Subgradient method

Geoff Gordon \& Ryan Tibshirani
Optimization 10-725 / 36-725

Remember gradient descent

We want to solve

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

for f convex and differentiable
Gradient descent: choose initial $x^{(0)} \in \mathbb{R}^{n}$, repeat:

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot \nabla f\left(x^{(k-1)}\right), \quad k=1,2,3, \ldots
$$

If ∇f Lipschitz, gradient descent has convergence rate $O(1 / k)$
Downsides:

- Can be slow \leftarrow later
- Doesn't work for nondifferentiable functions \leftarrow today

Outline

Today:

- Subgradients
- Examples and properties
- Subgradient method
- Convergence rate

Subgradients

Remember that for convex $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \text { all } x, y
$$

I.e., linear approximation always underestimates f

A subgradient of convex $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at x is any $g \in \mathbb{R}^{n}$ such that

$$
f(y) \geq f(x)+g^{T}(y-x), \quad \text { all } y
$$

- Always exists
- If f differentiable at x, then $g=\nabla f(x)$ uniquely
- Actually, same definition works for nonconvex f (however, subgradient need not exist)

Examples

Consider $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=|x|$

- For $x \neq 0$, unique subgradient $g=\operatorname{sign}(x)$
- For $x=0$, subgradient g is any element of $[-1,1]$

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|$ (Euclidean norm)

- For $x \neq 0$, unique subgradient $g=x /\|x\|$
- For $x=0$, subgradient g is any element of $\{z:\|z\| \leq 1\}$

Consider $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|_{1}$

- For $x_{i} \neq 0$, unique i th component $g_{i}=\operatorname{sign}\left(x_{i}\right)$
- For $x_{i}=0, i$ th component g_{i} is an element of $[-1,1]$

Let $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex, differentiable, and consider $f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}$

- For $f_{1}(x)>f_{2}(x)$, unique subgradient $g=\nabla f_{1}(x)$
- For $f_{2}(x)>f_{1}(x)$, unique subgradient $g=\nabla f_{2}(x)$
- For $f_{1}(x)=f_{2}(x)$, subgradient g is any point on the line segment between $\nabla f_{1}(x)$ and $\nabla f_{2}(x)$

Subdifferential

Set of all subgradients of convex f is called the subdifferential:

$$
\partial f(x)=\left\{g \in \mathbb{R}^{n}: g \text { is a subgradient of } f \text { at } x\right\}
$$

- $\partial f(x)$ is closed and convex (even for nonconvex f)
- Nonempty (can be empty for nonconvex f)
- If f is differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$
- If $\partial f(x)=\{g\}$, then f is differentiable at x and $\nabla f(x)=g$

Connection to convex geometry

Convex set $C \subseteq \mathbb{R}^{n}$, consider indicator function $I_{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
I_{C}(x)=I\{x \in C\}= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { if } x \notin C\end{cases}
$$

For $x \in C, \partial I_{C}(x)=\mathcal{N}_{C}(x)$, the normal cone of C at x,

$$
\mathcal{N}_{C}(x)=\left\{g \in \mathbb{R}^{n}: g^{T} x \geq g^{T} y \text { for any } y \in C\right\}
$$

Why? Recall definition of subgradient g,

$$
I_{C}(y) \geq I_{C}(x)+g^{T}(y-x) \text { for all } y
$$

- For $y \notin C, I_{C}(y)=\infty$
- For $y \in C$, this means $0 \geq g^{T}(y-x)$

Subgradient calculus

Basic rules for convex functions:

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2}$
- Affine composition: if $g(x)=f(A x+b)$, then

$$
\partial g(x)=A^{T} \partial f(A x+b)
$$

- Finite pointwise maximum: if $f(x)=\max _{i=1, \ldots m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv}\left(\bigcup_{i: f_{i}(x)=f(x)} \partial f_{i}(x)\right)
$$

the convex hull of union of subdifferentials of all active functions at x

- General pointwise maximum: if $f(x)=\max _{s \in \mathcal{S}} f_{s}(x)$, then

$$
\partial f(x) \supseteq \operatorname{cl}\left\{\operatorname{conv}\left(\bigcup_{s: f_{s}(x)=f(x)} \partial f_{s}(x)\right)\right\}
$$

and under some regularity conditions (on \mathcal{S}, f_{s}), we get $=$

- Norms: important special case, $f(x)=\|x\|_{p}$. Let q be such that $1 / p+1 / q=1$, then

$$
\partial f(x)=\left\{y:\|y\|_{q} \leq 1 \text { and } y^{T} x=\max _{\|z\|_{q} \leq 1} z^{T} x\right\}
$$

Why is this a special case? Note

$$
\|x\|_{p}=\max _{\|z\|_{q} \leq 1} z^{T} x
$$

Why subgradients?

