First-order methods

Convexity

10-725 Optimization
Geoff Gordon
Ryan Tibshirani
Administrivia

• Schedule posted:
 ‣ Time for poster session: 3:30–6:30, Wed, Dec 12
 ‣ Midterm: Tue, Nov 6 (in class)
 ‣ HW1 will be released: hopefully Tue, Sep 4
 ‣ First recitations: next week

• How to do scribing:
 ‣ http://www.cs.cmu.edu/~aarti/Class/10704/lecs.html

• In case of mishaps with scribe signup sheet
Worked ex: image understanding
Edge detectors
Gradient descent

\[
\min_x f(x)
\]

- for \(k = 1, 2, \ldots \)
 - \(g_k \leftarrow \nabla f(x_k) = \frac{df}{dx} \bigg|_{x=x_k} \)
 - \(x_k \leftarrow x_{k-1} - t_k g_k \)

- Choices: \(x_0, t_k, \) when to stop
Gradient descent: example
Gradient descent: example
In ML & stats

- Often have $f(x) = \mathbb{E}_{p(i)} \left[f_i(x) \right]$
 - where $i \sim p(i)$

- E.g., linear regression:
 $$\min_{a,b} \mathbb{E}_{a \sim \mathcal{N}(0,1)} \left[(a \cdot x - b)^2 \right]$$

- Let: $I = \text{i.i.d. sample } \sim p(i)$
 - then $\hat{f}(x) = \frac{\sum_{i \in I} f_i(x)}{|I|}$
When do we stop?

• ML/stats: held out data
 - f_{train} vs \hat{f}_{valid}

• Early stopping
 - Regularization
 - Why bother?
When do we stop?

- Using convergence bounds (see below)
 - usual form is:
 \[\kappa \geq \frac{(f(x_0) - f^*)}{\text{fun of } f} \]
 - need estimates of: