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Gradient descent
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When do we stop?

• Using holdout set, if f(x) = E(fi(x) | i ~ P)

• Using convergence bounds (later)
‣ usual form is:

‣ Kf (f(x0) – f(x*)) [some fn of 1/ϵ]
‣ need estimates of first two terms

• For f(x*), duality (later); for Kf, properties of f:
‣ convex? strongly convex? Lipschitz?
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In ML & stats

• Often have f(x) = 
‣ where i ~

• E.g., linear regression:

• Let:
‣ then 
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Convex sets
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For all x, y ∈ C, for all t ∈ [0, 1]:
tx + (1–t)y ∈ C
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Examples
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Boundaries
• x on boundary of C (!C) if:

• x in interior of C if:

• x in relative interior (rel int C) if:

• C closed if:

• C open if:

• C compact if:
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Convex hull
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Dual representation
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Supporting hyperplane thm

• For any point x0 on 
boundary of convex C: 
‣ exist (w, b) with

‣  

‣  
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Supporting hyperplane exs
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Separating hyperplane thm
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.C
D • For any convex C and D 

with
‣ exist (w, b) with

‣  

‣  

• If both C, D are closed, 
and at least one compact:
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Separating hyperplane exs
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Proving a set convex

• Use definition directly

• Represent as convex hull or ∩ of halfspaces

• Supporting hyperplane partial converse
‣ C closed, nonempty interior, has supporting 

hyperplane at all boundary points ⇒ C convex

• Build C up from simpler sets using convexity-
preserving operations
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• Translation

• Scaling

• Affine fn
‣ projection (e.g., dropping coords)

• Intersection

• Set sum

• Perspective

Convexity-preserving set ops
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Ex: symmetric PSD matrices

• Two proofs that {A | A = AT, A ≽ 0} is convex

‣ xT (tA + (1-t)B) x =

‣ xTAx = 
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Ex: conditionals

• Given a convex set of dist’ns P(x1:7),
‣ P(x1:5 | x6:7) = 

‣ numerator:

‣ denominator:

• Convex?

16



Geoff Gordon—10-725 Optimization—Fall 2012

Epigraph
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Domain

• dom f = 

• dom 1/x =

• dom ln(x) = 
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Convex functions
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Relating convex sets and fns

• f(x) convex ⇒ { x |               } convex

• Converse?
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Proving a function convex

• Use definition directly

• Prove that epigraph is convex via set methods
‣ e.g., supporting hyperplanes: for all x, y, 

‣ this is first-order convexity condition for fns

• 2nd order: 

• Construct f from simpler convex fns using 
convexity-preserving ops
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Convexity-preserving fn ops

• Nonnegative weighted sum

• Pointwise max/sup

• Composition w/ affine

• Composition w/ monotone convex

• Perspective

• f(x, y) convex in (x, y), set C convex:

‣ g(y) = minx∈C f(x,y) is convex if g(y) > –!
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Example: f(x) = |x|
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In 2 or more dimensions

• All the above, but for 2nd order:

• Or: reduce to 1D
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Ex: structured classifier
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Ex: structured classifier
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xi

yi

φj(xi)
ψijk(xi, yi)
χikl(yi, yi+1)

L(x,y;v,w) =

Classifier:



Geoff Gordon—10-725 Optimization—Fall 2012

Learning structured classifier

• Get it right if:

• So, want:

• Where "(y,y’) = {

• RHS:

• RHS – LHS:

• Train: lots of pairs (xt,yt)
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