Grad Al 15-780 Fall, 2006

Homework 1

o Homework deadline: 10:30am on Oct 4

e Please download Matlab helper code and data files at class website

e Please print your code and hand it in with the hard copy of your homework. Also send
a copy of your code by e-mail to both TAs.

1. Search. This section will involve comparing the performance of DFS, BFS, DFID,
and A* on a set of mazes.

(a)

Figure 1 shows a simple maze. The thick lines between cells represent the walls.
At each location in the maze you can move in at most one of four directions
(constrained by the walls). You are not able to revisit a cell if it has already been
visited before. You consider these directions in the following order:

N—-FE—-S§—-W

Find a shortest path from a to x. Suppose the start is the first thing pushed on
the stack. Show the expansion order for

e DFS, BFS

e Heuristic search using h = horizontal number of cells to the goal

o Afusing f=g+h
Is this heuristic h admissible? Is there any other admissible heuristic A’ we could
use? Please provide at lease another one and explain which is a “better” heuristic.
(Note that heuristic A" is said to be more informed (“better”) than h if both are
admissible, '(n) > h(n) for every non-goal n, and h'(n’) > h(n’) for at least one
non-goal n’).

When the maze becomes larger, we use a single Boolean matrix representing
whether it is possible to move from a given cell in each of the four directions.
Each row in the matrix corresponds to exactly one grid space in the maze and
each column corresponds to one direction. For example, the table below shows
the entries for cells a, b, and ¢ in Figure 1. The legal moves from the cell a are
East and South.

N|IE|S|W
al0]1(1]0
b|1{0]|1]0
cl1]1]110

The maze is indexed in column order from North to South, then West to East.
The maze in a 4x6 grid as in Figure 1 would have indices as shown in the table

r \
S W
t X

Figure 1: A simple maze. The thick lines between cells represent the walls.

below, where North toward the top of the page. The start location is always the
top left cell (index 1) and the goal is always the bottom right cell (index 24 in the
table below). Please use script load_maze to load the maze file. You can display
the loaded maze with function draw_maze, with or without index label.

11519 13|17 |21
2161014 |18 22
37| 11(15(19]23
4181216 | 20| 24

Movement between cells in the maze is accomplished by directly calculating the
successor cell’s index. Specifically, we can define the movements on an Y x X
maze as (consider the index order for the maze) :
e Move North: ind = ind — 1
e Move South: ind = ind + 1
e Move East : ind =ind +Y
e Move West : ind =ind — Y
with the appropriate checks on the bounds and validity of movements. Two helper
functions are provided to map between (X,Y") coordinate and the matrix index:
e maze_XY_from_index: Gets the X and Y coordinates of the location at index.
e maze_index_from_XY: Gets the index from the X and Y coordinates.

Randomness is introduced in this task in terms of breaking ties uniformly at
random. For this part of the problem please ignore the expansion order of N —

E — S — W described in the previous part, and have BFS and DFS push in a
random order.

Please program your solutions in Matlab. Helper files are provided. If you feel
strongly about using another language, please contact one of the TAs.

In your programming, search nodes should be opaque data structures, with op-
erations get_start, get_neighbors and test_goal. This will facilitate using
the same search functions in Problem 2. Write four functions: BFS, DFS, DFID,
and ASTAR (A*). These functions should produce both the path found and the
number of cells expanded. The maze file corresponding to Figure 1(maze0.txt)
and also other five maze files are available at the website. You can start with
the simple maze and then run your search functions on each maze multiple times
(20-30) with your BFS, DFS, DFID, but run ASTAR (A*) only once. Specifically, for
each maze record the following statistics for BFS, DFS, and DFID:

e The solution found.

e The average number of cells expanded.

e The largest number of cells expanded.

e The smallest number of cells expanded.
For A*, just submit the solution and the number of cells expanded. To help you
to implement A*, a priority queue data structure is provided to start from. The
functions you want to use are:

e pg_init: Initialize a priority queue.

e pg_set: Reset the priority of an element, or insert it if it’s not already there.

e pg_pop: Remove and return the first element. (The first element is the one
with smallest numerical priority value). It does not return a random node of
lowest priority.

Please submit the above observations and all codes. To prevent the computer
hanging on a large map, restrict DFS to expand at most 10,000 cells.

2. Constraint Satisfaction Search. This problem is a variation of the missionaries and
cannibals problem from the Russel and Norvig textbook Chap 3. A group of people
must cross a river using a small raft. Unfortunately not everyone gets along and there
are certain rules that must be followed in order to get everyone across safely. The
group consists of a woman and two girls, a man and two boys, and a policeman with
a thief. If you leave certain people alone with others, trouble will ensue. For example,
the thief will only behave if the policeman is on the same bank.

The complete rules are as follows:
(http://jayisgames.com/archives/2006/06/raft_iq_puzzle.php)
e A maximum of two people can be on the raft at a time.
e One adult must be on the raft to operate it.

e The man cannot be with any of the girls without the woman present.

e Conversely, the woman can’t stay with the boys without the man there.

e The thief must be with the policeman or be alone.

There is a flash game online at the above web site. You can get a sense of the problem
from playing. (The game is in Chinese, but the only text is on the opening screen.
Click the big circle to start playing.)

(a)
(b)

Formulate this problem precisely, making only those distinctions necessary to
ensure a valid solution and giving states, operators, start, and goal of the problem.

Write Matlab code to describe the problem and write another data structure for
search nodes (apparently different from Problem 1), including a new get_neighbors
function. Run your DFS, and ASTAR from the first problem. Record the number
of nodes expanded and the runtime of each algorithm. Make sure they can solve
this problem correctly. Submit all the codes and the solution you get using your
problem formulation.

3. Spatial Planning. This section will involve problems related to configuration space
and robot kinematic motion planning.

(a)

Figure 2 shows a work space with three obstacles. The mobile robot can only
translate in this space (2 dof). Please draw approximately the c-space when the
robot has the shape:

e a circle with radius 5
e a b X H square

Note the scale information is shown in Figure 2 using little grid cells. When you
draw the c-space please indicate with a line for each robot shape the outer most
point that the center of the robot can possibly occupy.

Consider a robot arm with two sequential links (Figure 3). Each link is a straight-
line segment of length 1. The arm is installed on a fixed base. Joint J;, which
locates at (0, -1.2), has one degree of freedom and rotates in [—7/2,7/2]. Joint
Jo also has one degree of freedom and rotates in [0, 7]. ¢ and ¢o are the planar
angles of link L; and Ly respectively. There are three circular obstacles in the
workspace, with parameters listed in the table below:

center | radius ‘
(-1,05) | 1.0
(1.6,-1.1) | 0.4
(1.5, -3) 0.5

The script run initializes the graphical display (Figure 4). You can play with the
graphical arm by moving the sliders corresponding to the joint angles to get a
sense of the robot arm. The script run uses a function forward that computes
the forward kinematics of the two-link-arm. That is it take the joint angles as
inputs and compute the end effector position in (z,y) as well as the positions of
all the joints.

Figure 2: A work space with three obstacles. (included in the data files: cspace/obstacles. PNG)

Please code a loop over all configurations in Matlab at the resolution Ag = 0.0017
rad and test for intersections (Do not consider the width of the arms). Print the
two-dimensional c-space as a ¢; — g2 plot. Submit your code and the plot.

Figure 3: A two-link-arm illustration.

-1 1

2 0
4 Angle of: 1.047
4 3 Angle g2 0.000

Figure 4: A graphical arm animation.

