LP duality cheat sheet

$$
\begin{array}{lll}
\min c^{\prime} x+d^{\prime} y & \text { s.t. } & \text { max } p^{\prime} v+q^{\prime} w \\
\text { s.t. } \\
A x+B y \geq p & & A^{\prime} v+E^{\prime} w=c \\
E x+F y=q & & B^{\prime} v+F^{\prime} w \leq d \\
x \text { free, } y \geq 0 & & v \geq 0, w \text { free }
\end{array}
$$

Swap RHS and objective Swap max/min

Transpose constraint matrix + ve vars yield \leq, free vars yield $=$

Linear feasibility problem

min c'x s.t.
$A x+b \geq 0$
find x s.t.
$A x+b \geq 0$

Separation oracle

Ellipsoid preview

Difficulties

- How do we get bounding sphere?
- How do we know when to stop?
- Bound region gets complicated-how do we find its center?

Bounding a partial ellipsoid

- General ellipsoid $w /$ center x_{C}, radius R :
- Halfspace: $p^{\top} x+q \leq 0$
- Translate to origin, scale to be spherical

$$
y=\quad x=
$$

Bounding a partial sphere

- Rotate so hyperplane is axis-normal
- New center x_{c} :
- New shape A:

For example

Ellipsoid algorithm

- Want to find x s.t. $A x+b+\eta \geq 0$
- Pick R s.t. $\left\|x^{*}\right\| \leq R$
- $\mathrm{E}_{0}:=\{\mathrm{x}\| \| x \| \leq R\}$
- Repeat:
$-x_{t}:=$ center of E_{t}
- ask whether $A x_{t}+b \geq 0$
- yes: declare feasible!
- no: get separating hyperplane
$-E_{t+1}:=\operatorname{bound}\left(E_{t} \cap\left\{x \mid p_{t}^{\top} x \leq p_{t}^{\top} x_{t}\right\}\right)$
- if $\operatorname{vol}\left(\mathrm{E}_{\mathrm{t}+1}\right) \leq \varepsilon \operatorname{vol}\left(\mathrm{E}_{0}\right)$: declare infeasible!

Getting bounds

- How big do L, U need to be?
- How big does R need to be?
-What should η be?
- How small does ε need to be?

Other algorithms

- Ellipsoid is polynomial, but slow
- Some other algorithms:
- simplex: exponential in worst case, but often fast in practice
- randomized simplex: polynomial [Kelner \& Spielman, 2006]
- interior point: polynomial
- subgradient descent: weakly polynomial, but really simple, and fast for some purposes

What's a subgradient?

Subgradient descent for SVMs

- $\min _{s, w, b}\|w\|^{2}+C \sum_{i} s_{i}$ s.t.
$y_{i}\left(x_{i}^{\top} w-b\right) \geq 1-s_{i}$
$s_{i} \geq 0$
- Equivalently,

Subgradient in SVM

- $\min _{w} L(w)=\|w\|^{\wedge} 2+C \sum_{i} h\left(y_{i} x_{i}^{\top} w\right)$
- Subgradient of $h(z)$:
- Subgradient of $L(w)$ wrt w:

