
10725/36725 Optimization
Homework 4

Due November 27, 2012 at beginning of class

Instructions: There are four questions in this assignment. Please submit your homework as
(up to) 4 separate sets of pages with your name and userid on each set. For the last question
which involves coding, please print out your code and graphs and attach them to the written
part of your homework and email your code to submission10725f12@gmail.com. Refer to the
course webpage for policies regarding collaboration, due dates, and extensions.

New: For this problem set, you have a choice: you may submit answers for any two of
the first three questions (questions 1, 2, and 3). You may choose to submit answers for all
questions; if you do, we’ll give you credit for the highest two scores out of the first three. All
students must submit question 4 (the implementation question). (In the feedback survey,
some students indicated that they like theoretical questions, and others indicated that they
dislike theoretical questions—so, this two-of-three policy will let you choose which sorts
of questions you prefer to work on. And of course it also helps to make the problem set
shorter.)

1 Save our souls, dual cone [Shiva, 25 points]

Non-polyhedral dual cones are kind of tricky. Let’s prove a tough-looking lemma about
polynomials1 by thinking about what the dual cone represents.

Let V be the vector space of polynomials with a basis of monomials. For example, the
polynomial p(x) = x31 +2x31x

2
2 +9x1x

2
2 has coefficients 1, 2, 9 in the coordinates corresponding

to x31, x
3
1x

2
2, and x1x

2
2, respectively. The usual inner product between two polynomials p and

q is 〈p, q〉 =
∑

α pαqα where α indexes the monomials. The lemma is:

Lemma: if Σ ( P , then there is a p ∈ P such that Z(p) 6= Z(q) for any q ∈ Σ.

1This technical lemma is used in optimization to show that certain convex relaxations are tight.
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Here, P ⊂ V are nonnegative polynomials, i.e., p ∈ P satisfies p(x) ≥ 0 for all x. Σ ⊂ P
are sums-of-squares, i.e., s ∈ Σ can be written as s(x) =

∑
i pi(x)2 for pi ∈ P . Finally,

the zero set of p is Z(p) = {x : p(x) = 0}. So the lemma says: if there’s a nonnegative
polynomial that isn’t a sum-of-squares, then there’s a nonnegative polynomial whose zero
set isn’t shared by a sum-of-squares.

Before you crack open your analysis textbook, note that P and Σ are convex cones.

(a) [3 points] Prove it.

Recall the definition of the dual cone of P :

P ∗ = {l : 〈l, p〉 ≥ 0 ∀p ∈ P}

Also recall that a polynomial is nonnegative iff it is nonnegative on the unit sphere2.

(b) [5 points] Interpret that fact by identifying a subset B ⊂ P ∗ whose elements correspond
to points on the unit sphere and whose conical hull is P ∗.

Geometrically, P ∗ consists of hyperplanes l in which all of P is on one side of the hyperplane.
For some l, the p on the boundary (i.e. the p satisfying 〈l, p〉 = 0) are said to be exposed by
l.

(c) [7 points] If R is exposed by l, what is the relationship among {Z(p) : p ∈ R}? Use
B (from the previous part of this question) in your proof.

(d) [5 points] Are there p ∈ R, q ∈ P\R such that Z(p) = Z(q)?

Let’s assemble the proof. If P is strictly larger than Σ, then there is an extreme ray of P
that is not fully contained in Σ. Since P and Σ are closed convex sets, we can strengthen
the previous statement using Straszewicz’s theorem: there is an exposed extreme ray R of
P that is not in Σ.

(e) [5 points] Complete the proof in English.

2 Projecting onto the L1-ball [Kevin, 25 points]

Some students indicated that they would prefer to try solving problems without us providing
all of the intermediate steps, while others indicated that they prefer having the steps specified.
If you would like additional direction for solving this problem, download http://www.cs.

cmu.edu/~ggordon/10725-F12/hws/hw4/q2full.pdf and solve the expanded version of the
problem written there instead of this version. The two versions of the problem are worth the
same number of points. Please only submit the no-intermediate-steps version (below) if you
are relatively confident that you have the entire answer close to correct: it’s hard for us to

2Actually, this is true only for homogenous polynomials, whose constituent monomials all have the same
degree. Every polynomial can be converted to a homogenous polynomial.
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try to decipher an incorrect proof to award partial credit and we will be conservative about
doing so.

Devise an efficient algorithm for projecting a vector y ∈ Rn onto the unit L1-ball, that is, to
solve the optimization problem

x∗ = arg min
x
‖x− y‖22/2, subject to: (1)

‖x‖1 ≤ 1. (2)

Your algorithm must not be iterative, that is, it must exactly compute the projection up to
machine precision. Be sure to prove that your algorithm is correct and describe its asymptotic
complexity in O-notation.

3 Quadratically constrained quadratic programming

(Wooyoung, 25 pts)

1 Consider the following optimization problem,

minimize
1

2
xTPx + qTx + r

subject to xTx ≤ 1

where x,q ∈ Rn, P ∈ Sn++

(a) [3 pts] Show using the KKT condition that x is optimal if and if only

xTx < 1, Px + q = 0 (3)

or
xTx = 1, Px + q = −λx (for some λ ≥ 0) (4)

To solve the problem, let’s start from x = −P−1q. If the solution has norm less than
or equal to one (||P−1q||2 ≤ 1), it’s optimal according to Eq.(3). If the solution of
Px = −q has L2-norm greater than 1, that means the optimal solution should satisfy
Eq.(4).

(b) [2 pts] Show that P + λI � 0 for λ ≥ 0.

Define
f(λ) = ||(P + λI)−1q||22

(c) [3 pts] Show that there exists a non-negative λ such that f(λ) = 1.

(d) [2 pts] Express the optimal solution x as a function of λ? which satisfies f(λ?) = 1.
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(e) [2 pts] We covered two types of plausible optima’s: one that lies on the norm
ball (Eq.3) and the other that lies inside the ball (Eq.4). Discuss the geometric
interpretation of each case.

2 Minimizing a linear function over an ellipsoid centered at the origin.

minimize cTx

subject to xTAx ≤ 1

where A ∈ Sn++ and c 6= 0.

(a) [2 pts] Rewrite the constraint as a function of a new variable y to remove A from
the constraint. Hint: Use the fact that A is a positive semidefinite matrix.

(b) [1 pts] Rewrite the objective function as a function of the new variable y.

(c) [2 pts] Solve the new optimization function with the new constraint and the new
objective function. Show your work and the optimal solution.

Let’s now consider a more general case where A is symmetric but not necessarily
positive definite.

(d) [2 pts] Express A in terms of its eigen-decomposition, calling its eigenvalues λi
and eigenvectors qi, (i = 1, · · · , n).

(e) [1 pts] Define a new variable z = QTx, such that each column of Q corresponds
to qi. Rewrite the constraint as a function of z and λi (i = 1, · · · , n).

(f) [1 pts] Define a new vector b = QTc. Rewrite your original objective function as
a function of b and z.

(g) [2 pts] Show that the optimization problem is unbounded below if one of the
eigenvalues of A, λn is negative, λn < 0.

(h) [2 pts] Show that the optimization problem is unbounded below if λi = 0 bi 6= 0
for some i.

4 AADI-MM [40 points]

There are many subtleties involved when trying to use ADMM to solve the lasso, as dis-
cussed in class (“Lasso Using Repeated Ridge”). When do we terminate? How sensitive is
convergence to the penalty parameter ρ? What’s the fastest way to perform inversion in
update steps? Is it easy to calculate the regularization path for multiple λ values?
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Data and Problem Setup Download the file “A.txt” to get a dense 1500× 5000 (short
and fat) matrix A and the file “b.txt” for the output vector of size 1500. Assume that
b = Ax + e where e is some independent random noise and x is an unknown sparse vector.
We are going to solve for x using the lasso setup: minx(1/2)‖Ax− b‖22 + λ‖x‖1.

[3 points] In 2 lines, argue that for the lasso problem, a choice of λ = ‖A>b‖∞ will lead
to the solution x∗ = 0.

ADMM setup We reframe the lasso as minx,z(1/2)‖Ax−b‖22+λ‖z‖1 such that x = z. We
then use a dual variable ρu to set up the augmented Lagrangian Lρ(x, z, u) = (1/2)‖Ax −
b‖22 + λ‖z‖1 + ρu>(x− z) + (ρ/2)‖x− z‖22.

[5 points] In 3 lines, derive the ADMM updates for x, z, u, whose final answer is on the
ADMM slides. (So, you will be graded on the derivation rather than the final answer.)

