
Subgradient method

Geoff Gordon & Ryan Tibshirani
Optimization 10-725 / 36-725

1



Remember gradient descent

We want to solve
min
x∈Rn

f(x),

for f convex and differentiable

Gradient descent: choose initial x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

If ∇f Lipschitz, gradient descent has convergence rate O(1/k)

Downsides:

• Can be slow ← later

• Doesn’t work for nondifferentiable functions ← today
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Outline

Today:

• Subgradients

• Examples and properties

• Subgradient method

• Convergence rate
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Subgradients

Remember that for convex f : Rn → R,

f(y) ≥ f(x) +∇f(x)T (y − x) all x, y

I.e., linear approximation always underestimates f

A subgradient of convex f : Rn → R at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x), all y

• Always exists

• If f differentiable at x, then g = ∇f(x) uniquely

• Actually, same definition works for nonconvex f (however,
subgradient need not exist)
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Examples

Consider f : R→ R, f(x) = |x|
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• For x 6= 0, unique subgradient g = sign(x)

• For x = 0, subgradient g is any element of [−1, 1]
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Consider f : Rn → R, f(x) = ‖x‖ (Euclidean norm)

x1

x2

f(x)

• For x 6= 0, unique subgradient g = x/‖x‖
• For x = 0, subgradient g is any element of {z : ‖z‖ ≤ 1}
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Consider f : Rn → R, f(x) = ‖x‖1

x1

x2

f(x)

• For xi 6= 0, unique ith component gi = sign(xi)

• For xi = 0, ith component gi is an element of [−1, 1]

7



Let f1, f2 : Rn → R be convex, differentiable, and consider
f(x) = max{f1(x), f2(x)}
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• For f1(x) > f2(x), unique subgradient g = ∇f1(x)
• For f2(x) > f1(x), unique subgradient g = ∇f2(x)
• For f1(x) = f2(x), subgradient g is any point on the line

segment between ∇f1(x) and ∇f2(x)
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Subdifferential

Set of all subgradients of convex f is called the subdifferential:

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}

• ∂f(x) is closed and convex (even for nonconvex f)

• Nonempty (can be empty for nonconvex f)

• If f is differentiable at x, then ∂f(x) = {∇f(x)}
• If ∂f(x) = {g}, then f is differentiable at x and ∇f(x) = g
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Connection to convex geometry

Convex set C ⊆ Rn, consider indicator function IC : Rn → R,

IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

For x ∈ C, ∂IC(x) = NC(x), the normal cone of C at x,

NC(x) = {g ∈ Rn : gTx ≥ gT y for any y ∈ C}

Why? Recall definition of subgradient g,

IC(y) ≥ IC(x) + gT (y − x) for all y

• For y /∈ C, IC(y) =∞
• For y ∈ C, this means 0 ≥ gT (y − x)
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Subgradient calculus

Basic rules for convex functions:

• Scaling: ∂(af) = a · ∂f provided a > 0

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine composition: if g(x) = f(Ax+ b), then

∂g(x) = AT∂f(Ax+ b)

• Finite pointwise maximum: if f(x) = maxi=1,...m fi(x), then

∂f(x) = conv
( ⋃
i:fi(x)=f(x)

∂fi(x)
)
,

the convex hull of union of subdifferentials of all active
functions at x
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• General pointwise maximum: if f(x) = maxs∈S fs(x), then

∂f(x) ⊇ cl
{
conv

( ⋃
s:fs(x)=f(x)

∂fs(x)
)}

and under some regularity conditions (on S, fs), we get =

• Norms: important special case, f(x) = ‖x‖p. Let q be such
that 1/p+ 1/q = 1, then

∂f(x) =
{
y : ‖y‖q ≤ 1 and yTx = max

‖z‖q≤1
zTx

}
Why is this a special case? Note

‖x‖p = max
‖z‖q≤1

zTx
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Why subgradients?

Subgradients are important for two reasons:

• Convex analysis: optimality characterization via subgradients,
monotonicity, relationship to duality

• Convex optimization: if you can compute subgradients, then
you can minimize (almost) any convex function
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Optimality condition

For convex f ,

f(x?) = min
x∈Rn

f(x) ⇔ 0 ∈ ∂f(x?)

I.e., x? is a minimizer if and only if 0 is a subgradient of f at x?

Why? Easy: g = 0 being a subgradient means that for all y

f(y) ≥ f(x?) + 0T (y − x?) = f(x?)

Note analogy to differentiable case, where ∂f(x) = {∇f(x)}
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Soft-thresholding

Lasso problem can be parametrized as

min
x

1

2
‖y −Ax‖2 + λ‖x‖1

where λ ≥ 0. Consider simplified problem with A = I:

min
x

1

2
‖y − x‖2 + λ‖x‖1

Claim: solution of simple problem is x? = Sλ(y), where Sλ is the
soft-thresholding operator:

[Sλ(y)]i =


yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ
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Why? Subgradients of f(x) = 1
2‖y − x‖

2 + λ‖x‖1 are

g = x− y + λs,

where si = sign(xi) if xi 6= 0 and si ∈ [−1, 1] if xi = 0

Now just plug in x = Sλ(y) and check we can get g = 0

Soft-thresholding in
one variable:
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Subgradient method

Given convex f : Rn → R, not necessarily differentiable

Subgradient method: just like gradient descent, but replacing
gradients with subgradients. I.e., initialize x(0), then repeat

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, . . . ,

where g(k−1) is any subgradient of f at x(k−1)

Subgradient method is not necessarily a descent method, so we

keep track of best iterate x
(k)
best among x(1), . . . x(k) so far, i.e.,

f(x
(k)
best) = min

i=1,...k
f(x(i))
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Step size choices

• Fixed step size: tk = t all k = 1, 2, 3, . . .

• Diminishing step size: choose tk to satisfy

∞∑
k=1

t2k <∞,
∞∑
k=1

tk =∞,

i.e., square summable but not summable

Important that step sizes go to zero, but not too fast

Other options too, but important difference to gradient descent:
all step sizes options are pre-specified, not adaptively computed
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Convergence analysis
Assume that f : Rn → R is convex, also:

• f is Lipschitz continuous with constant G > 0,

|f(x)− f(y)| ≤ G‖x− y‖ for all x, y

Equivalently: ‖g‖ ≤ G for any subgradient of f at any x

• ‖x(1) − x∗‖ ≤ R (equivalently, ‖x(0) − x∗‖ is bounded)

Theorem: For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x
(k)
best) ≤ f(x

?) +G2t/2

Theorem: For diminishing step sizes, subgradient method sat-
isfies

lim
k→∞

f(x
(k)
best) = f(x?)
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Basic inequality

Can prove both results from same basic inequality. Key steps:

• Using definition of subgradient,

‖x(k+1) − x?‖2 ≤
‖x(k) − x?‖2 − 2tk(f(x

(k))− f(x?)) + t2k‖g(k)‖2

• Iterating last inequality,

‖x(k+1) − x?‖2 ≤

‖x(1) − x?‖2 − 2

k∑
i=1

ti(f(x
(i))− f(x?)) +

k∑
i=1

t2i ‖g(i)‖2
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• Using ‖x(k+1) − x?‖ ≥ 0 and ‖x(1) − x?‖ ≤ R,

2

k∑
i=1

ti(f(x
(i))− f(x?)) ≤ R2 +

k∑
i=1

t2i ‖g(i)‖2

• Introducing f(x
(k)
best),

2

k∑
i=1

ti(f(x
(i))− f(x?)) ≥ 2

( k∑
i=1

ti

)
(f(x

(k)
best)− f(x

?))

• Plugging this in and using ‖g(i)‖ ≤ G,

f(x
(k)
best)− f(x

?) ≤
R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti
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Convergence proofs

For constant step size t, basic bound is

R2 +G2t2k

2tk
→ G2t

2
as k →∞

For diminishing step sizes tk,

∞∑
i=1

t2i <∞,
∞∑
i=1

ti =∞,

we get
R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti
→ 0 as k →∞
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Convergence rate

After k iterations, what is complexity of error f(x
(k)
best)− f(x

?)?