Subgradients are important for two reasons:

- Convex analysis: optimality characterization via subgradients, monotonicity, relationship to duality
- Convex optimization: if you can compute subgradients, then you can minimize (almost) any convex function

Optimality condition

For convex f,

$$
f\left(x^{\star}\right)=\min _{x \in \mathbb{R}^{n}} f(x) \quad \Leftrightarrow \quad 0 \in \partial f\left(x^{\star}\right)
$$

I.e., x^{\star} is a minimizer if and only if 0 is a subgradient of f at x^{\star}

Why? Easy: $g=0$ being a subgradient means that for all y

$$
f(y) \geq f\left(x^{\star}\right)+0^{T}\left(y-x^{\star}\right)=f\left(x^{\star}\right)
$$

Note analogy to differentiable case, where $\partial f(x)=\{\nabla f(x)\}$

Soft-thresholding

Lasso problem can be parametrized as

$$
\min _{x} \frac{1}{2}\|y-A x\|^{2}+\lambda\|x\|_{1}
$$

where $\lambda \geq 0$. Consider simplified problem with $A=I$:

$$
\min _{x} \frac{1}{2}\|y-x\|^{2}+\lambda\|x\|_{1}
$$

Claim: solution of simple problem is $x^{\star}=S_{\lambda}(y)$, where S_{λ} is the soft-thresholding operator:

$$
\left[S_{\lambda}(y)\right]_{i}= \begin{cases}y_{i}-\lambda & \text { if } y_{i}>\lambda \\ 0 & \text { if }-\lambda \leq y_{i} \leq \lambda \\ y_{i}+\lambda & \text { if } y_{i}<-\lambda\end{cases}
$$

Why? Subgradients of $f(x)=\frac{1}{2}\|y-x\|^{2}+\lambda\|x\|_{1}$ are

$$
g=x-y+\lambda s
$$

where $s_{i}=\operatorname{sign}\left(x_{i}\right)$ if $x_{i} \neq 0$ and $s_{i} \in[-1,1]$ if $x_{i}=0$
Now just plug in $x=S_{\lambda}(y)$ and check we can get $g=0$

Soft-thresholding in one variable:

Subgradient method

Given convex $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, not necessarily differentiable
Subgradient method: just like gradient descent, but replacing gradients with subgradients. I.e., initialize $x^{(0)}$, then repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} \cdot g^{(k-1)}, \quad k=1,2,3, \ldots
$$

where $g^{(k-1)}$ is any subgradient of f at $x^{(k-1)}$
Subgradient method is not necessarily a descent method, so we keep track of best iterate $x_{\text {best }}^{(k)}$ among $x^{(1)}, \ldots x^{(k)}$ so far, i.e.,

$$
f\left(x_{\text {best }}^{(k)}\right)=\min _{i=1, \ldots k} f\left(x^{(i)}\right)
$$

Step size choices

- Fixed step size: $t_{k}=t$ all $k=1,2,3, \ldots$
- Diminishing step size: choose t_{k} to satisfy

$$
\sum_{k=1}^{\infty} t_{k}^{2}<\infty, \quad \sum_{k=1}^{\infty} t_{k}=\infty
$$

i.e., square summable but not summable

Important that step sizes go to zero, but not too fast

Other options too, but important difference to gradient descent: all step sizes options are pre-specified, not adaptively computed

Convergence analysis

Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex, also:

- f is Lipschitz continuous with constant $G>0$,

$$
|f(x)-f(y)| \leq G\|x-y\| \quad \text { for all } x, y
$$

Equivalently: $\|g\| \leq G$ for any subgradient of f at any x

- $\left\|x^{(1)}-x^{*}\right\| \leq R$ (equivalently, $\left\|x^{(0)}-x^{*}\right\|$ is bounded)

Theorem: For a fixed step size t, subgradient method satisfies

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right) \leq f\left(x^{\star}\right)+G^{2} t / 2
$$

Theorem: For diminishing step sizes, subgradient method satisfies

$$
\lim _{k \rightarrow \infty} f\left(x_{\text {best }}^{(k)}\right)=f\left(x^{\star}\right)
$$

Basic inequality

Can prove both results from same basic inequality. Key steps:

- Using definition of subgradient,

$$
\begin{aligned}
& \left\|x^{(k+1)}-x^{\star}\right\|^{2} \leq \\
& \left\|x^{(k)}-x^{\star}\right\|^{2}-2 t_{k}\left(f\left(x^{(k)}\right)-f\left(x^{\star}\right)\right)+t_{k}^{2}\left\|g^{(k)}\right\|^{2}
\end{aligned}
$$

