Today...

- Want to solve integer program
\square E.g., vars in $\{0,1\}$
- Solve convex relaxation
\square E.g., vars in $[0,1]$
- If minimizing, relaxed objective lower:

- Want integer solution:
\square Somehow round relaxed solution:
- Can affect feasibility
- Can affect costs
- Today: some ideas \& strategies for rounding
\square See optional books for many more options \& details

Integral basic feasible solutions

- LP:

$$
\left.\min _{x} \begin{array}{l}
c^{\prime} x \\
\\
0 \leq x \leq 1
\end{array}\right\} \begin{aligned}
& \text { always get } \\
& \text { integer solution? }
\end{aligned}
$$

- If all optimal basic feasible solutions are integral, we are done!
\square LP relaxation is optimal!!!
- It is sufficient if all basic feasible solutions are integral
\square When does this happen?
\square A sufficient (but not necessary) condition:łrivial to
basis $B \in$ rows of A ? X^{E} conkers vertices
$A_{B} X=b_{B}$

in ks $1 \in$ typraclly

to 2008 Carlos Guestrin

Integral matrix \rightarrow Integral inverse?

$$
\begin{aligned}
& A_{B}=\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad A_{B}^{-1}=\frac{1}{\left|A_{B}\right|}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) \\
&\left|A_{B}\right|=2=\left(\begin{array}{cc}
1 / 2 & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right) \\
& \text { eeg, } \quad b_{B}=\binom{1}{0} \quad x=A_{B}^{-1} b_{B}=\binom{1 / 2}{-1 / 2} \text { not integral } \\
& \text { Key problem in eeg, }\left|A_{B}\right|>1
\end{aligned}
$$

condition: Totally Unimodular

- Structure of inverse of matrix:

- Inverse integral if

Determinant: $|0| \leftarrow\{-1,0,1\}$
Cofactors: $-1,0,1$ detarminect of square submatrias

Relaxations with Totally Unimodular Matrices

- Defn: Matrix A is totally unimodular if the determinant of aray square submatrix is either -1 , 0 , or 1

- Thm: If an LP has a totally unimodular constraint matrix A, and the vector b is integral, then all basic feasible solutions are integral

Thus LP relaxation provides solution to
integer proguem

How often do you see totally unimodularity?

- OftenBipartite matching
Cuts
\square Maximum margin Markov networks
- Not often
\square otherwise $P=N P$
- One thing we can agree: it's usually not easy to spot...

Sufficient conditions for total unimodularity

- Matrix A is totally unimodular if
\square All entries are -1, 0, or 1
\square Each column contains at most two nonzero elements

\square Rows of A can be partitioned into two sets A_{1} and A_{2} such that two nonzero entries in a column are
- in the same set of rows if they have different signs
- in different sets of rows if they have the same sign
- Maximum bipartite matching:
\square Two sets of nodes
- Edges from nodes i in A to j in B have weight w_{i}

$$
\max \sum_{i j} i_{i j} x_{i j}
$$

$$
\begin{array}{ll}
\max & \sum_{i j} l_{i j} x_{i j} \\
\text { st. } \sum x_{i j}=1
\end{array} \quad i \in A\left\{\begin{array}{l}
\text { totally Uninodul- } \\
\vdots \text { all } \text { Untrics } 0,1 \\
V \text { column } x_{i j} \text { exp }
\end{array}\right.
$$

$$
\begin{array}{lll}
\sum_{i} x_{i j}=1 \quad j \in B \quad \vee A_{l}=A \quad A_{l}=B, & \text { all signs } \\
\text { rilacstion } & x_{i j} \geqslant 0 & \text { positive }
\end{array}
$$

$$
2008 \text { Carlos Guestrin }
$$

Relaxations and rounding

- What do we do if we don't get integral solutions?
\square becanse
- E.g., set cover problem
\square Ground elements $v \in V$Set of Sets $\delta \in \oint \quad S \subseteq V$

\square Cost for sets C_{s}
\square Find cheapest collection of subsets that covers all elements
- Integer program and relaxation:

$$
\begin{array}{ll}
\min _{x} & \sum_{s} c_{\delta} x_{s} \\
\forall v & \sum_{s i v \in S} x_{s} \geqslant 1 \geqslant 1
\end{array}
$$

relax
$\min _{x} \sum_{s} c_{s} x_{s}$
$\sum_{s: v \in S} x_{\delta} \geqslant 1 \quad \forall v$
$u \leq x_{s} \leq 1$

- How can we obtain a good integer (rounded) solution? arbitrib $O(n)$
\square If we set all nonzero x_{5} to one, then very bad idea... more expensix
$\square{ }_{\text {Q2008 Carlos Guestrin }}$ Smart rounding?

