15-780: Graduate Artificial
Intelligence

Inference in Bayesian networks



Bayesian networks: Notations

Conditional = »P(lLo)=05 -
probability tables Conditional

(CPTs) / dependency

S

P(Li | Lo) = @ @ S|Lo)—06
P(Li | —-Lo) = 0.7 \ / P(S | —-Lo) =

Random variables



A example problem

* An alarm system
B — Did a burglary occur?
E — Did an earthquake occur? \

A — Did the alarm sound off?
M — Mary calls

(A)
J —John calls / \
OO



Constructing a Bayesian network:
Revisited

Step 1: Identify the random variables
Step 2: Determine the conditional dependencies

- Select on ordering of the variables
- Add them one at a time

- For each new variable X added select the minimal subset of nodes
as parents such that X is independent from all other nodes in the
current network given its parents.

Step 3: Populate the CPTs

- We will discuss this when we talk about density estimations



Reconstructing a network

Suppose we wanted to add
a new variable to the
network:

R — Did the radio announce
that there was an
earthquake?

How should we insert it?



Bayesian networks: Restrictions
and joint distributions

« Bayesian networks are directed acyclic graphs
(DAGS) @

- Otherwise a node will impact (indirectly) its
own probability making inference hard

/
B

This is NOT a valid Bayesian
network!



Bayesian networks: Restrictions
and joint distributions

« Bayesian networks are directed acyclic graphs
(DAGS)
- Otherwise a node will impact (indirectly) its
own probability making inference hard
« Given a Bayesian network the joint probability
distribution can be factored as:
P(X) = H p(x; | Pa(x)) X
i

where X is a vector of observations and Pa(x) is
the set of parent nodes of x.



Using Bayesian networks

Inference

- Computing joint distributions

- Inferring values of unobserved variables
Structure learning



Bayesian network: Inference

 Once the network is constructed, we

can use algorithms for inferring the @

values of unobserved variables.

 For example, in our previous network B 1 | J, ﬁM
the only observed variables are the
phone calls. However, what we are

really interested in is whether there /
was a burglary or not.

« How can we determine that?



Inference

» Lets start with a simpler question

- How can we compute a joint distribution from the
network?

- For example, P(B,—E,A,J, =M)?
 Answer:
- That's easy, lets use the network



Computing: P(B,ﬁE,A,J, —M)

P(B,—E,AJ, —M) =

P(B)P(—E)P(A | B, —E)
P(J | A)P(=M | A)
= 0.05%0.9%.85*.7*.2
A|B,E) )=.95

P

= 0.005355 P(A|B, ﬁE) = 85
P(A| - B,E) )=
P

Al - BﬁE)—os/ \

PUIA) )=.7
PJ|-A) = 05

AN N N N



Computing: P(B,—E,A,J, —M)

P(B,-E,A,dJ, =M) = P(B)=.05

P(B)P(-E)P(A | B, —E) | PE)=A

P(J[APM]|A)

= 0.05*0.9%.85*.7* ° \

We can easily compute a

complete joint distribution.

What about partial /
distributions? Conditional \
distributions?

(J|A) 7
P(J|-A) = o

= 0.005355

(M|A) )=.8
P(M|-A) = .15



Inference

 We are interested in queries of the form:
P(B | J,—M)

* This can also be written as a joint:
P(B|J,—M) = 28,3, M) \
/ P(J,—M,B)+P(J,—M,—-B)
chain rule @
 How do we compute the new joint? / \




Computing partial joints

P(B,J,—M)
P(B,J,—M)+P(=B,J,—M)

P(B|J,—M) =

Sum all instances with these settings (the
sum is over the possible assignments to the
other two variables, E and A)



Computing: P(B,J, —M)

P(B,J, =M) = P(B)=.0
P(B,J, =M,A E)+
P(B,J, =M, — AE) +
P(B’J’ _'M’A’ 1 E) +
P(B,J, =M, = A, - E) = P(AIB,E) )=.95
P(A|B ﬁE) = 85
0.0007+0.00001+0.005+0.  p(A| - B,E) )=
0003 = 0.00601 P(A| - B, — E) = .05 / \
P(JIA))
(J|ﬁA) = 05

A 15



Computing partial joints

P(B|J,-M) = 2(5.9,5M)
P(B, JY-M)+P(—B,J,—M)
Donel! \

Sum all
Instances with
these settings



Computing: P(—- B,J, =M)

PGB =M= P(B)=.05

(
P(_l B,J, —|M,A,E)+
P(ﬁ B,J, —|M, — A,E) +
P(-B,J,-MA, —E) +
P(-BJ,-M, - A —E)= A|B,E) )=.95

P(
P(A|B ﬁE) = 85
0.00665+0.002+0.006+0.0 P(A| - B,E) )=
345 =0.049 P(A| - B, — E) = 05 / \
PJIA))
(JlﬂA) = 05

A 15



Computing partial joints

P(B,J,—M)
P(B,J,—M)+P(=B,J,—M)
__ 0006

0.006 + 0.049

P(B|J,—M) =




Computing partial joints

P(B,J,—M)

P M) =5 B M)+ PB. T, M)

Sum all instances with these settings (the
sum is over the possible assignments to the
other two variables, E and A)

But the number of possible assignments is exponential in
the unobserved variables?

That is, unfortunately, the best we can do. General querying
of Bayesian networks is NP-complete



Inference in Bayesian networks if
NP complete (sketch)

* Reduction from 3SAT
* Recall: 3SAT, find satisfying assignments to the

following problem: (avbvc)aA(dv—=bv—cC)...
What is P(Y)?

O

T SR

P(x=1) = (X; Vv X, V X3) Q

P(Y=1) = (X; A X5 A X3 A Xy) \\®//



Other inference methods

« Convert network to a polytree
- In a polytree no two nodes have
more than one path between them °

- For such a graph there is a linear

/
time algorithm @

- However, converting into a polytree
requires a large increase in the size of

the graph (number of nodes)



Why is inference in polytrees easy?

* In polytrees, given a variable X we
can always divide the other

variables into two sets:
E+: Variables ‘above’ X
E-: Variables ‘below’ X '/

* These sets are mutually exclusive

/
(why?) %) (21)
e Using these sets we can \
efficiently compute conditional

and joint distributions



Stochastic inference

* We can easily sample the joint
distribution to obtain possible

instances P(B)=.05
1. Sample the free variable
2. For every other variable:
- If all parents have been sampled, \
sample based on conditional P(AIB,E) )=.95
distribution P(A|B PN
P(A| - B,E) )=
P(A| - B, — E)— .05
We end up with a new set of
assignments for B,E,A,J and M
which are a random sample from P(JIA) )=.7
the joint P(J|-A) = 05

P(M|A) )—-8
P(M|—-A) = .15



Stochastic inference

* We can easily sample the joint
distribution to obtain possible

instances P(B)=.05
1. Sample the free variable
2. For every other variable:
- If all parents have been sampled, \
sample based on conditional P(AB.E) )=.95
distribution P(A|B ﬁE) "o
P(A| - B,E) )=
P(

Al - B, — E)— .05
Is it always possible to / \

carry out this sampling
o 5 PUIA) )=.7
procedure? why" P(J|-A) = 05

P(M|A) )—.8
P(M|—-A) = .15



Using sampling for inference

» Lets revisit our problem: Compute P(B | J,—M)
* Looking at the samples we can cound:
- N: total number of samples

- N, : total number of samples in which the condition holds (J,—M)
- Njg: total number of samples where the joint is true (B,J,—M)

For a large enough N

-N./ N = P(J,-M)

-Ng / N = P(B,J,—M)

And so, we can set

P(B | J,_IM) = P(B,J,ﬁM) / P(J,_IM) ~ NB/NC



Using sampling for inference

» Lets revisit our problem: Compute P(B | J,—M)

« Looking at the e~mnrlae win fon ~anind-
Problem: What if the condition rarely

- N: total number o
happens?