- Iterating last inequality,

$$
\begin{aligned}
& \left\|x^{(k+1)}-x^{\star}\right\|^{2} \leq \\
& \left\|x^{(1)}-x^{\star}\right\|^{2}-2 \sum_{i=1}^{k} t_{i}\left(f\left(x^{(i)}\right)-f\left(x^{\star}\right)\right)+\sum_{i=1}^{k} t_{i}^{2}\left\|g^{(i)}\right\|^{2}
\end{aligned}
$$

- Using $\left\|x^{(k+1)}-x^{\star}\right\| \geq 0$ and $\left\|x^{(1)}-x^{\star}\right\| \leq R$,

$$
2 \sum_{i=1}^{k} t_{i}\left(f\left(x^{(i)}\right)-f\left(x^{\star}\right)\right) \leq R^{2}+\sum_{i=1}^{k} t_{i}^{2}\left\|g^{(i)}\right\|^{2}
$$

- Introducing $f\left(x_{\text {best }}^{(k)}\right)$,

$$
2 \sum_{i=1}^{k} t_{i}\left(f\left(x^{(i)}\right)-f\left(x^{\star}\right)\right) \geq 2\left(\sum_{i=1}^{k} t_{i}\right)\left(f\left(x_{\text {best }}^{(k)}\right)-f\left(x^{\star}\right)\right)
$$

- Plugging this in and using $\left\|g^{(i)}\right\| \leq G$,

$$
f\left(x_{\text {best }}^{(k)}\right)-f\left(x^{\star}\right) \leq \frac{R^{2}+G^{2} \sum_{i=1}^{k} t_{i}^{2}}{2 \sum_{i=1}^{k} t_{i}}
$$

Convergence proofs

For constant step size t, basic bound is

$$
\frac{R^{2}+G^{2} t^{2} k}{2 t k} \rightarrow \frac{G^{2} t}{2} \text { as } k \rightarrow \infty
$$

For diminishing step sizes t_{k},

$$
\sum_{i=1}^{\infty} t_{i}^{2}<\infty, \quad \sum_{i=1}^{\infty} t_{i}=\infty
$$

we get

$$
\frac{R^{2}+G^{2} \sum_{i=1}^{k} t_{i}^{2}}{2 \sum_{i=1}^{k} t_{i}} \rightarrow 0 \text { as } k \rightarrow \infty
$$

Convergence rate

After k iterations, what is complexity of error $f\left(x_{\text {best }}^{(k)}\right)-f\left(x^{\star}\right)$?
Consider taking $t_{i}=R /(G \sqrt{k})$, all $i=1, \ldots k$. Then basic bound is

$$
\frac{R^{2}+G^{2} \sum_{i=1}^{k} t_{i}^{2}}{2 \sum_{i=1}^{k} t_{i}}=\frac{R G}{\sqrt{k}}
$$

Can show this choice is the best we can do (i.e., minimizes bound)
I.e., subgradient method has convergence rate $O(1 / \sqrt{k})$
I.e., to get $f\left(x_{\text {best }}^{(k)}\right)-f\left(x^{\star}\right) \leq \epsilon$, need $O\left(1 / \epsilon^{2}\right)$ iterations

Intersection of sets

Example from Boyd's lecture notes: suppose we want to find $x^{\star} \in C_{1} \cap \ldots \cap C_{m}$, i.e., find point in intersection of closed, convex sets $C_{1}, \ldots C_{m}$

First define

$$
f(x)=\max _{i=1, \ldots m} \operatorname{dist}\left(x, C_{i}\right)
$$

and now solve

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

Note that $f\left(x^{\star}\right)=0 \Rightarrow x^{\star} \in C_{1} \cap \ldots \cap C_{m}$
Recall distance to set C,

$$
\operatorname{dist}(x, C)=\min \{\|x-u\|: u \in C\}
$$

For closed, convex C, there is a unique point minimizing $\|x-u\|$ over $u \in C$. Denoted $u^{\star}=P_{C}(x)$, so $\operatorname{dist}(x, C)=\left\|x-P_{C}(x)\right\|$

Let $f_{i}(x)=\operatorname{dist}\left(x, C_{i}\right)$, each i. Then $f(x)=\max _{i=1, \ldots m} f_{i}(x)$, and

- For each i, and $x \notin C_{i}, \nabla f_{i}(x)=\frac{x-P_{C_{i}}(x)}{\left\|x-P_{C_{i}}(x)\right\|}$
- If $f(x)=f_{i}(x) \neq 0$, then $\frac{x-P_{C_{i}}(x)}{\left\|x-P_{C_{i}}(x)\right\|} \in \partial f(x)$

Now apply subgradient method with step size $t_{k}=f\left(x^{(k-1)}\right)$ (Polyak step size, can show that we get convergence)

