Separating hyperplanes

\rightarrow S a closed, convex set

- Point x not in S
$\exists y, b, y^{\top} x+b<0 \wedge$
yperplane $\left.\begin{array}{c}y^{\top} s+6>0 \\ \forall s \in S\end{array}\right)$
- Suppose S, T two closed convex sets
- Can they be strictly separated?

Example

$$
k^{*}=\left\{y \mid y^{*} x \geqslant 0 \quad \forall x \in k\right\}
$$

Intersection and union

$$
\begin{aligned}
& \text { - }\left(\mathrm{K}_{1} \cup \mathrm{~K}_{2}\right)^{*}=k_{1}^{*} \cap k_{2}^{*} \\
& y \in k_{1}^{*} \cap k_{2}^{*} \Leftrightarrow\left(y^{\top} x \geqslant 0 \quad \forall x \in k_{1}\right) \wedge\left(y^{\top} x \geqslant 0 \quad \forall x \in k_{2}\right) \\
& y^{\top} x \geqslant 0 \quad \forall x \in k_{1} \cup k_{2} \Leftrightarrow y \in\left(k_{1} \cup k_{2}\right)^{*} \\
& \left(k_{1} \cup k_{2}\right)^{* *}=\left(k_{1}^{*} \cap k_{2}^{*}\right)^{*} \quad \operatorname{Defin} k_{3}=k_{1}^{*} \quad k_{4}=k_{2}^{*} \\
& \frac{d \operatorname{conv}\left(k_{1} \cup k_{2}\right)}{\left.\left.\left(K_{3} \cap K_{4}\right)^{*} \cap k_{4}\right)^{*}\right) .} \\
& k_{3} \text { and } k_{4} \text { clored? } \\
& \rightarrow \cdot \frac{\left(\mathrm{K}_{3} \cap \mathrm{~K}_{4}\right)^{*}}{}=\text { al conv }(\frac{\text { cl con } k_{1}}{\left(k_{1}^{*}\right)^{*}=k_{3}^{*}} \underbrace{\text { clonv } \left.k_{2}\right)}_{\left(k_{2}\right)^{*}=k_{4}^{*}} \text { caicy } \\
& =d \operatorname{covv}\left(k_{3}^{*} \cup k_{4}^{*}\right)
\end{aligned}
$$

Flat, pointed, solid, proper

- K is flat if: $\exists x^{x^{0}} . \forall \lambda \in \mathbb{R}, \quad \lambda x \in K$
- E.g., $K=\{(x, y, z) \mid x \geq 0, y \geq 0\} \quad(1,1, z) \in K$
- K is pointed if: not flat
- E.g., $K=\{(x, y, z) \mid x=0, y, z \geqslant 0\} \&$ imposer
- K is proper if: k, k^{*} both ported
- E.g., $K=\{(x, y, z) \mid x \geqslant 0, y \geq 0, z \geq 0\}$

$$
\Rightarrow \text { int } k \neq \phi \text { int } k^{*} \neq \phi
$$

if ki improper, soul han x any $y<k x$
Generalized inequalities
y \times x

- Given proper cone $\stackrel{\measuredangle}{K}$ \qquad x+k
- $x \geq_{\underline{K}} y$ iff $\underline{x-y} \geq_{K} \underline{0}$ iff $x-y \in K$
$\Rightarrow x z_{k y} \wedge \frac{y \geqslant k z}{} \frac{x-y+k}{y-z_{k}+k} \frac{x-y+y-z+k}{x-z+k}$
- $x \geq_{K} y$ iff $x \geq_{K} y$ and \underline{x} ! $=y$
- $x \leq_{K} y$ and $x<_{K} y$: as expected
- Transitive:
- Examples:

$$
\begin{aligned}
x \mathbb{R}_{+}^{n} y & \Leftrightarrow x_{i} \geqslant y_{i} \forall i \\
x \geqslant s_{+} y & \Leftrightarrow x-y \text { position semidefinite } \\
& \Leftrightarrow x \geqslant_{r} y
\end{aligned}
$$

Arbitrary C:
Dual sets

- Any convex set

$$
\text { - e.g., }\left\{x^{\prime} \mid A x+b \geqslant 0\right\}
$$

- can be represented as intersection of ${ }_{s \geqslant 0}$
$k=\longrightarrow$ - a convex cone: \qquad - and the hyperplane: $\{(x, s) \mid s=1\}\{(x, 1) \mid A x+b \geqslant 0\}$
- Dual set: $C^{*}=-k^{*} \cap\{(y+z) \mid t=-1\}$

