
Grad AI. 15-780 Fall, 2006

Homework 5 Solutions

• Homework deadline: 10:30am on Dec. 6

• Please do one of the following two problems (Computational Game Theory or Compu-
tational Biology). (Students who do both problems will receive 40% bonus credit for
the problem on which they achieve a lower score).

• Please print your code and hand it in with the hard copy of your homework. Also send
a copy of your code by e-mail to both TAs.

1. Computational Game Theory [50 pts]. Note: you only need to do one of the
two problems on this homework (see title). In this problem you will implement and
test the support-enumeration algorithm for finding a Nash equilibrium in a general
sum two-player normal form game (NFG). Recall that a two-player NFG with m row
player strategies and n column player strategies is described by two m × n matrices
(or equivalently one m× n matrix with two entries per cell). A probability vector p is
a mixed row (column) player strategy if it specifies the probability with which the row
(column) player will play each of his strategies. A Nash equilibrium is described by a
mapping of mixed strategies to players such that no player has an incentive to change
his mixture.

One technique for finding a Nash equilibrium is the enumeration and checking of possi-
ble supports using a simple feasibility program (the program is linear for two players).
The supports of the equilibrium are the pure strategies for both players with posi-
tive probability. The size of the equilibrium supports is considered the total number
strategies in the supports of both players.

(a) [30 pts] Programming problem. A few students mistakenly thought that this
required solving two linear programs for each set of supports, one for the row
player and one for the column player. Note that the equations given in lecture
for formalizing the linear feasibility problem involved solving a single program for
both players simultaneously.

(b) [5 pts] Also programming. This should be as simple as removing a break state-
ment in your code from part (a).

(c) [5 pts]

• Game 1: Two equilibria of size k = 4 where players mix over their inside
two and outside two strategies evenly.

• Game 2: Only one equilibrium of size k = 6 where both players mix evenly
over their first three strategies.



(d) [10 pts] Your histogram should reveal that nearly 70% of all random games have
pure-strategy equilibria and equilibria of size 4. You should also notice that the
games tend to have balanced equilibria with even support sizes. This makes the
support-enumeration a very good choice for finding a single NE in random games
(since it will likely only require enumeration up to size k = 4).

2. Computational Biology [50 pts] Note: you only need to do one of the two problems
on this homework (see title). In class we discussed algorithms for finding the best global
alignment between two DNA sequences. In this problem we ask you to consider the
task of finding the best local alignment between two sequences.

We will use a scoring function that assigns +2 points when two nucleotides match, -3
when they are aligned even though they do not match and -2 for a gap (d). The best
local alignment between two sequences is the two subsequences (continuous subsections
for each of the two sequences) with the highest alignment score (or the empty sequence
if the two sequences share no nucleotides).

For example consider the following two sequences:

AATGCCG
CGCCATG

The best local alignment between these two sequences is “GCC” from positions 4 − 6
in the first string and 2 − 4 in the second, which scores 6 points.

(a) [5 pts] What is the best local alignment and its score for the following two
sequeces:

AATTAGCTCCTAC
CCAGCACCTATG

The best local alignment is AGC[T,A]CCTA with score 11 (note that [T,A] in-
dicates a mis-match in the explanation) from places 5 - 13 for the first sequence
and 3 - 10 for the second.

(b) [20 pts] The Needham-Wuncsh algorithm can be extended to find local align-
ments using the following modifications:

• The value of cell i,j in the dynamic programming array should be allowed to
take on the value of 0 if it would otherwise become negative. The zero value
is symbolizes starting the sub-sequence at the next nucleotide:

F (i, j) = max



















F (i − 1, j − 1) + s(xi, xj)

F (i − 1, j) − d

F (i, j − 1) − d

0



• After filling in the values of all cells you must search through the entire table
(rather than only the outer row and column) to find the largest score value.
This will indicate the end of the best local alignment match.

• Finally, to recover the actual alignment you must retrace backward from the
largest score value to just before the first zero encountered or the beginning
of the table (which ever happens first).

(c) [3 pts] A good quantity is the ratio between the prior probability and the model’s
probability prediction of the sequence:

ρ(S) =
P (S | M)

P (S)

(d) [22 pts] To compute the best local alignment of a particular sub-sequence s of
any length we can modify our HMM to properly compute P (s | M) for any local
alignment to the family represented by M by adding the following to M :

• An equal probability transition from the start state to all insertion and con-
sensus states (unless you have reason to believe that some are more likely
than others). Note that we do not allow transitions from the start state to
deletion states since they do not require observations and we need to enforce
that at least one observation is considered.

• An end state that emits an end character with probability 1.

• Transitions from every consensus and insert state to the end state (with
arbitrary but equal probability).

• All transitions other than those to the end state should be scaled down ap-
propriately in order to ensure all states have transitions with probabilities
that sum to 1.

Once we have modified the HMM for each family we take our sub-sequence s

and append the end character. For each modified family HMM, Mi, we use the
Viterbi algorithm to compute the maximum likelihood of any local alignment for
S given Mi, P (S | Mi). The model that gives us the highest likelihood provides
the family with the best local match to the sub-sequence.

Now we can take a full sequence S and try all possible subsequences (there are
O(n2) such sub-sequences) and use the technique above for each of them. How-
ever, before comparing the likelihood of sub-sequences of different length we must
normalize them with the background model as we did in part (c). The final
sub-sequence and family with the best local alignment out of all will be given by,

(s∗, i∗) = arg max
s∈S,i

P (s | Mi)

P (s)


