in Bayesian networks if 
NP complete (sketch)

• Reduction from 3SAT
• Recall: 3SAT, find satisfying assignments to the 

following problem: (a ∨ b ∨ c) ∧ (d ∨ ¬ b ∨ ¬ c) …

What is P(Y)?

P(xi=1) = 0.5

P(xi=1) = (x1 ∨ x2 ∨ x3)

P(Y=1) = (x1 ∧ x2 ∧ x3 ∧ x4) Y



Other inference methods
• Convert network to a polytree

- In a polytree no two nodes have 
more than one path between them
- For such a graph there is a linear 
time algorithm

- However, converting into a polytree
requires a large increase in the size of 
the graph (number of nodes)

A

J M

B E

A

J M

B E



Why is inference in polytrees easy? 

• In polytrees, given a variable X we 
can always divide the other 
variables into two sets:
E+: Variables ‘above’ X
E-: Variables ‘below’ X

• These sets are mutually exclusive 
(why?)

• Using these sets we can 
efficiently compute conditional 
and joint distributions

X

z2 z1

y1 y2



Stochastic inference
• We can easily sample the joint 

distribution to obtain possible 
instances 

1. Sample the free variable
2. For every other variable:

- If all parents have been sampled,
sample based on conditional 

distribution

We end up with a new set of 
assignments for B,E,A,J and M 
which are a random sample from 
the joint

P(E)=.1
P(B)=.05

A

J M

B E

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

P(J|A) )=.7
P(J|¬A) = .05

P(M|A) )=.8
P(M|¬A) = .15



Stochastic inference
• We can easily sample the joint 

distribution to obtain possible 
instances 

1. Sample the free variable
2. For every other variable:

- If all parents have been sampled,
sample based on conditional 

distribution

P(E)=.1
P(B)=.05

A

J M

B E

P(A|B,E) )=.95
P(A|B,¬E) = .85
P(A| ¬ B,E) )=.5
P(A| ¬ B, ¬ E) = .05

Is it always possible to 
carry out this sampling 
procedure? why? P(J|A) )=.7

P(J|¬A) = .05
P(M|A) )=.8
P(M|¬A) = .15



Using sampling for inference
• Lets revisit our problem: Compute P(B | J,¬M)
• Looking at the samples we can cound:

- N: total number of samples

- Nc : total number of samples in which the condition holds (J,¬M)
- NB: total number of samples where the joint is true (B,J,¬M)

• For a large enough N
- Nc / N ≈ P(J,¬M)
- NB / N ≈ P(B,J,¬M)

• And so, we can set

P(B | J,¬M) = P(B,J,¬M) / P(J,¬M) ≈ NB / Nc



Using sampling for inference
• Lets revisit our problem: Compute P(B | J,¬M)
• Looking at the samples we can cound:

- N: total number of samples

- Nc : total number of samples in which the condition holds (J,¬M)
- NB: total number of samples where the joint is true (B,J,¬M)

• For a large enough N
- Nc / N ≈ P(J,¬M)
- NB / N ≈ P(B,J,¬M)

• And so, we can set

P(B | J,¬M) = P(B,J,¬M) / P(J,¬M) ≈ NB / Nc

Problem: What if the condition rarely 
happens?

We would need lots and lots of 
samples, and most would be wasted



Weighted sampling
• Compute P(B | J,¬M)
• We can manually set the value of J to 

1 and M to 0
• This way, all samples will contain the 

correct values for the conditional 
variables

• Problems? A

J M

B E



Weighted sampling
• Compute P(B | J,¬M)
• Given an assignment to parents, we 

assign a value of 1 to J and 0 to M.
• We record the probability of this 

assignment (w = p1p2) and we weight 
the new joint sample by w

A

J M

B E



Weighted sampling algorithm for 
computing P(B | J,¬M)

• Set NB,Nc = 0
• Sample the joint setting the values for J and M, 

compute the weight, w, of this sample 
• Nc = Nc+w
• If B = 1, NB = NB+w

• After many iterations, set
P(B | J,¬M) = NB / Nc



Bayesian networks for cancer 
detection 



Constructing networks

• So far we assumed that the network is derived from 
domain knowledge.

• That’s not always easy to do
• Examples:

- How are different regions in the brain related?
- How are terrorists related (social networks)?



Inferring structure from data
• It is possible to infer structure if enough data is provided
• The goal would be to find a structure that leads to a 

maximal likelihood*
MaxSP(D | S)

• Problems?

*More on this next week



Inferring structure using maximum 
likelihood principle

• The more edges we have, the higher 
the likelihood!

A

J M

B E

P(M | A, E) ≥ P(M | A) 

Why?

- If the two are independent and we have 
perfect data, trivially holds

- We have more parameters to fit. If there is 
some noise in the measurements, we 
would likely overfit the data 

A

J M

B E



Inferring structure using maximum 
likelihood principle

• The more edges we have, the higher 
the likelihood!

A

J M

B E

P(M | A, E) ≥ P(M | A) 

Solutions:

- Statistical tests

- Penalty functions
A

J M

B E



Likelihood ratio test
• Given two competing models we can compute their 

likelihood ratio

)|(
)|(log2)(

ADP
BDPDT =

Always ≥ 0, but by how much? 

Model A

Z

X Y

Model B

Z

X Y



Likelihood ratio test
• Given two competing models we can compute their 

likelihood ratio

Model A
2~

)|(
)|(log2)( χ

ADP
BDPDT =

Always ≥ 0, but by how much? 

The result is distributed according to χ2, which 
is a distribution defined by the number of free 
parameters (the difference in complexity of the 
two models)

Z

X Y

Model B

Z

X Y



Likelihood ratio test
• Given two competing models we can compute their 

likelihood ratio

Model A
2~

)|(
)|(log2)( χ

ADP
BDPDT =

Reject the more complicated model, unless the 
ratio is high enough (can use, for example, the 
Matlab function CHI2PDF to compute the 
probability of seeing this ratio as a result of noise).

Z

X Y

Model B

Z

X Y



Penalty functions
• Likelihood ratio tests are appropriate for relatively small 

problems (few variables)
• For larger problems we usually use a penalty function
• This function penalizes the likelihood based on the 

complexity of the model
L(D | M) = P(D | M)-f(n)

where n is related to the number of parameters
• Most commonly used penalty function:

- AIC: Akaike's Information Criterion 
- BIC: Bayesian information criterion 



Structure learning for biology



Important points
• Bayes rule
• Joint distribution, independence, conditional 

independence
• Definition Bayesian networks
• Inference in Bayesian networks
• Constructing a Bayesian network


