
Branch & bound
[schema, value] = bb(F, sch, bnd)
• [vrx, rsch] = relax(F, sch)
• if integer(rsch): return [rsch, vrx]
• if vrx ≥ bnd: return [sch, vrx]
• Pick variable xi

• [sch(0), v(0)] = bb(F, sch/(xi→0), bnd)
• [sch(1), v(1)] = bb(F, sch/(xi→1), min(bnd, v(0)))
• if (v(0) ≤ v(1)): return [sch(0), v(0)]
• else:   return [sch(1), v(1)]



A random 3-CNF formula



Example search tree



Ordering rules

• If relaxation is available:
– most certain variable first
– most uncertain variable first

• If no relaxation:
– most constrained variable first (fewest

remaining values in domain)
– activity rules (branch on variables that are

“near” recent vars)



Summary so far

• Simple search

• Constraint propagation

• Branch & bound



Multiple representations

• Any given feasible region may have
many different representations

• Can make problem much easier or
harder to solve









Multiple representations

• Typically, tension btwn tight & small
• Tightest: hull of integer feasible points

– not small: can be exponentially many faces
• If we have the exact convex hull:

• So:
• Few variables, lots of constraints:



Cutting planes example

min y st  (1–x) + y ≥ 1,  x + y ≥ 1,  x,y ∈ {0,1}



Resolution

(a ∨ ¬b ∨ c) ∧ (¬a ∨ c ∨ d)
⇒ (¬b ∨ c ∨ d)



SAT and cutting planes

• These “resolution cuts” provide a partial
description of the convex hull of integer
feasible points for any SAT problem

• [Hooker 92]: can generalize to get a
complete description

• Size:



Finding the convex hull

• If we have a non-integral optimal basic
solution to current relaxation, we know
that a cutting plane always exists

• But it might be difficult to find
• Interesting Q: is there a general way to

find a cutting plane?



Summary so far

• Several improvements on simple search
– constraint propagation
– branch & bound
– cutting planes

• B&B and cuts are very different
– for a given problem, one can work much

better than other
• Can we get best of both?



Branch & cut
[schema, value] = bc(F, sch, bnd)
• repeat until (no cuts added)

– [vrx, rsch] = relax(F, sch)
– if integer(rsch): return [rsch, vrx]
– if vrx ≥ bnd: return [sch, vrx]
– If desired: F := F ∪ {new cuts based on rsch}

• … continue as for branch & bound (try both
branches, return better one)



Branch & cut discussion

• Don’t always need to solve relaxation to
find cuts
– e.g., on failure in a SAT problem, know a

subset of our decisions led to contradiction
• If we find a good cut near leaves of

search tree, can sometimes “lift” it to
apply to ancestor nodes


