
10725/36725 Optimization
Homework 3

Due October 23, 2012 at beginning of class

Instructions: There are four questions in this assignment. Please submit your homework
as 4 separate sets of pages with your name and userid on each set. For the last question
which involves coding, please print out your code and graphs and attach them to the written
part of your homework and email your code to submission10725f12@gmail.com. Refer to the
course webpage for policies regarding collaboration, due dates, and extensions.

1 From Vector To Matrix Calculus [Thanks to Abhinav

Shrivastava]

1.1 PCA [10 points]

In this subsection we will warm up our vector calculus skills by showing two cool ways of
interpreting the first principal component. One is the direction of maximum variance after
projection and the second is the direction that minimizes reconstruction error. Note that the
first principal component is the first eigenvector of the sample covariance matrix. Consider
n points X1, ..., Xn in p-dimensional space, and let X be the n× p matrix representing these
points. Assume that the data points are centered, ie, ~1>X = ~0. Consider a unit vector v ∈ Rp

and project all the points onto this vector (hence every point becomes a one-dimensional
point on the direction of unit vector v).

1. Argue that the projection is given by Xv.

[Solution] Let us decompose the vector representing Xi into two orthogonal vectors Xiv

and Xiv′ , where Xiv is parallel to v. Using notation X = [XT
1 ;XT

2 ; · · ·XT
n] = [XT

i], we can
write

Xv =
[
(Xiv +Xiv′)

T
]
v = [XT

iv]v + [XT
iv′]v = [XT

iv]v = Xvv

Given that v is a unit vector, Xvv gives the component of X in direction v. Since Xv = Xvv,

1

Xv represents projection of X onto v. F

2. What is the sample mean of all the points after the projection?

[Solution] Sample mean after projection is given by

1

n
[~1>(Xv)] =

1

n
[~1>(X)v] =

1

n
[~0>v] = 0

Hence, the sample mean is 0. F

3 What is the sample variance of all the points after the projection?

[Solution] Given sample mean is 0, sample variance after projection is given by

1

n
[(Xv)T (Xv)] =

1

n
[vTXTXv] = vT

[
XTX

n

]
v = vTΣv

where Σ = XTX is the sample variance of original p-dimensional points (X). F

2

4 Setup the problem of maximizing the sample variance of the projection onto v subject to
a constraint on the L2-norm of v.

[Solution] The problem of finding unit vector v that maximizes sample variance can be
written as

max
v

vTΣv

s.t. ‖v‖2 = 1

The lagrangian of this problem can be written as

L(v, λ) = vTΣv − λ(vTv − 1)

F

5 Solve using vector derivatives to show that the solution is the first PC.

[Solution] By stationarity, at optimality we have

2(Σv∗)− 2λ∗v∗ = 0

The optimal value is v∗TSv∗ = λ∗v∗Tv∗ = λ∗, and so the vector that maximizes variance after
projection, is the eigenvector associated with the largest eigenvalue λ of the covariance
matrix Σ, which by definition is the first Principal Component (PC). F

So we have now proved that the direction of maximum covariance is the first PC. Now we
show that the direction that minimizes reconstruction error is also the first PC.

1. Argue that the reconstruction of Xi using v is (X>i v)v.

[Solution] The reconstruction of Xi using v can be written as the following optimization
problem (with α being a scalar): minα ‖Xi − αv‖2. Taking derivative w.r.t α and setting it
to 0 gives us the following:

2(Xi − αv)Tv = 0⇔ XT
i v = αvTv ⇔ α = XT

i v

Since v is a unit vector, vTv = 1. So, αv = (XT
i v)v is the reconstruction of Xi using v. F

2. You projected Xi to X>i v and then reconstructed it using (X>i v)v. What is the recon-
struction error of Xi, when measured in L2-norm?

