First-order methods Convexity

10-725 Optimization
Geoff Gordon
Ryan Tibshirani

Gradient descent

Geoff Gordon—10-725 Optimization—Fall 2012

When do we stop?

- Using holdout set, if $f(x)=E\left(f_{i}(x) \mid i \sim P\right)$

$$
\mathbb{E}_{a, b}(a \cdot x-b)^{2}
$$

- Using convergence bounds (later)
- usual form is:
- $K_{f}\left(f\left(x_{0}\right)-f\left(x^{*}\right)\right)$ [some fn of $\left.I / \epsilon\right]$
- need estimates of first two terms
- For $f\left(x^{*}\right)$, duality (later); for K_{f}, properties of f :
- convex? strongly convex? Lipschitz?

Convex sets

For all $x, y \in C$, for all $t \in[0, I]$: $t x+(1-t) y \in C$

Examples

Boundaries

- x on boundary of $C(\partial \mathrm{C})$ if:
- x in interior of C if:
- x in relative interior (rel int C) if:
- C closed if:
- C open if:

$$
\left\{x\left|x \geq 0, x_{1}+x_{2}=\right|\right\}
$$

R^{n}

- C compact if:

Convex hull

Dual representation

-

Supporting hyperplane thm

- For any point x_{0} on boundary of convex C:
- exist (w, b) with

Supporting hyperplane exs

Separating hyperplane thm

- For any convex C and D with
- exist (w, b) with
-
-
- If both C, D are closed, and at least one compact:

Separating hyperplane exs

Proving a set convex

- Use definition directly
- Represent as convex hull or \cap of halfspaces
- Supporting hyperplane partial converse
- C closed, nonempty interior, has supporting hyperplane at all boundary points $\Rightarrow C$ convex
- Build C up from simpler sets using convexitypreserving operations

Convexity-preserving set ops

- Translation
- Scaling
- Affine fn
- projection (e.g., dropping coords)
- Intersection
- Set sum
- Perspective

Ex: symmetric PSD matrices

- Two proofs that $\left\{A \mid A=A^{\top}, A \geqslant 0\right\}$ is convex - $x^{\top}(t A+(1-t) B) x=$
- $x^{\top} \mathrm{A} x=$

Ex: conditionals

- Given a convex set of dist'ns $\mathrm{P}\left(\mathrm{x}_{1: 7}\right)$,
- $P\left(x_{1: 5} \mid x_{6: 7}\right)=$
- numerator:
- denominator:
- Convex?

Epigraph

Domain

- $\operatorname{dom} f=$
- dom $\mathrm{I} / \mathrm{x}=$
- dom $\ln (x)=$

Convex functions

Relating convex sets and fns

- $f(x)$ convex $\Rightarrow\{x \mid$
- Converse?
\} convex

Proving a function convex

- Use definition directly
- Prove that epigraph is convex via set methods
- e.g., supporting hyperplanes: for all x, y,
- this is first-order convexity condition for fns
- 2nd order:
- Construct from simpler convex fns using convexity-preserving ops

Convexity-preserving fn ops

- Nonnegative weighted sum
- Pointwise max/sup
- Composition w/ affine
- Composition w/ monotone convex
- Perspective
- $f(x, y)$ convex in (x, y), set C convex:
- $g(y)=\min _{x \in C} f(x, y)$ is convex if $g(y)>-\infty$

In 2 or more dimensions

- All the above, but for 2 nd order:
- Or: reduce to ID

Ex: structured classifier

Ex: structured classifier

X_{i}
$\varphi_{i}\left(\mathrm{x}_{\mathrm{i}}\right)$
y_{i}
$\psi_{i j k}\left(x_{i}, y_{i}\right)$
$X_{i k 1}\left(y_{i}, y_{i+1}\right)$
$L(x, y ; v, w)=$
Classifier:

Learning structured classifier

- Get it right if:
- So, want:
- Where $\pi\left(y, y^{\prime}\right)=\{$
- RHS:
- RHS - LHS:
- Train: lots of pairs $\left(x^{t}, y^{t}\right)$

