Linear feasibility problem

$L P$ ping
$\min C^{\top} x s$.
$A x+b \geq 0$
dual
$\max -b^{\top} y$ st.
$A^{\top} y=c, y \geq 0$
find x st.
$A x+b \geq 0$
primal $\left[\begin{array}{cl}x+6 \geqslant 0\end{array}\right.$
linear fusibility
dual $\left[\begin{array}{l}A^{\top} y=c \\ y=0 \\ c^{\top} x=-\delta^{\top} y \leftarrow \text { ophmal }\end{array}\right.$

Separation oracle

Difficulties

- How do we get bounding sphere? later
- How do we know when to stop?

$$
\forall \quad a_{1}^{\top} x+b_{1}+\eta \geqslant 0 \quad m>0 \text { small court }
$$

- Bound region gets complicated-how do we find its center?

Bounding a half-ellipsoid

tue def

- General ellipsoid w/ center x_{C}, shape A :

$$
\left(x-x_{c}\right)^{\top} A\left(x-x_{c}\right) \leq 1 \quad A=u^{\top} u \text { inutile } u
$$

- Halfspace: $p^{\top} x \leq p^{\top} x_{c} \rightarrow p^{\top}\left(u^{-1} y+x_{c}\right) \leq p^{\top} x_{c}$
- Translate to origin, scale to be spherical

$$
\begin{gathered}
y=u\left(x-x_{c}\right) \quad x=u^{-1} y+x_{c} \\
\underbrace{\left(x-x_{c}\right)^{\top} u^{\top}}_{y^{\top}} \underbrace{u\left(x-x_{c}\right)}_{y} \leqslant 1 \quad q:=u^{-\top} p /\left\|u^{-\top} p\right\| \\
y^{\top} y \leqslant 1 \quad p^{\top} u^{-1} y \leqslant 0 \\
q^{\top} y \leqslant 0
\end{gathered}
$$

Bounding a half-sphere

- Rotate so hyperplane is axis-normal

- New center $Z_{C}:-\frac{1}{n+1} e_{1}$
- New shape B:

For example

Ellipsoid algorithm

- Want to find \underline{x} s.t. $\underline{A x+b+\eta \geq 0}$
- Pick E_{0} s.t. $\mathrm{X}^{*} \in \mathrm{E}_{0}$
- for $\mathrm{t}:=1,2, \ldots$
$-x_{t}:=$ center of E_{t}
- ask whether $\mathrm{Ax}_{\mathrm{t}}+\mathrm{b}+\eta \geq 0$

- yes: declare feasible! done!
- no: get new constraint w/ normal p_{t}
$-E_{t+1}:=\operatorname{bound}\left(E_{t} \cap\left\{x \mid p_{t}^{\top} x \leq \overline{p_{t}^{\top}} x_{t}\right\}\right)$

- How big does E_{0} need to be?
- What should η be?
- How small does ε need to be?

$$
\begin{aligned}
& \text { Laplace: Rule: } \\
& \frac{\forall_{i}}{b_{i} \in \mathbb{R}^{n}}|B|=\sum_{j}(-1)^{i+j} B_{i j}\left|B_{i j}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \text { bit length } \leq \text { poly (original bit length) } \\
& B^{-1} b \quad B \text { solset of bows of } A \\
& \text { kramer's Rule: } \\
& \left(B^{-1}\right)_{i j}=\frac{\left|B_{i j}\right|}{|B|} \\
& \underset{\substack{\text { andinitices }}}{\operatorname{on}}\left[2^{\mu}, 2^{\mu}\right] \Rightarrow \underset{\text { antic) }}{\text { min }}\left[-n: 2^{M_{n}}, n!2^{\mu_{n}}\right]
\end{aligned}
$$

Dotting i's, crossing t's

- What if LF was unbounded? So what?
- What about numerical precision?

$$
\begin{aligned}
A= & u^{\top} U \Rightarrow \text { square roots } \Rightarrow \text { infinite precision!! } \\
& o\left(u^{3} M\right)
\end{aligned}
$$

Comparison to constraint generation

- Ellipsoid is polynomial, but slow
- Constraint generation has no nontrivial runtime bound, but often much faster

Other algorithms

- Interior point: polynomial, can be very fast
- Simplex: exponential in worst case, but often fast in practice ravamied
- Randomized simplex: polynomial [Kelner \& Spielman, 2006]
- Subgradient descent: weakly polynomial, but really simple, and fast for some purposes

$$
\begin{array}{r}
\operatorname{polf}\left(n, m, M, \tau_{\epsilon}\right) \\
\tau_{\text {accuracy }}
\end{array}
$$

Subgradients for SVMs

- $\min _{\mathrm{s}, \mathrm{w}, \mathrm{b}} \underline{\|\mathrm{w}\|^{2}}+\underline{\mathrm{C}} \sum_{\mathrm{i}} \mathrm{s}_{\mathrm{i}}$ s.t.
$\forall i \quad y_{i}\left(x_{i}^{\top} w-b\right) \geq 1-s_{i}$
$S_{i} \geq 0 \longrightarrow z_{i}=y_{i}\left(x_{i}^{\top} \omega-b\right)$
- Equivalently, $h(z)=\max \{0,1+z\}$
$\min _{\omega_{1},}\|\omega\|_{2}^{2}+c \sum_{i} h\left(-z_{i}\right)=\|\omega\|^{2}+c \sum_{i} h\left(-y_{i}\left(x_{i}^{\top} \omega-b\right)\right)$

Subgradients for SVMs

- $\min _{w} L(w)=\|w\|^{\wedge} 2+(C / m) \sum_{i} h\left(y_{i} x_{i}^{\top} w\right)$
- Subgradient of $\mathrm{h}(\mathrm{z})$:

$$
a(h(z))=\left\{\begin{array}{ll}
0 & z<-1 \\
1 & z>-1 \\
00,1] & z=-1
\end{array} 0 \square \quad z=-1\right.
$$

- Subgradient of $L(w)$ wrt w :
$\partial L(\omega)=2 \omega+\frac{C}{m} \sum_{i} \partial h\left(-y \cdot x_{i}^{\top} \omega\right) \cdot\left(-y_{i} \cdot x_{i}\right)$

Subgradient descent
start w/ x_{0}

- While not tired:

$$
\eta_{t}=\text { learning rate }
$$

$g_{t}=$ (estinact of) $\partial f\left(x_{t}\right)$
$\underline{x_{t+1}}=x_{t}-\eta_{t} g_{t}$

$$
\overline{x_{t+1}}:=\prod_{F} \bar{x}_{t+1}
$$

τ projection onto facsibte region F

Subgradient questions

- How to choose learning rate?
- How to decide when we're tired?
- How to estimate $\partial \mathrm{f}\left(\mathrm{x}_{\mathrm{t}}\right)$?

