First-order methods Convexity

10-725 Optimization Geoff Gordon Ryan Tibshirani

Gradient descent

When do we stop?

• Using holdout set, if $f(x) = E(f_i(x) | i \sim P)$ $\mathcal{F}_i(a \cdot x - 5)^2$

- Using convergence bounds (later)
 - usual form is:
 - K_f (f(x₀) − f(x^{*})) [some fn of I/∈]
 - need estimates of first two terms
- For f(x*), duality (later); for K_f, properties of f:
 convex? strongly convex? Lipschitz?

Convex sets

For all $x, y \in C$, for all $t \in [0, 1]$: $tx + (1-t)y \in C$

Examples

And the second of the second o

Boundaries

- x on boundary of C (∂ C) if:
- x in interior of C if:
- x in *relative* interior (rel int C) if:
- C closed if:
- C open if:
- C compact if:

Convex hull

The state of the s

Dual representation

Supporting hyperplane thm

- For any point x₀ on boundary of convex C:
 - exist (w, b) with

Supporting hyperplane exs

The second states of the second states and t

Separating hyperplane thm

- For any convex C and D with
 - exist (w, b) with
- If both C, D are closed, and at least one compact:

Separating hyperplane exs

The second state of the second of the second

Proving a set convex

- Use definition directly
- Represent as convex hull or \cap of halfspaces
- Supporting hyperplane partial converse
 - C closed, nonempty interior, has supporting hyperplane at all boundary points ⇒ C convex
- Build C up from simpler sets using convexitypreserving operations

Convexity-preserving set ops

- Translation
- Scaling
- Affine fn
 - projection (e.g., dropping coords)
- Intersection
- Set sum
- Perspective

Ex: symmetric PSD matrices

- Two proofs that $\{A \mid A = A^T, A \ge 0\}$ is convex • $x^T (tA + (I-t)B) x =$
 - $\mathbf{F} \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} =$

Ex: conditionals

- Given a convex set of dist'ns $P(x_{1:7})$,
 - ► $P(x_{1:5} | x_{6:7}) =$
 - numerator:
 - denominator:
- Convex?

Epigraph

Geoff Gordon—10-725 Optimization—Fall 2012

Domain

and the state of t

• dom f =

- dom I/x =
- dom ln(x) =

Convex functions

3

19

Relating convex sets and fns

- $f(x) \text{ convex} \Rightarrow \{ x \mid x \in X \}$
- Converse?

Proving a function convex

- Use definition directly
- Prove that epigraph is convex via set methods
 - e.g., supporting hyperplanes: for all x, y,
 - this is first-order convexity condition for fns
- 2nd order:
- Construct f from simpler convex fns using convexity-preserving ops

Convexity-preserving fn ops

- Nonnegative weighted sum
- Pointwise max/sup
- Composition w/ affine
- Composition w/ monotone convex
- Perspective
- f(x, y) convex in (x, y), set C convex:
 - $g(y) = \min_{x \in C} f(x,y)$ is convex if $g(y) > -\infty$

Example: f(x) = |x|

And the second for a state of the second of

In 2 or more dimensions

• All the above, but for 2nd order:

• Or: reduce to ID

Ex: structured classifier

C O M V Q X

and the second of the second

Ex: structured classifier

L(x,y;v,w) = Classifier:

Learning structured classifier

- Get it right if:
 - So, want:
 - Where π(y,y') = {
 - RHS:
 - RHS LHS:
 - Train: lots of pairs (x^t,y^t)