Consider taking ti = R/(G
√
k), all i = 1, . . . k. Then basic bound

is
R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti
=
RG√
k

Can show this choice is the best we can do (i.e., minimizes bound)

I.e., subgradient method has convergence rate O(1/
√
k)

I.e., to get f(x
(k)
best)− f(x

?) ≤ ε, need O(1/ε2) iterations

24



Intersection of sets

Example from Boyd’s lecture notes: suppose we want to find
x? ∈ C1 ∩ . . . ∩ Cm, i.e., find point in intersection of closed,
convex sets C1, . . . Cm

First define
f(x) = max

i=1,...m
dist(x,Ci),

and now solve
min
x∈Rn

f(x)

Note that f(x?) = 0 ⇒ x? ∈ C1 ∩ . . . ∩ Cm

Recall distance to set C,

dist(x,C) = min{‖x− u‖ : u ∈ C}
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For closed, convex C, there is a unique point minimizing ‖x− u‖
over u ∈ C. Denoted u? = PC(x), so dist(x,C) = ‖x− PC(x)‖

●

*

Let fi(x) = dist(x,Ci), each i. Then f(x) = maxi=1,...m fi(x),
and

• For each i, and x /∈ Ci, ∇fi(x) =
x−PCi

(x)

‖x−PCi
(x)‖

• If f(x) = fi(x) 6= 0, then
x−PCi

(x)

‖x−PCi
(x)‖ ∈ ∂f(x)
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Now apply subgradient method with step size tk = f(x(k−1))
(Polyak step size, can show that we get convergence)

Hence at iteration k, find Ci so that x(k−1) is farthest from Ci.
Then update

x(k) = x(k−1) − f(x(k−1)) x(k−1) − PCi(x
(k−1))

‖x(k−1) − PCi(x
(k−1))‖

= PCi(x
(k−1))

Here we used
f(x(k−1)) = dist(x(k−1), Ci) = ‖x(k−1) − PCi(x

(k−1))‖

For two sets, this is exactly the famous alternating projections
method, i.e., just keep projecting back and forth
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(From Boyd’s notes)
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Can we do better?

Strength of subgradient method: broad applicability

Downside: O(1/
√
k) rate is really slow ... can we do better?

Given starting point x(0). Setup:

• Problem class: convex functions f with solution x?, with
‖x(0) − x?‖ ≤ R, f Lipschitz with constant G > 0 on
{x : ‖x− x(0)‖ ≤ R}

• Weak oracle: given x, oracle returns a subgradient g ∈ ∂f(x)
• Nonsmooth first-order methods: iterative methods that start

with x(0) and update x(k) in

x(0) + span{g(0), g(1), . . . g(k−1)}

subgradients g(0), g(1), . . . g(k−1) come from weak oracle
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Lower bound

Theorem (Nesterov): For any k ≤ n−1 and starting point x(0),
there is a function in the problem class such that any nonsmooth
first-order method satisfies

f(x(k))− f(x?) ≥ RG

2(1 +
√
k + 1)

Proof: We’ll do the proof for k = n− 1 and x(0) = 0; the proof is
similar otherwise. Let

f(x) = max
i=1,...n

xi +
1

2
‖x‖2

Solution: x? = (−1/n, . . .− 1/n), f(x?) = −1/(2n)

For R = 1/
√
n, f is Lipschitz with G = 1 + 1/

√
n

Oracle: returns g = ej + x, where j is smallest index such that
xj = maxi=1,...n xi
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Claim: for any i ∈ 1, . . . n− 1, the ith iterate satisfies

x
(i)
i+1 = . . . = x(i)n = 0

Start with i = 1: note g(0) = e1. Then:

• span{g(0), g(1)} ⊆ span{e1, e2}
• span{g(0), g(1), g(2)} ⊆ span{e1, e2, e3}
• ...

• span{g(0), g(1), . . . g(i−1)} ⊆ span{e1, . . . ei} v

Therefore f(x(n−1)) ≥ 0, recall f(x?) = −1/(2n), so

f(x(n−1))− f(x?) ≥ 1

2n
=

RG

2(1 +
√
n)
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Improving on the subgradient method

To improve, we must go beyond nonsmooth first-order methods

There are many ways to improve for general nonconvex problems,
e.g., localization methods, filtered subgradients, memory terms

Instead, we’ll focus on minimizing functions of the form

f(x) = g(x) + h(x)

where g is convex and differentiable, h is convex

For a lot of problems (i.e., functions h), we can recover O(1/k)
rate of gradient descent with a simple algorithm, having big
practical consequences
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