Interior-point methods

10-725 Optimization
Geoff Gordon
Ryan Tibshirani
Review

• Analytic center
 ‣ force field interpretation
 ‣ Newton’s method: $y = 1./(Ax+b)$ $A^T Y^2 A \Delta x = A^T y$

• Dikin ellipsoid
 ‣ unit ball of Hessian norm for log barrier
 ‣ contained in feasible region
 ‣ Dikin ellipsoid at analytic center: scale up by m, contains feasible region
Review

- Central path:
 - force field
 - Newton: $A^T Y^2 A \Delta x = A^T y - tc$
 - trading centering v. optimality

- Affine invariance

- Constraint form v. penalty form of central path

- Primal-dual correspondence for central path
 - duality gap m/t
Primal-dual constraint form

- Primal-dual pair:
 - \(\min c^T x \quad \text{st} \quad Ax + b \geq 0 \)
 - \(\max -b^T y \quad \text{st} \quad A^T y = c \quad y \geq 0 \)

- KKT:
 - \(Ax + b \geq 0 \) (primal feasibility)
 - \(y \geq 0 \quad A^T y = c \) (dual feasibility)
 - \(c^T x + b^T y \leq 0 \) (strong duality)
 - \(\ldots \text{or,} \quad c^T x + b^T y \leq \lambda \) (relaxed strong duality)
Analytic center of relaxed KKT

- Relaxed KKT conditions:
 - $Ax + b = s \geq 0$
 - $y \geq 0$
 - $A^T y = c$
 - $c^T x + b^T y \leq \lambda$

- Central path = \{analytic centers of relaxed KKT\}
A simple algorithm

• $t := 1, \ y := 1^m, \ x := 0^n$

• Repeat:
 ‣ Use infeasible-start Newton to find point y on dual central path (and corresponding multipliers x)
 ‣ $t := \alpha t \ (\alpha > 1)$

• After any outer iteration:
 ‣ Multipliers x are primal feasible; gap $c^T x + b^T y = m/t$
 ‣ or, recover w/ duality: $s = 1./ty \quad x = A\backslash(s–b)$
Example

Figure 11.7: Progress of barrier method for three randomly generated standard form LPs of different dimensions, showing duality gap versus cumulative number of Newton steps. The number of variables in each problem is $n = 2^m$. Here we see approximately linear convergence of the duality gap, with a slight increase in the number of Newton steps required for the larger problems.

Figure 11.8: Average number of Newton steps required to solve 100 randomly generated LPs of different dimensions, with $n = 2^m$. Error bars show standard deviation around the average value, for each value of m. The growth in the number of Newton steps required, as the problem dimensions range over a 100:1 ratio, is very small.
An algorithm and proof

• **Feasible** for KKT conditions:
 ‣ $Ax + b = s \geq 0$
 ‣ $y \geq 0$
 ‣ $A^T y = c$

• **Optimal** for KKT conditions:
 ‣ $c^T x + b^T y \leq 0$ or $s^T y \leq 0$

• A potential combining feasibility & optimality:
 ‣ $p(s,y) = (m+k) \ln y^T s - \sum \ln y_i - \sum \ln s_i$

[Kojima, Mizuno, Yoshise, Math. Prog., 1991]
Potential reduction

- Potential:
 \[p(s,y) = (m+k) \ln y^T s - \sum \ln y_i - \sum \ln s_i \]
 \[= k \ln y^T s + [m \ln y^T s - \sum \ln y_i - \sum \ln s_i] \]

- Algorithm strategy:
 - start w/ strictly feasible \((x, y, s)\)
 - update by \((\Delta x, \Delta y, \Delta s)\):
 - reduce \(p(s,y)\) by at least \(\delta\) per iter:
Potential reduction strategy

- Upper bound $p(s,y)$ locally with a quadratic
 - will look like Hessian from Newton's method
 - analyze upper bound: reduce by at least $\frac{\delta}{\text{iter}}$
 - $p(s,y) = (m+k) \ln y^T s - \sum \ln y_i - \sum \ln s_i$

- $p_1(s,y) \leq$
Upper bound, cont’d

\[p_2(s, y) = - \sum \ln y_i - \sum \ln s_i \]
Algorithm: repeat…

- Choose \((\Delta x, \Delta y, \Delta s)\) to minimize \(\bar{p}_1 + \bar{p}_2\) st
 - \(A^T\Delta y = 0\) \(\Delta s = A\Delta x\)
 - \(\Delta y^T Y^{-2} \Delta y + \Delta s^T S^{-2} \Delta s \leq (2/3)^2\)
 - stronger than box constraint
- Step along \((\Delta x, \Delta y, \Delta s)\) while keeping \(y > 0, s > 0\)
- Claim: can always decrease potential by \(\delta = 1/4\) per iteration
Intuition

