From relaxations to integral solutions (cont.)

Optimization-10725
Carlos Guestrin
Carnegie Mellon University
April $23^{\text {rd }}, 2008$

Relaxations and rounding

- What do we do if we don't get integral solutions?
\square because $P \neq N P$ (probably fun)
- E.g., set cover problem
\square Ground elements $V \in V$
Set of Sets $\delta \in \delta \quad S \subseteq V$

\square Cost for sets Cs
\square Find cheapest collection of subsets that covers all elements
- Integer program and relaxation:
$\min _{x} \sum_{S} c_{\delta} x_{S}$.
$\forall v \quad \sum_{s i v e s} x_{s} \geqslant 1$
relax
$\min _{x} \sum_{s} c_{\delta} x_{s}$
$\sum_{s: v \in S} x_{\delta} \geqslant 1 \quad \forall v$
$0 \leq x_{s} \leq 1$
- How can we obtain a good integer (rounded) solution?
\square If we set all nonzero x_{s} to one, then
smart roundigg?

Consider a special case...

- Suppose each element in at most k sets
- From inequality constraint:
- Rounding strategy:
- Feasibility:
- Cost of rounded solution:

Very simple example of randomized rounding

■ Solve set cover relaxation:

- Randomly pick a collection of subsets G
\square For each S , add it to G with (independent) probability x_{s}
- What's the expected cost of G?
$\square I_{s}$ indicator of whether set S is in G

How many elements do we cover?

- Expected cost of G can be lower than $\mathrm{OPT}_{\mathrm{IP}}$
\square Must cover fewer elements
- I_{v} is indicator of whether element v covered by G
- Expected number of elements covered:

How big can cost get?

- Expected cost is lower than OPT ${ }_{\text {IP }}$
\square But how big can actual cost get?
\square (a simple bound here, more interesting bounds using more elaborate techniques)
- Markov Inequality: Let Y be a non-negative random variable
\square Then
- In our example:

Randomization \& Derandomization

- MAX-3SAT:

3SAT formula:

- Binary variables X_{1}, \ldots, X_{n}
- Conjunction of clauses $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{M}}$
- Each clause is a disjunction of three literals on three different variables

Want assignment that maximizes number of satisfied formulas

Randomized algorithm for

 - MAX-3SAT- Pick assignment for each X_{i} independently, at random with prob. 0.5
- Expected number of satisfied clauses:

Aside: Probabilistic Method

- Expected number of satisfied clauses:
- Probabilistic method: for any random var. Y, there exists assignment y such that $P(y)>0, y \geq E[Y]$
\square Almost obvious fact
\square Amazing consequences
- For example, in the context of MAX-3SAT:

Derandomization

- There exists assignment X that achieves
- In expectation, we get 7/8.M, but can we get it with prob. 1? Without randomization?
- Derandomization: From a randomized algorithm, obtain a deterministic algorithm with same guarantees
\square Today: method of conditional expectations

Method of conditional expectations

- Conditional expectation:
- Expectation of the conditional expectation:
\square
- Consider MAX-3SAT:

Expectation:
\square Expectation of conditional expectation:

Computing conditional expectation

- Conditioning on $X_{1}=1$:
- General case: $X_{1}=v_{1}, \ldots, X_{i}=v_{i}$
\square Sum over clauses, I_{j} is indicator clause j is satisfied

Derandomized algorithm for MAX-3SAT

- For $\mathrm{i}=1, \ldots, \mathrm{n}$
\square Try $X_{i}=1$
- Compute
$\square \operatorname{Try} \mathrm{X}_{\mathrm{i}}=0$
- Compute
\square Set v_{i} to best assignment to X_{i}
- Deterministic algorithm guaranteed to achieve at least 7/8.M

Most probable explanation (MPE) in a Markov network

- Markov net:
- Most probable explanation:
- In general, NP-complete problem, and hard to approximate

MPE for attractive MNs - 2 classes

- Attractive MN:
\square E.g., image classification
- Finding most probable explanation
- Can be solved by

MPE, Attractive MNs, k classes

- MPE for k classes:
- Multiway cut:
\square Graph G, edge weights w_{ij}
\square Finding minimum cut, separate $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- Multiway cut problem is

Multiway cut - combinatorial algorithm

- Very simple alg:
\square For each $i=1 \ldots k$
- Find cut C_{i} that separates s_{i} from rest
\square Discard $\operatorname{argmax}_{\mathrm{i}} \mathrm{w}\left(\mathrm{C}_{\mathrm{i}}\right)$, return union of rest
- Algorithm achieves 2-2/k approximation
\square OPT cut A* separates graph into k components - No advantage in more than k
\square From A^{*} form $A^{*}{ }_{1}, \ldots, A_{k}^{*}$, where A_{i}^{*} separates s_{i} from rest
\square Each edge in A^{*} appears in -Thus

Multiway cut proof

- Thus, for OPT cut A* we have that:
- Each A_{i} separates s_{i} from rest, thus
- But, can do better, because