Fast Inverses Notice that the update step for x looks like the result of a ridge regression,
and the inverse is computed at every iteration. Assume that we have to calculate (ρI +
A>A)−1yt at every step t. We shall discuss three methods to do this.

Naive, Cool, Awesome The first is just to use a direct matrix inverse (called inv in
MATLAB) and store it, so that we can do a matrix-vector multiplication at every step.
The second is again to store the inverse and use a matrix-vector multiply at every step,
but to use the Woodbury matrix identity to calculate the inverse (ρI +A>A)−1 = (1/ρ)I −
(1/ρ2)A>(I + (1/ρ)AA>)−1A so that we have to calculate the inverse of a smaller matrix.
The third is to use the Woodbury matrix identity and cache the Cholesky decomposition of
the positive definite matrix (I + (1/ρ)AA>) so that at every iteration, multiplying by y is
solving a linear system twice and two matrix-vector multiplications (implemented by “\” or
linsolve in MATLAB).

[10 points] Download a new file “y.txt” having a vector of size 5000, and try all three
methods for the given A and y, assuming ρ = 1. Report the time taken for each of the three
methods (for example, use tic and toc in MATLAB).

Termination Define the primal residual at step t to be rt = ‖xt−zt‖2 and the dual residual
at step t to be st = ρ‖zt+1 − zt‖2. We shall terminate when both residuals are smaller than
some tolerance parameter ε. (This condition was not discussed in class, but is a result of the
proof of convergence of ADMM.)
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[4 points] Create a function “ADMMLasso(A, b, x0, λ, ρ)” where x0 is the initial guess and
implement the above derived ADMM algorithm. Choose λ = 0.1 ∗ ‖A>b‖∞, ρ = 1, x0 = ~0
and run the algorithm for T = 100 steps (irrespective of rt, st). Submit your code for this
part.

[10 points] Plot one graph with both the residuals log10(rt) (in blue) and log10(st) (in red)
on the y-axis, against the iteration/step number on the x-axis. Fix the scales to be [−8, 2]
for the y-axis and [1, 100] for the x-axis. Now, repeat this procedure for ρ = 0.1 and ρ = 10.
Which residual converges faster for large ρ and which one for small ρ? This should match
your intuition about giving a larger or smaller penalty to the ‖x− z‖22 term. Useful Matlab
commands are plot, legend, xlabel, ylabel, axis. Please submit three graphs, with the same
scaling, with the same color scheme as mentioned.

Regularization Path We will now generate a regularization path for x∗. The regulariza-
tion path for a particular element x∗i is a graph with the x-axis having increasing λ values
and the y-axis having the value of x∗i for the lasso solution solved at the different λs. We
shall let the λ range from λmin to λmax in small steps, thus giving a path for x∗i from a
possibly non-zero value (at small λ) to a possibly zero value (at higher λ).

[5 points] Define a function RegPath(A, b, λmin, λmax, ρ, ε) which iteratively runs subrou-
tines of ADMMLasso for different values of λ and warm-starting x0 for new λ with the
solution x∗ for the previous λ. Let λmin = 0.001 and λmax = 0.99‖A>b‖∞ with twenty log-
arithmic steps (i.e. λt = λminm

t where λmax = λminm
20). Each subroutine of ADMMLasso

should be stopped when both rt and st are smaller than ε = 0.001 (hence not for exactly 100
steps). On the same graph, plot the regularization path of all 5000 coordinates of x∗ (most
of them will remain zero anyway). Hence, report one graph for this part.

[3 points] On a new graph, plot the number of non-zero coordinates in your solution on
the y-axis against the lambdas (the same range from the previous part) on the x-axis. What
is the maximum number of non-zero coordinates you found? We learned a theorem in class
that if A is drawn from a continuous probability distribution on Rm×n, then x ∈ Rn will have
at most min{m,n} non-zeros with probability one. Submit one graph for this part.

DISCLAIMER: These termination criteria (formulae for primal and dual residuals) are
for the Lasso problem only. For termination criteria for more general problems, refer to
Boyd’s paper (referenced on the slides).
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NOTE: The Cholesky and matrix inverse method is quite general. For the specific case
of ridge regression, one might want to use the kernel regression trick (X>X + λI)−1X>y =
X>(XX> + λI)−1y.
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