Branch \& bound

[schema, value] $=\mathrm{bb}(\underline{\mathrm{F}}, \underline{\text { sch }}$, bnd $)$

- $\left[\mathrm{v}_{\mathrm{rx}}, \underline{\text { rSch }]}=\right.$ relax $(F, \underline{\mathrm{Sch}}) \rightarrow$ solve (prilaxction
- if integer(rsch): return [rsch, V_{rx}]
- if $\mathrm{v}_{\mathrm{rx}} \geq$ bnd: return [sch, v_{rx}]
- Pick variable x_{i}
- $\left[\operatorname{sch}^{(0)}, \mathrm{v}^{(0)}\right]=\operatorname{bb}\left(F, \operatorname{sch} /\left(\mathrm{x}_{\mathrm{i}} \rightarrow 0\right)\right.$, bnd $)$
- $\left[\operatorname{sch}^{(1)}, \mathrm{v}^{(1)}\right]=\underline{\mathrm{bb}}\left(F, \operatorname{sch} /\left(\mathrm{x}_{\mathrm{i}} \rightarrow 1\right), \underline{\min \left(b n d, \mathrm{v}^{(0)}\right)}\right)$
- if $\left(\mathrm{v}^{(0)} \leq \mathrm{v}^{(1)}\right)$: return $\left[\operatorname{sch}^{(0)}, \mathrm{v}^{(0)}\right]$
- else: return $\left[\operatorname{sch}^{(1)}, \mathrm{v}^{(1)}\right]$

A random 3-CNF formula

$$
\begin{aligned}
&\left(x_{5} \vee x_{1} \vee x_{2}\right) \wedge\left(x_{7} \vee x_{2} \vee \bar{x}_{4}\right) \wedge\left(x_{5} \vee x_{2} \vee \bar{x}_{8}\right) \wedge\left(\bar{x}_{6} \vee \bar{x}_{1} \vee \bar{x}_{7}\right) \\
& \wedge\left(x_{1} \vee x_{3} \vee x_{5}\right) \wedge\left(\bar{x}_{7} \vee x_{1} \vee \bar{x}_{6}\right) \wedge\left(x_{8} \vee x_{5} \vee x_{7}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{6} \vee \bar{x}_{7}\right) \\
& \wedge\left(\bar{x}_{7} \vee x_{2} \vee x_{1}\right) \wedge\left(\bar{x}_{6} \vee x_{4} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{2} \vee x_{3} \vee \bar{x}_{2}\right) \wedge\left(x_{4} \vee x_{2} \vee \bar{x}_{1}\right) \\
& \wedge\left(x_{1} \vee \bar{x}_{6} \vee x_{6}\right) \wedge\left(x_{7} \vee \bar{x}_{8} \vee \bar{x}_{3}\right) \wedge\left(x_{3} \vee \bar{x}_{4} \vee x_{4}\right) \wedge\left(\bar{x}_{4} \vee x_{7} \vee \bar{x}_{3}\right) \\
& \wedge\left(x_{2} \vee x_{4} \vee x_{1}\right) \wedge\left(\bar{x}_{6} \vee \bar{x}_{7} \vee x_{5}\right) \wedge\left(\bar{x}_{2} \vee x_{7} \vee \bar{x}_{4}\right) \wedge\left(\bar{x}_{5} \vee x_{6} \vee x_{3}\right) \\
& \wedge\left(x_{7} \vee \bar{x}_{1} \vee x_{6}\right) \wedge\left(x_{7} \vee x_{4} \vee x_{7}\right) \wedge\left(\bar{x}_{5} \vee \bar{x}_{6} \vee x_{5}\right) \wedge\left(x_{7} \vee x_{8} \vee \bar{x}_{1}\right) \\
& \wedge\left(\bar{x}_{1} \vee \bar{x}_{1} \vee x_{3}\right) \wedge\left(\bar{x}_{8} \vee x_{3} \vee \bar{x}_{3}\right) \wedge\left(x_{5} \vee x_{4} \vee \bar{x}_{6}\right) \wedge\left(x_{4} \vee \bar{x}_{1} \vee x_{4}\right) \\
& \wedge\left(\bar{x}_{8} \vee x_{4} \vee x_{4}\right) \wedge\left(\bar{x}_{4} \vee \bar{x}_{4} \vee \bar{x}_{1}\right) \wedge\left(\bar{x}_{8} \vee x_{7} \vee x_{7}\right) \wedge\left(\bar{x}_{2} \vee x_{8} \vee \bar{x}_{8}\right) \\
& \wedge\left(x_{1} \vee x_{2} \vee x_{6}\right) \wedge\left(\bar{x}_{5} \vee \bar{x}_{2} \vee x_{1}\right)
\end{aligned}
$$

Example search tree
$* * * * * * * * v_{r_{x}}=0$ band ∞

Ordering rules

- If relaxation is available:
- most certain variable first
- most uncertain variable first \Rightarrow in paricu (uscolly)
- If no relaxation:
- most constrained variable first (fewest remaining values in domain)
- activity rules (branch on variables that are "near" recent vars)

Summary so far

- Simple search
- Constraint propagation

$$
\begin{aligned}
& \text { can be combined } \\
& \Rightarrow \text { soke smaller LPS }
\end{aligned}
$$

- Branch \& bound

Multiple representations

- Any given feasible region may have many different representations
- Can make problem much easier or harder to solve

Multiple representations

smodllume few constants

- Typically, tension btw tight \& small
- Tightest: hull of integer feasible points
- not small: can be exponentially many faces
- If we have the exact convex hull:
any basic feasible solis will be integral
- So: can solve as LP
- Few variables, lots of constraints:

$$
\Rightarrow \text { constraint generation }
$$

Cutting planes example

$$
\bar{x} v y
$$

$$
x \vee y
$$

$\min \underline{y}$ st $(1-x)+y \geq 1, x+y \geq 1, \underline{x}, y \in\{0,1\}$

$$
\begin{gathered}
1+2 y \geqslant 2 \\
2 y \geqslant 1 \\
\Leftrightarrow y \geqslant 1
\end{gathered}
$$

Resolution

$$
\begin{aligned}
& (a \vee \neg b \vee c) \wedge(\neg a \vee c \vee d) \\
& \Rightarrow(\neg \mathrm{b} \vee \underline{c} \vee \mathrm{~d}) \\
& \overline{\operatorname{man}(S)} \vee \operatorname{mortal}(J) \\
& \operatorname{man}(s) \\
& \text { mortal(s) } \\
& a+(1-\delta)+c \geqslant 1 \\
& (1-a)+c+d \geqslant 1 \\
& 1+(1-b)+2 c+d \geqslant 2 \\
& (1-\delta)+2 c+A \geqslant 1 \\
& \Leftrightarrow(1-b)+c+d \geq 1
\end{aligned}
$$

SAT and cutting planes

- These "resolution cuts" provide a partial description of the convex hull of integer feasible points for any SAT problem
- [Hooker 92]: can generalize to get a complete description
- Size: expinatial

Finding the convex hull

- If we have a non-integral optimal basic solution to current relaxation, we know that a cutting plane always exists
- But it might be difficult to find
- Interesting Q: is there a general way to find a cutting plane?
A: yes egg. Gomory ants \Rightarrow slow aloonthm

Summary so far

- Several improvements on simple search
- constraint propagation
- branch \& bound
- cutting planes
- B\&B and cuts are very different
- for a given problem, one can work much better than other
- Can we get best of both?

Branch \& cut

[schema, value] = bc(F, sch, $\underline{\text { bnd })}$

- repeat until (no cuts added)
$-\left[v_{r x}, r s c h\right]=$ relax (F, sch)
- if integer(rsch): return [rsch, v_{rx}]
- if $v_{r x} \geq$ bnd: return [sch, $v_{r x}$]
- If desired: $F:=F \cup\{$ new cuts based on rsch\}
- ... continue as for branch \& bound (try both branches, return better one)

Branch \& cut discussion

- Don't always need to solve relaxation to find cuts
- e.g., on failure in a SAT problem, know a subset of our decisions led to contradiction
- If we find a good cut near leaves of search tree, can sometimes "lift" it to apply to ancestor nodes