- N, : total number
We would need lots and lots of

- Ng: total number
samples, and most would be wasted

For a large enoug
-N. /N = P(J,-M)
-Ng / N = P(B,J,—M)
 And so, we can set

P(B | J,ﬁM) = P(B,J,ﬁM) / P(J,ﬁM) ~ NB/NC



Weighted sampling

Compute P(B | J,—M)
We can manually set the value of J to

1and Mto O
This way, all samples will contain the
correct values for the conditional \

variables @
/N
OO

Problems?



Weighted sampling

 Compute P(B | J,=M)
« Given an assignment to parents, we

assign a value of 1 to J and 0 to M.
* We record the probabillity of this
assignment (w = p,p,) and we weight \

the new joint sample by w
aN
G )



Weighted sampling algorithm for
computing P(B | J,—M)

* Set NN, =0

« Sample the joint setting the valuesforJand M, == == ===
compute the weight, w, of this sample
* N, =N, +w

e« IfB=1,Ng=Ng+tw —emmmmm——a I

« After many iterations, set
P(B | J,—M) = Ng /N,



Bayesian networks for cancer
detection

Bol-Asa =10l x|
Visit To Asia sSmoking
Visit [ l [ ] Smoker 50.0 |
No Visit  99.0 [N NonSmoker S00[
L A
F Y
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Present 1| (4 | | | Present 550 | | ; Present <50 |
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. " .
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e c[
False 03.5 : 5 52
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Constructing networks

 So far we assumed that the network is derived from
domain knowledge.

« That's not always easy to do

« Examples:
- How are different regions in the brain related?
- How are terrorists related (social networks)?



Inferring structure from data

It is possible to infer structure if enough data is provided

The goal would be to find a structure that leads to a
maximal likelihood*

MaxsP(D | S)
Problems?

*More on this next week



Inferring structure using maximum
likelihood principle

 The more edges we have, the higher

the likelihood! G
P(M|A, E)2P(M|A) °

Why?

- If the two are independent and we have
perfect data, trivially holds e G

- We have more parameters to fit. If there is °
some noise in the measurements, we / @
would likely overfit the data @



Inferring structure using maximum
likelihood principle

 The more edges we have, the higher
the likelihood! G
P(M|A, E)2P(M|A)

Solutions:

- Statistical tests
- Penalty functions ° G
L w
&



Likelihood ratio test

« Given two competing models we can compute their
likelihood ratio

P(D|B) Model A

T(D)=2log
/ P(D|A) @)\@@
Always = 0, but by how much?

Model B

Yo




Likelihood ratio test

« Given two competing models we can compute their
likelihood ratio

Model A
T(D)=2log P(D|B) ~y°

/ P(D|A) @

Always = 0, but by how much?

The result is distributed according to %2, which
Is a distribution defined by the number of free Model B

parameters (the difference in complexity of the
two models)



Likelihood ratio test

« Given two competing models we can compute their
likelihood ratio

Model A
T(D)=2log P(DIB) _ -

/P(DIA) ~ %)

Reject the more complicated model, unless the
ratio is high enough (can use, for example, the
Matlab function CHI2PDF to compute the

Model B
probability of seeing this ratio as a result of noise). oe



Penalty functions

Likelihood ratio tests are appropriate for relatively small
problems (few variables)

For larger problems we usually use a penalty function

This function penalizes the likelihood based on the
complexity of the model

L(D | M) =P(D | M)-f(n)
where n is related to the number of parameters
Most commonly used penalty function:
- AIC: Akaike's Information Criterion
- BIC: Bayesian information criterion



Structure learning for biology
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Important points

Bayes rule

Joint distribution, independence, conditional
Independence

Definition Bayesian networks
Inference in Bayesian networks
Constructing a Bayesian network