[Solution] Reconstruction error in L2-norm is ‖(XT
i v)v −Xi‖2 F

3

3. What is the total squared reconstruction error over all points?

[Solution] Total squared reconstruction error over all points: ‖(Xv)vT −X‖2F F

4. Show that minimizing total squared reconstruction error is equivalent to minimizing
−‖Xv‖22.

[Solution] Total squared reconstruction error can be written as (let X̂ = (Xv)vT)

‖X̂ −X‖2F = tr
(

(X̂ −X)T (X̂ −X)
)

= tr
(
X̂T X̂ − 2X̂TX +XTX

)
= tr

(
X̂T X̂

)
− tr

(
2X̂TX

)
+ tr

(
XTX

)
= tr

(
(XvvT)T (XvvT)

)
− tr

(
2(XvvT)TX

)
+ tr

(
XTX

)
= tr

(
vvTXTXvvT

)
− tr

(
2vvTXTX

)
+ tr

(
XTX

)
= tr

(
vTXTXvvTv

)
− 2tr

(
vTXTXv

)
+ tr

(
XTX

)
= tr

(
vTXTXv

)
− 2tr

(
vTXTXv

)
+ tr

(
XTX

)
= −tr

(
(Xv)T (Xv)

)
+ tr

(
XTX

)
= −‖Xv‖22 + ‖X‖22

Since, ‖X‖2 is a constant w.r.t. v, minimizing total squared reconstruction error
‖(Xv)vT −X‖2F is equivalent to minimizing −‖Xv‖22. F

5. Solve using vector derivatives to show that the solution is the first PC.

[Solution] Minimizing −‖Xv‖22 is equivalent to maximizing vTXTXv, same as part 5 of
previous subsection. F

1.2 Matrix Factorization [15 points]

As its name suggests, matrix factorization involves factoring a matrix into a product of two
other matrices. The SVD, LU and QR decomposition are examples of important types of
factorizations. In some settings, we might postulate that a given m × n matrix Y of noisy
values is actually low rank . One way to write this as an optimization problem (where ‖.‖F
is the frobenius norm, ‖.‖∗ is the nuclear norm) is as follows:

L(Z) = min
Z
‖Y − Z‖2F + λ‖Z‖∗

4

SVD Prove, using the subdifferential of the nuclear norm, that the solution to the above
equation is achieved via SVD by subtracting λ from all singular values, and then setting
negative ones to zero.

[Solution] Let is consider this equation (referred to the TA reg. possible inclusion of 1
2
):

L(Z) = min
Z

1

2
‖Z − Y ‖2F + λ‖Z‖∗ (1)

Let SVD(Y) = UΣV T . We can decompose U, V,Σ as following:

SVD(Y) = UΣV T = U0Σ0V
T
0 + U1Σ1V

T
1

where, where U0, V0 (and respectively U1, V1) are the singular vectors associated with sin-
gular values smaller than or equal to λ (and respectively greater than λ) (singular value
thresholding). To minimize (1) w.r.t Z, we should have ∂L/∂Z = 0, i.e.

(Z − Y) + λ ∂‖Z‖∗ = 0

(Y − Z) = λ ∂‖Z‖∗ (2)

Let us select Z∗ by taking SVD (=
2

in (3)) of Y and subtracting λ from all singular values

(=
2

in (3)), and then setting negative ones to zero (⇒
3

in (3)), as all singular values in Σ0 are

≤ λ, ∴ (Σ0 − λ) ≤ 0, hance setting those to 0.

Z∗ =
1
U(Σ− λ)V T =

2
U0(Σ0 − λ)V T

0 + U1(Σ1 − λ)V T
1 ⇒

3
U1(Σ1 − λ)V T

1 (3)

Let us prove that Z∗ shown above is a valid solution for equation (2), hence a solution for
(1). Plugging in values of Y and Z∗, we can rewrite L.H.S. of (2) as

(Y − Z∗) = U0Σ0V
T
0 + U1Σ1V

T
1 − U1(Σ1 − λ)V T

1

= U0Σ0V
T
0 + U1Σ1V

T
1 − U1Σ1V

T
1 + λU1V

T
1

= U0Σ0V
T
0 + λU1V

T
1

= λ

(
U1V

T
1 +

1

λ
U0Σ0V

T
0

)

(Y − Z∗) = λ
(
U1V

T
1 +W1

)
(4)

where W1 =
(
1
λ
U0Σ0V

T
0

)
. Recall from HW2, the sub-differential of nuclear norm is given

by:

∂||A||∗ = {UV T +W : UTW = 0,WV = 0, ||W ||2 ≤ 1, } (5)

The L.H.S. of (2) is given in (4). Let us show that this (4) is equal to λ× sub-differential of
nuclear norm of Z (given by RHS of (2)). Given the forms in (5) and (4), we need to show
that UTW = 0,WV = 0, ||W ||2 ≤ 1.

