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Today… 

  Thus far, focused on formulating convex problems 
  Today: How do we solve them! 
 Plan: 200 pages of book (Part III) in one lecture 

  Focus: 
 Convex functions 
  Twice differentiable 

  Overview 
 Unconstrained 
 Equality constraints 
 General convex constraints 
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Solving unconstrained problems 

 Unconstrained problem 
 Sequence of points:  

 Exactly: Stop when 

 Approximately: Stop when  
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Descent methods 

  x(k+1) = x(k) + t(k) Δx(k) 
 Want:  

  From convexity:  

  Thus 

  Therefore, pick Δx such that:  
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∇f(x(k))T (y − x(k)) ≥ 0
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Generic descent algorithm 

  Start from some x in dom f 
  Repeat 

 Determine descent direction Δx 
  Line search to choose step size t 
 Update: x  x + t Δx 

  Until stopping criterion 

  Good stopping criterion: 

  In gradient descent, Δx =  
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Exact line search 

  Find best step size t: 

  Problem is 
    
 Sometimes easy to solve in closed form 
 Other times can take a long time… 
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Backtracking line search 

  From convexity,  
lower bound on f(x+Δx): 

 Can’t really hope to achieve  
ideal decrease of  

  Instead pick some α 
 And achieve:  

  Choosing t: 
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Backtracking line search alg. 
  Given 

  Point x 
  Descent direction Δx 
  α 
  β 

  t=1  
  While f(x+Δx)> 

  t := βt 

  Boyd & Vandenberghe: pick  
  α in [0.01,0.3] 
  β in [0.1,0.8]  
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Analysis of gradient descent 
  (details in book…) 
  Linear convergence rate: 

  f(x(k)) – p* ≤ ck (f(x(0)) – p*) 

  Geometrically decreasing 
  c<1 
  In log plot, error decreases below a line… 

  Rate c related to “condition number” of Hessian 
  c ≅ 1 – 1/”condition number” 

  For quadratic problem: 
  Condition number is λmax/λmin 

  Gradient descent bad when condition number is large 
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Observations about descent 
algorithms 

  Observe linear 
convergence in practice 

  Boyd & Vandenberghe: 
difference often not 
significant in large 
dimensional problems 
 May not be worth 

implementing exact LS when 
complex 

  Condition number can 
greatly affect convergence 
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Solving quadratic problems is easy 

  Quadratic problem: 

  Solving equivalent to solving linear system: 

  If system has at least one solution: done! 

  If system has no solutions: problem is unbounded 

  Usually don’t have simple quadratic problems, but… 
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Newton’s method 

  Second order Taylor expansion: 

  Descent direction, solution to linear system 

  Nice property: 
 We wanted: 

 We get:  
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Newton’s method – alg. 
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  Start from some x in dom f 
  Repeat 

 Determine descent direction Δxnt 
    

  Line search to choose step size t 
 Update: x  x + t Δxnt 

  Until stopping criterion 

  Good stopping criterion: 
1
2
∇f(x)T∇2f(x)−1∇f(x) ≤ ε

Convergence analysis for Newton’s 

  (Really see book for details.) 

  Two phases: 
 Gradient is large 

  Damped Newton Phase 
  Step size t<1 

  Linear convergence 

 Gradient is small 
  Pure Newton Phase 

  Step size t=1 
  Quadratic convergence 

  c^(2k) 
  Only lasts 6 steps 
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Summary on Newton’s 
  Converges in very few iterations, especially in 

quadratic phase 
  Invariant to choice of coordinates or affine scaling  

  Very useful property! 
  Performs well with problem size, not very sensitive to 

parameter choices 
  Can prove even cooler things when function is 

smooth 
  E.g., “self-concordance,” see book 

  Many implementation tricks (see book) 

  But… 
  Forming and storing Hessian is quadratic 

 Can be prohibitive 

  Solving linear system can be really expensive 
  Use quasi-Newton methods 
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Solving problems with equality 
constraints 

 Equality constraints: 

 Seems very hard 
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Null space 

  Equality constraints: 

  Given one solution: 

  Find other solutions: 

  Since Null Space is a linear subspace: 

17 ©2008 Carlos Guestrin 

Eliminating linear equalities 

  Equivalent optimization problems: 

  Find basis for null space of A (linear algebra) 
 Solve unconstrained problem 

  A concern… 
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Solving quadratic problems with 
equality constraints 

  Quadratic problem with equality constraints: 

  KKT condition x* solution iff 

  Rewriting: 

  Solve linear system: 
  Any solution is OPT 
  If no solution, unbounded 
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Newton’s method with equality 
constraints 
  Quadratic approximation: 

  Start feasible, stay feasible: 

  KKT: 

  Solve linear system: 

  Move accordingly:  
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General convex problem 

 General (differentiable) convex problem: 

 Equivalent problem with only equality constraints: 
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Approximating the indicator 

  Approximate indicator: 
    
 Correct as t 
 Differentiable 

  Approximate optimization problem: 

  Convex, if fi are convex, because 
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Log-barrier function 

 Solve log-barrier problem with parameter t: 

 Nice property: 
 Gradient: 

 Hessian:  
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Force field interpretation 

  Log-barrier function: 

  Descending gradient of log barrier 

  Each term: 
 Want fi(x)≤0 
 As we approach 0- :  
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Central path 

  For each t, solve: 

  As t goes to infinity, approach solution of original problem 

  Problem becomes badly conditioned for very large t, so 
want to stay close to path and make small steps on t 
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Barrier method 

 Given: 
 Feasible x 
 Initial t>0 
 µ>1 

 Repeat 
 Centering: 

  Starting from x, compute: 

 Update:  x:= 
 Stopping criterion: When t is “large enough” 
 Increase barrier param:  t:= 
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When is t large enough??? 

 Solve centering step: 

  There exists values for dual vars (See book), 
such that duality gap ≤ k/t 

  Thus:  

 Stopping criterion k/t ≤ ε 
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Centering step not (necessarily) exact 

  Finding exact point on central path can take a while… 

  Usually: 
 Run a few steps of Newton to recenter 
  Then increase t 
  (problem: duality gap result no longer holds!!) 

  Most often use primal-dual method 
 Equivalent to Newton’s method on Lagrangian 

    

  See book for details 
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What about feasible starting point??? 

  Phase I: Solve feasibility problem, e.g., 

  Starting from feasible point: 

  (don’t solve to optimality!!! Stop when s<0) 
  When feasible region “not too small”, find point very quickly 

  Phase II: use feasible point from Phase I as starting point for 
Newton’s or other method 

  Also possible: 
  Change Phase I to guarantee starting point (near) central path  
  Combine Phase I and Phase II 
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