For example

- Dual of unit sphere $B=\{x \mid\|x\| \leq 1\}$

$$
\text { soc }=\{(x, s) \mid\|x\| \leqslant s\}
$$

$$
\text { soc }=\left\{(x, s) \left\lvert\,\|x\|\left\{\begin{array}{l}
\text { soc } \cap\{(x, s) \mid S=1\}=\{(x, s) \mid\|x\| \leq 1\}=B \\
\hat{n}
\end{array}\right.\right.\right.
$$

$$
B^{*}=\{-\underbrace{\operatorname{soc}^{*}}_{\operatorname{soc}^{-2}} \cap\{(y, t) \mid t=-1\}=\{\|y\| \leq 1\}=B
$$

$$
- \text { soc }=\left\{\left(-y,-t^{\prime}\right) \mid\|y\| \leq t^{\prime}, t^{\prime} \geqslant 0\right\}
$$

$$
\{(-y,-1) \mid\|y\| \leq 1\}
$$

Equivalent definition

$$
\begin{aligned}
& C^{*}=\left\{y \mid y^{\top} x \leq 1 \quad \forall x \in C\right\} \\
& k=\{(x, s) \mid x \in s C, s \geqslant 0\} \\
& \\
& k^{*}=\left\{(y, t) \mid x^{\top} y+s t \geqslant 0 \forall(x, s) \in k\right\} \\
& -k^{*}=\left\{\left(-y^{\prime},-t\right\} x^{\top} y^{\prime}+s t^{\prime} \geqslant 0 \quad \forall(x, s) \in k\right\} \\
& -t^{\prime}=-1 \\
& x^{\prime} y^{\prime}+s
\end{aligned}
$$

More examples

$$
\begin{aligned}
& \rightarrow\left\{x \mid x^{\top} A x \leq 1\right\} \\
& \rightarrow\left\{y \mid y^{\top} A^{-1} y \leq 1\right\} \\
& x^{\top} y=\left(u^{\top} z\right)^{\top}(u w) \frac{w=u^{-1} y}{y^{\top} A^{-1} y^{\prime} s} \\
& =z^{\top} w \mid z w \leq 1 \Leftrightarrow w^{\top} w \leq 1 \\
& \leqslant\|z\|\| \| \| l
\end{aligned}
$$

A invertible

$$
A \geqslant 0
$$

$A=u^{\top} u \quad u$ inventive

$$
\begin{aligned}
& z=u_{x} \\
& x^{\top} A x+1
\end{aligned} \Leftrightarrow x^{\top} u^{\top} u x \leq 1
$$

- Unit square $\{(x, y) \mid-1 \leq x, y \leq 1\}$

Cuboctahedron

Voronoi diagram

- Given points $X_{i} \in R^{n} \quad x_{1} \ldots x_{k}$
- Voronoi region for x_{i} : $\left\{x \mid\left\|x-x_{i}\right\| \leqslant\left\|x-x_{j}\right\| \forall_{j \neq i}\right\}$

$$
\begin{aligned}
& \Longrightarrow y_{i}=\binom{x_{i}}{\left\|x_{i}\right\|^{2} / 2} \in \mathbb{R}^{n+1} S=\left\{y_{i}\right\} \text { has } k \text { elements } \\
& \Rightarrow S^{*}=\left\{(z, t) \left\lvert\, \frac{z^{\top} x_{i}+t\left\|x_{i}\right\|^{2} / 2 \leqslant 1}{} \forall i\right.\right\}
\end{aligned}
$$

face:

$$
\begin{aligned}
& \text { active } \Leftrightarrow z^{\top} x_{i}+t\left\|x_{i}\right\|^{2} / 2 \leqslant z^{\top} x_{j}+t\left\|x_{j}\right\|^{2} / 2 \quad \forall j \neq i \\
& \Leftrightarrow \frac{z^{\top}}{t} x_{i}+\left\|x_{i}\right\|^{2} / 2+\|\xi\|^{2} / 2 \leqslant \frac{z^{\top}}{t} x_{j}+\left\|x_{j}\right\|^{2} / 2+\| \|^{z} \|^{2} / 2 \\
& y \equiv-z / t \\
& \Leftrightarrow-y^{\top} x_{i}+\left\|x_{i}\right\|^{2} / 2+\|y\|^{2} / 2 \leqslant-y^{\top} x_{j}+\left\|x_{j}\right\|^{2} / 2+\|y\|^{2} / 2 \\
&\left\|y \cdot x_{i}\right\|^{2} / 2 \leqslant\left\|y-x_{i}\right\|^{2} / 2
\end{aligned}
$$

Properties of dual sets

- Face of set <==> corner of dual
- Corner of set <==> face of dual
- $A \subseteq B \Leftrightarrow A^{*} \supseteq B^{*}$
- A^{*} is closed and convex
- $A^{* *}=A$ if A clone, convex
- $(A \cap B)^{*}=\operatorname{conv}\left(A^{*} \cup B^{*}\right)$ if A, B close, convex

