
Subgradient method

Geoff Gordon & Ryan Tibshirani
Optimization 10-725 / 36-725

1

Remember gradient descent

We want to solve
min
x∈Rn

f(x),

for f convex and differentiable

Gradient descent: choose initial x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

If ∇f Lipschitz, gradient descent has convergence rate O(1/k)

Downsides:

• Can be slow ← later

• Doesn’t work for nondifferentiable functions ← today

2

Outline

Today:

• Subgradients

• Examples and properties

• Subgradient method

• Convergence rate

3

Subgradients

Remember that for convex f : Rn → R,

f(y) ≥ f(x) +∇f(x)T (y − x) all x, y

I.e., linear approximation always underestimates f

A subgradient of convex f : Rn → R at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x), all y

• Always exists

• If f differentiable at x, then g = ∇f(x) uniquely

• Actually, same definition works for nonconvex f (however,
subgradient need not exist)

4

Examples

Consider f : R→ R, f(x) = |x|

−2 −1 0 1 2

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

x

f(
x)

• For x 6= 0, unique subgradient g = sign(x)

• For x = 0, subgradient g is any element of [−1, 1]

5

Consider f : Rn → R, f(x) = ‖x‖ (Euclidean norm)

x1

x2

f(x)

• For x 6= 0, unique subgradient g = x/‖x‖
• For x = 0, subgradient g is any element of {z : ‖z‖ ≤ 1}

6

Consider f : Rn → R, f(x) = ‖x‖1

x1

x2

f(x)

• For xi 6= 0, unique ith component gi = sign(xi)

• For xi = 0, ith component gi is an element of [−1, 1]

7

Let f1, f2 : Rn → R be convex, differentiable, and consider
f(x) = max{f1(x), f2(x)}

−2 −1 0 1 2

0
5

10
15

x

f(
x)

• For f1(x) > f2(x), unique subgradient g = ∇f1(x)
• For f2(x) > f1(x), unique subgradient g = ∇f2(x)
• For f1(x) = f2(x), subgradient g is any point on the line

segment between ∇f1(x) and ∇f2(x)

8

Subdifferential

Set of all subgradients of convex f is called the subdifferential:

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}

• ∂f(x) is closed and convex (even for nonconvex f)

• Nonempty (can be empty for nonconvex f)

• If f is differentiable at x, then ∂f(x) = {∇f(x)}
• If ∂f(x) = {g}, then f is differentiable at x and ∇f(x) = g

9

Connection to convex geometry

Convex set C ⊆ Rn, consider indicator function IC : Rn → R,

IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

For x ∈ C, ∂IC(x) = NC(x), the normal cone of C at x,

NC(x) = {g ∈ Rn : gTx ≥ gT y for any y ∈ C}

Why? Recall definition of subgradient g,

IC(y) ≥ IC(x) + gT (y − x) for all y

• For y /∈ C, IC(y) =∞
• For y ∈ C, this means 0 ≥ gT (y − x)

10

●

●

●

●

11

Subgradient calculus

Basic rules for convex functions:

• Scaling: ∂(af) = a · ∂f provided a > 0

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine composition: if g(x) = f(Ax+ b), then

∂g(x) = AT∂f(Ax+ b)

• Finite pointwise maximum: if f(x) = maxi=1,...m fi(x), then

∂f(x) = conv
(⋃
i:fi(x)=f(x)

∂fi(x)
)
,

the convex hull of union of subdifferentials of all active
functions at x

12

• General pointwise maximum: if f(x) = maxs∈S fs(x), then

∂f(x) ⊇ cl
{
conv

(⋃
s:fs(x)=f(x)

∂fs(x)
)}

and under some regularity conditions (on S, fs), we get =

• Norms: important special case, f(x) = ‖x‖p. Let q be such
that 1/p+ 1/q = 1, then

∂f(x) =
{
y : ‖y‖q ≤ 1 and yTx = max

‖z‖q≤1
zTx

}
Why is this a special case? Note

‖x‖p = max
‖z‖q≤1

zTx

13

Why subgradients?

Subgradients are important for two reasons:

• Convex analysis: optimality characterization via subgradients,
monotonicity, relationship to duality

• Convex optimization: if you can compute subgradients, then
you can minimize (almost) any convex function

14

Optimality condition

For convex f ,

f(x?) = min
x∈Rn

f(x) ⇔ 0 ∈ ∂f(x?)

I.e., x? is a minimizer if and only if 0 is a subgradient of f at x?