5

1. UT
1 W1 = UT

1

(
1
λ
U0Σ0V

T
0

)
=
(
1
λ
(UT

1 U0)Σ0V
T
0

)
= 0 (orthonormal basis of SVD).

2. W1V1 =
(
1
λ
U0Σ0V

T
0

)
V1 =

(
1
λ
U0Σ0(V

T
0 V1)

)
= 0 (orthonormal basis of SVD).

3. ‖W1‖2 = 1
λ
‖U0Σ0V

T
0 ‖ ≤ 1

λ
‖U0‖‖Σ0‖‖V T

0 ‖ ≤ 1
λ
‖Σ0‖ ≤ 1 (all values in Σ0 ≤ λ, ∴

‖Σ0‖ ≤ λ).

Therefore, U1, V1 and W1 given in (4) follow the properties of general ∂‖A‖∗ (as in (5)).
Therefore, we can write U1V

T
1 +W1 = ∂‖Z‖∗. Now, (4) becomes:

(Y − Z∗) = λ
(
U1V

T
1 +W1

)
= λ ∂‖Z‖∗ = R.H.S of (2) (6)

Therefore, the Z∗ selected in (3) actually solves (2) and hence minimizes (1). F

Since Z is postulated to be low rank, it can be decomposed into Z = UV > where U ∈ Rm×k

and V ∈ Rn×k for k ≥ rank(Z). Interestingly, here is a cool variational characterization of
the nuclear norm (for a k ≥ rank(Z))

‖Z‖∗ =
1

2
min

{U∈Rm×k,V ∈Rn×k:Z=UV >}
‖U‖2F + ‖V ‖2F

This allows us to re-pose the problem as:

min
{U∈Rm×k,V ∈Rn×k}

L(U, V)

where

L(U, V) = ‖Y − UV >‖2F +
λ

2
(‖U‖2F + ‖V ‖2F)

1. Noting that ‖A‖2F =
∑

i,j A
2
ij, find ∂L/∂Uij

[Solution] Notation: Uij is a scalar, Ui is a row-vector (ith row), U•i is a column-vector ((ith

column)).

L(U, V) = ‖Y − UV >‖2F +
λ

2
(‖U‖2F + ‖V ‖2F)

=
∑
i,a

(
Yia −

∑
j

UijVaj

)2

+
λ

2

(∑
ij

U2
ij +

∑
ij

V 2
ij

)

6

∂L(U, V)

∂Uij
=

∂

∂Uij

∑
i,a

(
Yia −

∑
j

UijVaj

)2

+
λ

2

(∑
ij

U2
ij +

∑
ij

V 2
ij

)
= 2

∑
a

((
Yia −

∑
j

UijVaj

)
(−Vaj)

)
+

λ

2
(2Uij)

= 2
∑
a

((
Yia − UiV T

a

)
(−Vaj)

)
+ λ Uij

= −2
(
Yi − UiV T

)
(V•j) + λ Uij

F

2. Noting that ‖A‖2F =
∑

iA
>
i Ai, find ∂L/∂Ui

[Solution]

L(U, V) = ‖Y − UV >‖2F +
λ

2
(‖U‖2F + ‖V ‖2F)

=
∑
i

((
Yi − UiV T

)T (
Yi − UiV T

))
+
λ

2

(∑
i

UT
i Ui +

∑
i

V T
i Vi

)

∂L(U, V)

∂Ui
=

∂

∂Ui

[∑
i

((
Yi − UiV T

)T (
Yi − UiV T

))
+
λ

2

(∑
i

UT
i Ui +

∑
i

V T
i Vi

)]

= 2
∑
i

(
Yi − UiV T

) ∂(Yi − UiV T)T

∂Ui
+ λ Ui

= −2
(
Yi − UiV T

)
V + λ Ui

F

7

3. Noting that ‖A‖2F = Tr(A>A), find ∂L/∂U and ∂L/∂V

[Solution]

L(U, V) = ‖Y − UV >‖2F +
λ

2
(‖U‖2F + ‖V ‖2F)

= Tr
((
Y − UV T

)T (
Y − UV T

))
+
λ

2

(
Tr(UTU) + Tr(V TV)

)
∂L(U, V)

∂U
=

∂

∂Ui

[
Tr
((
Y − UV T

)T (
Y − UV T

))
+
λ

2

(
Tr(UTU) + Tr(V TV)

)]
= 2

(
Y − UV T

) [∂

∂U

(
Y − UV T

)]T
+ λ U

= 2
(
Y − UV T

)
V + λ U

Similarily,

∂L(U, V)

∂V
= 2

(
Y − UV T

)T
U + λ V

F

Note that L is convex in Z = UV >, but non-convex in U, V . However, we could conceive
of an alternate EM-like way of getting a reasonable solution to L(U, V). We could alternate
between fixing V and doing a gradient descent on U , and then fixing U and doing a gradient
descent on V . So, keep in mind that different ways of posing an optimization problem can
open different avenues to solving it.

