
Separating hyperplanes

• S a closed, convex set
• Point x not in S
• ==> strict separating hyperplane

• Suppose S, T two closed convex sets
• Can they be strictly separated?



Example



Intersection and union
• (K1 ∪ K2)* =

• (K3 ∩ K4)* =



Flat, pointed, solid, proper
• K is flat if:
• E.g., K =
• K is pointed if:
• E.g., K = 
• K is proper if:
• E.g., K =



Generalized inequalities
• Given proper cone K
• x ≥K y  iff x – y ≥K 0  iff

• x >K y iff x ≥K y and x != y
• x ≤K y and x <K y: as expected
• Transitive:
• Examples:



Dual sets

• Any convex set C
– e.g., 

• can be represented as intersection of
– a convex cone:

– and the hyperplane:
• Dual set: C* =



For example

• Dual of unit sphere



Equivalent definition

C* = { y | 



More examples

• { x | xTAx ≤ 1 } A invertible

• Unit square { (x, y) | -1 ≤ x,y ≤ 1 }



Cuboctahedron



Voronoi diagram

• Given points xi ∈ Rn

• Voronoi region for xi:









Properties of dual sets

• Face of set  <==>  corner of dual
• Corner of set  <==>  face of dual
• A     B        A*     B*
• A* is closed and convex
• A** = A  if
• (A ∩ B)* =
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