Why? Easy: g = 0 being a subgradient means that for all y

f(y) ≥ f(x?) + 0T (y − x?) = f(x?)

Note analogy to differentiable case, where ∂f(x) = {∇f(x)}

15

Soft-thresholding

Lasso problem can be parametrized as

min
x

1

2
‖y −Ax‖2 + λ‖x‖1

where λ ≥ 0. Consider simplified problem with A = I:

min
x

1

2
‖y − x‖2 + λ‖x‖1

Claim: solution of simple problem is x? = Sλ(y), where Sλ is the
soft-thresholding operator:

[Sλ(y)]i =

yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

16

Why? Subgradients of f(x) = 1
2‖y − x‖

2 + λ‖x‖1 are

g = x− y + λs,

where si = sign(xi) if xi 6= 0 and si ∈ [−1, 1] if xi = 0

Now just plug in x = Sλ(y) and check we can get g = 0

Soft-thresholding in
one variable:

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

17

Subgradient method

Given convex f : Rn → R, not necessarily differentiable

Subgradient method: just like gradient descent, but replacing
gradients with subgradients. I.e., initialize x(0), then repeat

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, . . . ,

where g(k−1) is any subgradient of f at x(k−1)

Subgradient method is not necessarily a descent method, so we

keep track of best iterate x
(k)
best among x(1), . . . x(k) so far, i.e.,

f(x
(k)
best) = min

i=1,...k
f(x(i))

18

Step size choices

• Fixed step size: tk = t all k = 1, 2, 3, . . .

• Diminishing step size: choose tk to satisfy

∞∑
k=1

t2k <∞,
∞∑
k=1

tk =∞,

i.e., square summable but not summable

Important that step sizes go to zero, but not too fast

Other options too, but important difference to gradient descent:
all step sizes options are pre-specified, not adaptively computed

19

Convergence analysis
Assume that f : Rn → R is convex, also:

• f is Lipschitz continuous with constant G > 0,

|f(x)− f(y)| ≤ G‖x− y‖ for all x, y

Equivalently: ‖g‖ ≤ G for any subgradient of f at any x

• ‖x(1) − x∗‖ ≤ R (equivalently, ‖x(0) − x∗‖ is bounded)

Theorem: For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x
(k)
best) ≤ f(x

?) +G2t/2

Theorem: For diminishing step sizes, subgradient method sat-
isfies

lim
k→∞

f(x
(k)
best) = f(x?)

20

Basic inequality

Can prove both results from same basic inequality. Key steps:

• Using definition of subgradient,

‖x(k+1) − x?‖2 ≤
‖x(k) − x?‖2 − 2tk(f(x

(k))− f(x?)) + t2k‖g(k)‖2

• Iterating last inequality,

‖x(k+1) − x?‖2 ≤

‖x(1) − x?‖2 − 2

k∑
i=1

ti(f(x
(i))− f(x?)) +

k∑
i=1

t2i ‖g(i)‖2

21

• Using ‖x(k+1) − x?‖ ≥ 0 and ‖x(1) − x?‖ ≤ R,

2

k∑
i=1

ti(f(x
(i))− f(x?)) ≤ R2 +

k∑
i=1

t2i ‖g(i)‖2

• Introducing f(x
(k)
best),

2

k∑
i=1

ti(f(x
(i))− f(x?)) ≥ 2

(k∑
i=1

ti

)
(f(x

(k)
best)− f(x

?))

• Plugging this in and using ‖g(i)‖ ≤ G,

f(x
(k)
best)− f(x

?) ≤
R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti

22

Convergence proofs

For constant step size t, basic bound is

R2 +G2t2k

2tk
→ G2t

2
as k →∞

For diminishing step sizes tk,

∞∑
i=1

t2i <∞,
∞∑
i=1

ti =∞,

we get
R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti
→ 0 as k →∞

23

Convergence rate

After k iterations, what is complexity of error f(x
(k)
best)− f(x

?)?

Consider taking ti = R/(G
√
k), all i = 1, . . . k. Then basic bound

is
R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti
=
RG√
k

Can show this choice is the best we can do (i.e., minimizes bound)

I.e., subgradient method has convergence rate O(1/
√
k)

I.e., to get f(x
(k)
best)− f(x

?) ≤ ε, need O(1/ε2) iterations

24

Intersection of sets

Example from Boyd’s lecture notes: suppose we want to find
x? ∈ C1 ∩ . . . ∩ Cm, i.e., find point in intersection of closed,
convex sets C1, . . . Cm

First define
f(x) = max

i=1,...m
dist(x,Ci),

and now solve
min
x∈Rn

f(x)

Note that f(x?) = 0 ⇒ x? ∈ C1 ∩ . . . ∩ Cm

Recall distance to set C,

dist(x,C) = min{‖x− u‖ : u ∈ C}

25

For closed, convex C, there is a unique point minimizing ‖x− u‖
over u ∈ C. Denoted u? = PC(x), so dist(x,C) = ‖x− PC(x)‖

●

*

Let fi(x) = dist(x,Ci), each i. Then f(x) = maxi=1,...m fi(x),
and

• For each i, and x /∈ Ci, ∇fi(x) =
x−PCi

(x)

‖x−PCi
(x)‖

• If f(x) = fi(x) 6= 0, then
x−PCi

(x)

‖x−PCi
(x)‖ ∈ ∂f(x)

26

Now apply subgradient method with step size tk = f(x(k−1))
(Polyak step size, can show that we get convergence)

Hence at iteration k, find Ci so that x(k−1) is farthest from Ci.
Then update

x(k) = x(k−1) − f(x(k−1)) x(k−1) − PCi(x
(k−1))

‖x(k−1) − PCi(x
(k−1))‖

= PCi(x
(k−1))

Here we used
f(x(k−1)) = dist(x(k−1), Ci) = ‖x(k−1) − PCi(x

(k−1))‖

For two sets, this is exactly the famous alternating projections
method, i.e., just keep projecting back and forth

27

(From Boyd’s notes)

28

Can we do better?

Strength of subgradient method: broad applicability

Downside: O(1/
√
k) rate is really slow ... can we do better?

Given starting point x(0). Setup:

• Problem class: convex functions f with solution x?, with
‖x(0) − x?‖ ≤ R, f Lipschitz with constant G > 0 on
{x : ‖x− x(0)‖ ≤ R}

• Weak oracle: given x, oracle returns a subgradient g ∈ ∂f(x)
• Nonsmooth first-order methods: iterative methods that start

with x(0) and update x(k) in

x(0) + span{g(0), g(1), . . . g(k−1)}

subgradients g(0), g(1), . . . g(k−1) come from weak oracle

29

Lower bound

Theorem (Nesterov): For any k ≤ n−1 and starting point x(0),
there is a function in the problem class such that any nonsmooth
first-order method satisfies

f(x(k))− f(x?) ≥ RG

2(1 +
√
k + 1)

Proof: We’ll do the proof for k = n− 1 and x(0) = 0; the proof is
similar otherwise. Let

f(x) = max
i=1,...n

xi +
1

2
‖x‖2

Solution: x? = (−1/n, . . .− 1/n), f(x?) = −1/(2n)

For R = 1/
√
n, f is Lipschitz with G = 1 + 1/

√
n

Oracle: returns g = ej + x, where j is smallest index such that
xj = maxi=1,...n xi

30

Claim: for any i ∈ 1, . . . n− 1, the ith iterate satisfies

x
(i)
i+1 = . . . = x(i)n = 0

Start with i = 1: note g(0) = e1. Then:

• span{g(0), g(1)} ⊆ span{e1, e2}
• span{g(0), g(1), g(2)} ⊆ span{e1, e2, e3}
• ...

• span{g(0), g(1), . . . g(i−1)} ⊆ span{e1, . . . ei} v

Therefore f(x(n−1)) ≥ 0, recall f(x?) = −1/(2n), so

f(x(n−1))− f(x?) ≥ 1

2n
=

RG

2(1 +
√
n)

31

Improving on the subgradient method

To improve, we must go beyond nonsmooth first-order methods

There are many ways to improve for general nonconvex problems,
e.g., localization methods, filtered subgradients, memory terms

Instead, we’ll focus on minimizing functions of the form

f(x) = g(x) + h(x)

where g is convex and differentiable, h is convex

For a lot of problems (i.e., functions h), we can recover O(1/k)
rate of gradient descent with a simple algorithm, having big
practical consequences

32

References

• S. Boyd, Lecture Notes for EE 264B, Stanford University,
Spring 2010-2011

• Y. Nesterov (2004), Introductory Lectures on Convex
Optimization: A Basic Course, Kluwer Academic Publishers,
Chapter 3

• B. Polyak (1987), Introduction to Optimization, Optimization
Software Inc., Chapter 5

• R. T. Rockafellar (1970), Convex Analysis, Princeton
University Press, Chapters 23–25

• L. Vandenberghe, Lecture Notes for EE 236C, UCLA, Spring
2011-2012

33

