
Grad AI. 15-780 Fall, 2006

Homework 3 Solutions

1. Bayesian Networks [33 pts]. This problem involves a theoretical analysis of ad-

missible Bayesian networks. Recall from lecture that an admissible Bayesian network
must be a Directed Acyclic Graph (DAG).

(a)&(b) [8 pts] The networks and equivalence classes are shown in Figure 1 inside dashed-
boxes.

Figure 1: Equivalence Classes of Bayesian Networks

(c) [10 pts] A suitable upper-bound is given by considering all pairs of nodes. In a
Bayesian network with n nodes there are
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pairs. For each pair of nodes i and j

there can be an edge from i to j, an edge for j to i or no edge at all between them.

This provides an upper bound of 3(
n

2
). Note this is an upper-bound because this

counts some networks with cycles (e.g. i → j, j → k, k → i).

(d) [15 pts] For our lower bound we will impose an arbitrary ordering on the nodes
from 1, . . . , n. We will count all networks with nodes i and j such that i < j and
there is either an edge from i → j or no edge between the two nodes. Counting
only networks with edges leaving nodes earlier in the ordering and entering nodes
later in the ordering ensures there are no cycles. Again there are
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such pairs

making our bound 2(
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). The ratio between our bounds is,
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2. Maximum Likelihood Estimation [23 pts]. In class we derived the Maximum
Likelihood Estimator (MLE) for the single parameter of a Binomial distribution (e.g.
the probability that a coin lands heads after observing the outcome of n independent
flips of the coin). In this problem we will derive the MLE for the parameters of a
multinomial distribution where the variable of interest, X, can take on k values rather
than 2.

(a) [5 pts] Given data describing n independent identically distributed observations
of X, d = {d1, . . . , dn}, each of which can be one of k values, express the likelihood
of the data given k − 1 parameters for the distribution over X. Let ni represent
the number of times X takes on value i in the data.
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(b) [6 pts] Find the MLE for one of the k − 1 parameters, θj in terms of the other
parameters.
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Setting this equal to 0 we have the following,
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(c) [12 pts] At this point you should have k−1 equations describing MLE’s of differ-
ent parameters. Show how those equations imply that the MLE for a parameter



θj representing the probability that X takes on value j is equal to
nj

n
. You may

find the following hint useful for this: In order to remove the k’th parameter from
the likelihood in part (a) you had to represent it with an equation, θk = f(). At
this point you may find it helpful to replace all occurrences of f() with θk. After
replacing f() with θk you can substitute all occurrences of each other parameter
in f() with its MLE from part (b). This should allow you to solve for the MLE
of θk, which can then be used to simplify all of the other equations.
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Now we can substitute the value of θ̂k back into the original equation.
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3. Hidden Markov Models [44 pts]. Many of you may be familiar with the T9 input
paradigm commonly found on cell phones for interpreting a series of key presses on the
9 button keypad as text. Typically, each of the keys 2-9 represents about 3 different
letters (Figure 2 provides the exact mapping). When the user inputs a series of key
presses, such as 3-6-4, the T9 system provides a list of words from its dictionary that
potentially match the sequence (e.g. “dog” and “fog” both match the sequence above).
In this problem you will build a next generation text messaging cell phone input system,
SmarT9, by training an HMM on an English text corpus. For simplicity, we will ask
you to build your system only for 5 letter words and we will provide a small corpus on
the course website.

(a) [5 pts] The hidden states in our HMM will be letters of the word intended by
the user. The observable outputs are the digits 2-9 entered on the key pad.

(b) [3 pts] The probability that a state emits a particular output is 1 if its one of the
letters on the key corresponding to that digit, and 0 otherwise. Let bi(oj) be 1 if
letter i emits observation oj.



Figure 2: A typical phone keypad.

(c) [10 pts] Programming problem. You can verify your table by checking that the
probability u follows q is close to 1. Let aij be the probability that state i is
followed by state j.

(d) [6 pts] Programming problem. You can verify your table by checking that the
probability the initial state starts with ‘S’ is largest and ≈ 0.1. Let πi be the
probability that state 1 has value i.

(e) [10 pts] Programming problem. The definition of α from lecture can be extended
to account for missing observations in the following way,
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(f) [10 pts] Programming problem. The definition of δ from lecture can be extended
to account for missing observations in the following way,
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