• Suppose $s = y = 1^m$
 - $\bar{p}_1 = p_1 + \left[\frac{(m+k)}{m}\right] [1^T \Delta y + 1^T \Delta s]$
 - $\bar{p}_2 = p_2 - 1^T \Delta y - 1^T \Delta s + \Delta y^T \Delta y + \Delta s^T \Delta s$
 - $\Delta p \leq$

• How much decrease is possible?
The simple case

range(S\A)

null(A’Y)
Farther from equilibrium

\[\text{null}(A'Y) \]
\[\text{range}(S\backslash A) \]
In general
Bounding g

• $g = (m+k)y^{\ominus}s/y^Ts - 1$

• $\min g^T\Delta u + g^T\Delta v + \Delta u^T\Delta u + \Delta v^T\Delta v$
 ▸ s.t. $A^TY\Delta u = 0$ $\Delta v = S^{-1}A\Delta x$

• $||\pi(g,g)|| \geq g^T\Delta u + g^T\Delta v$ ∀ feasible $||(\Delta u,\Delta v)|| \leq 1$
Step size

- \| (g, g) \| \geq \frac{k}{\sqrt{m}}
 - step size:
 - decrease:
Algorithm summary

• Pick parameters $k>0$, $\tau>1$ and feasible (x, y, s)

• Repeat until y^Ts is small enough:
 ‣ choose $(\Delta x, \Delta y, \Delta s)$ to minimize
 ‣ $((m+k)s/y^Ts - 1/y)^T\Delta y + ((m+k)y/y^Ts - 1/s)^T\Delta s + \tau\Delta y^TY^{-2}\Delta y/2 + \tau\Delta s^TS^{-2}\Delta s/2$
 ‣ $\Delta s = A\Delta x$, $A^T\Delta y = 0$, $\Delta y^TY^{-2}\Delta y + \Delta s^TS^{-2}\Delta s \leq f(\tau)$
 ‣ quadratic w/ linear constrs—looks like Newton
 ‣ line search for best step length with $s>0$, $y>0$
 ‣ update (x, y, s) with our direction and step length
Example

- Infeasible initializer
 - $k = \sqrt{m}$
 - $\tau = 2$
 - $A \in \mathbb{R}^{7 \times 2}$
Diagnostics

<table>
<thead>
<tr>
<th>Step</th>
<th>Mean Gap</th>
<th>Pot</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(10^{-0.4057})</td>
<td>17.2774</td>
</tr>
<tr>
<td>2</td>
<td>(10^{-0.5184})</td>
<td>15.9290</td>
</tr>
<tr>
<td>3</td>
<td>(10^{-0.6024})</td>
<td>15.1694</td>
</tr>
<tr>
<td>4</td>
<td>(10^{-0.6908})</td>
<td>14.5695</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(10^{-1.3256})</td>
<td>10.6940</td>
</tr>
<tr>
<td>12</td>
<td>(10^{-1.4165})</td>
<td>10.1402</td>
</tr>
<tr>
<td>13</td>
<td>(10^{-1.5074})</td>
<td>9.5864</td>
</tr>
<tr>
<td>14</td>
<td>(10^{-1.5983})</td>
<td>9.0327</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>(10^{-2.2340})</td>
<td>5.1602</td>
</tr>
<tr>
<td>22</td>
<td>(10^{-2.3248})</td>
<td>4.6069</td>
</tr>
<tr>
<td>23</td>
<td>(10^{-2.4157})</td>
<td>4.0534</td>
</tr>
<tr>
<td>24</td>
<td>(10^{-2.5066})</td>
<td>3.4997</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>(10^{-3.0522})</td>
<td>0.1756</td>
</tr>
</tbody>
</table>
Example

- Same initializer
- $k = 0.999m$
- $\tau = 1.95$
- $A \in \mathbb{R}^{7 \times 2}$
Diagnostics

1: step 1.0000, mean gap $10^{-0.6266}$, pot 18.1732
2: step 0.9109, mean gap $10^{-0.9666}$, pot 13.4386
3: step 0.9997, mean gap $10^{-1.4694}$, pot 10.6936
4: step 0.7258, mean gap $10^{-1.9010}$, pot 2.4038
5: step 0.6761, mean gap $10^{-2.2711}$, pot -4.7473
6: step 0.9258, mean gap $10^{-2.8463}$, pot -14.3558
7: step 0.6785, mean gap $10^{-3.3540}$, pot -24.9006

...
17: step 0.9767, mean gap $10^{-8.1569}$, pot -98.7712

...
30: step 1.0000, mean gap $10^{-13.7609}$, pot -193.9617
When is IP useful?

- Newton: naively cubic in $\min(n,m)$
 - unless we can take advantage of structure, limited to 1000s of variables
 - but structure often present!
- Convergence rate is on a different level from first-order methods: $\ln(1/\epsilon)$ vs. (at best) $1/\sqrt{\epsilon}$
 - and the latter requires more smoothness
 - so, great if accuracy requirements high / bad condition
- Intuition from IP/duality can help algorithm design