Hence at iteration k, find C_{i} so that $x^{(k-1)}$ is farthest from C_{i}. Then update

$$
\begin{aligned}
x^{(k)} & =x^{(k-1)}-f\left(x^{(k-1)}\right) \frac{x^{(k-1)}-P_{C_{i}}\left(x^{(k-1)}\right)}{\left\|x^{(k-1)}-P_{C_{i}}\left(x^{(k-1)}\right)\right\|} \\
& =P_{C_{i}}\left(x^{(k-1)}\right)
\end{aligned}
$$

Here we used
$f\left(x^{(k-1)}\right)=\operatorname{dist}\left(x^{(k-1)}, C_{i}\right)=\left\|x^{(k-1)}-P_{C_{i}}\left(x^{(k-1)}\right)\right\|$
For two sets, this is exactly the famous alternating projections method, i.e., just keep projecting back and forth

(From Boyd's notes)

Can we do better?

Strength of subgradient method: broad applicability
Downside: $O(1 / \sqrt{k})$ rate is really slow ... can we do better?
Given starting point $x^{(0)}$. Setup:

- Problem class: convex functions f with solution x^{\star}, with $\left\|x^{(0)}-x^{\star}\right\| \leq R, f$ Lipschitz with constant $G>0$ on $\left\{x:\left\|x-x^{(0)}\right\| \leq R\right\}$
- Weak oracle: given x, oracle returns a subgradient $g \in \partial f(x)$
- Nonsmooth first-order methods: iterative methods that start with $x^{(0)}$ and update $x^{(k)}$ in

$$
x^{(0)}+\operatorname{span}\left\{g^{(0)}, g^{(1)}, \ldots g^{(k-1)}\right\}
$$

subgradients $g^{(0)}, g^{(1)}, \ldots g^{(k-1)}$ come from weak oracle

Lower bound

Theorem (Nesterov): For any $k \leq n-1$ and starting point $x^{(0)}$, there is a function in the problem class such that any nonsmooth first-order method satisfies

$$
f\left(x^{(k)}\right)-f\left(x^{\star}\right) \geq \frac{R G}{2(1+\sqrt{k+1})}
$$

Proof: We'll do the proof for $k=n-1$ and $x^{(0)}=0$; the proof is similar otherwise. Let

$$
f(x)=\max _{i=1, \ldots n} x_{i}+\frac{1}{2}\|x\|^{2}
$$

Solution: $x^{\star}=(-1 / n, \ldots-1 / n), f\left(x^{\star}\right)=-1 /(2 n)$
For $R=1 / \sqrt{n}, f$ is Lipschitz with $G=1+1 / \sqrt{n}$
Oracle: returns $g=e_{j}+x$, where j is smallest index such that $x_{j}=\max _{i=1, \ldots n} x_{i}$

Claim: for any $i \in 1, \ldots n-1$, the i th iterate satisfies

$$
x_{i+1}^{(i)}=\ldots=x_{n}^{(i)}=0
$$

Start with $i=1$: note $g^{(0)}=e_{1}$. Then:

- $\operatorname{span}\left\{g^{(0)}, g^{(1)}\right\} \subseteq \operatorname{span}\left\{e_{1}, e_{2}\right\}$
- $\operatorname{span}\left\{g^{(0)}, g^{(1)}, g^{(2)}\right\} \subseteq \operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$
- $\operatorname{span}\left\{g^{(0)}, g^{(1)}, \ldots g^{(i-1)}\right\} \subseteq \operatorname{span}\left\{e_{1}, \ldots e_{i}\right\} \vee$

Therefore $f\left(x^{(n-1)}\right) \geq 0$, recall $f\left(x^{\star}\right)=-1 /(2 n)$, so

$$
f\left(x^{(n-1)}\right)-f\left(x^{\star}\right) \geq \frac{1}{2 n}=\frac{R G}{2(1+\sqrt{n})}
$$

Improving on the subgradient method

To improve, we must go beyond nonsmooth first-order methods
There are many ways to improve for general nonconvex problems, e.g., localization methods, filtered subgradients, memory terms

Instead, we'll focus on minimizing functions of the form

$$
f(x)=g(x)+h(x)
$$

where g is convex and differentiable, h is convex
For a lot of problems (i.e., functions h), we can recover $O(1 / k)$ rate of gradient descent with a simple algorithm, having big practical consequences

References

- S. Boyd, Lecture Notes for EE 264B, Stanford University, Spring 2010-2011
- Y. Nesterov (2004), Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic Publishers, Chapter 3
- B. Polyak (1987), Introduction to Optimization, Optimization Software Inc., Chapter 5
- R. T. Rockafellar (1970), Convex Analysis, Princeton University Press, Chapters 23-25
- L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring 2011-2012