2 Dual with Dual Duo

2.1 Round 1

(a) Is (2) a convex program? Why or why not?

This is not a convex optimization problem due to constraining av and bfv to belong to
the non-convex set I.

(b) Take A(a, b) and form the Lagrangian L(δ, a, b) by introducing Lagrange multipliers
{δfv,s}f∈F,v∈f,s∈S for the first constraint line in (2).

L(δ, a, b) =
∑
v∈V

∑
s∈S

φv(s)av,s +
∑
f∈F

∑
{sv}v∈f⊂S

ψf ({sv}v∈f)
∏
v∈f

bfv,sv

+
∑
f∈F

∑
v∈f

∑
s∈S

δfv,s(b
f
v,s − av,s)

(7)

8

(c) What is the relationship between (2) and (3)?

Optimization problems (2) and (3) are equivalent in that they have the same optimal
value. To see this, note that when maximizing over a and b, we will always choose
bfv,s = av,s, if possible, because if we do not then we will obtain −∞ by minimizing over
δ.

(d) What is the relationship between (3) and (4)?

Optimization problem (4) is the dual of (3) and therefore an upper bound; we have
maxa,b minδ L(δ, a, b) ≤ minδ maxa,b L(δ, a, b). To see this, let a∗ and b∗ be solutions to
(3) and let δ∗ be the solution to (4); we have

max
a,b

min
δ
L(δ, a, b) = min

δ
L(δ, a∗, b∗) ≤ L(δ∗, a∗, b∗) ≤ max

a,b
L(δ∗, a, b) = min

δ
max
a,b

L(δ, a, b)

(e) Is L convex in δ? Why or why not?

L is convex in δ since the dual problem is always convex (or concave); see class notes on
duality. In particular, it is the pointwise maximum of linear functions in δ.

(f) Give a procedure (not a big formula or matrix, please) which calculates a subgradient

g = {gfv,s}f∈F,v∈f,s∈S

of L at δ. Describe, in English, what the subgradient qualitatively represents; which x̄
and {ȳf}f∈F make the subgradient’s norm small or large?

We can construct a subgradient of the function L(δ) using the subgradient rule for
pointwise maximum; ∂(maxi fi(x)) = ∂fk(x) where fk(x) is such that fk(x) = f(x). In
particular, first we maximize Φv and Ψf to get x̄ and {ȳf}f∈F . Then, we add 1 to gfv,s
if x̄v = s and we subtract 1 from gfv,s if ȳfv = s.

Conceptually, this subgradient represents the agreement between x and y on the assign-
ment of a value s to a variable v. If x̄ and {ȳf}f∈F have similar assignments then the
subgradient’s norm will be small; if they have very different assignments, theubgadient’s
norm will be large.

(g) Suppose we had skipped the indicator variable transformation (2) and instead formed
the dual from the Lagrangian of A(x, y). What would the program corresponding to (5)
be? Speculate on why (5) might be ‘better.’

With this approach we would have had

min
δ

L(δ) =
∑
v∈V

max
xv∈S

Φv(xv) +
∑
f∈F

max
{yfv }v∈f⊂S

Ψf ({yfv}v∈f) (8)

9

where

Φv(xv) = φv(xv) + xv
∑
f :v∈f

δfv

Ψf ({yfv}v∈f) = ψf ({yfv}v∈f)−
∑
v∈f

yfv δ
f
v

In this approach, the scaling of the subgradient depends on the difference between xv
and yfv . This may not be desirable since we defined S to be a structureless set. In
fact, mathematical operations on S (multiplication, addition) may not be defined over
S which would make the Lagrangian meaningless. We avoid these problems by using
indicator variables.

2.2 Round 2

(h) Write this as a linear program. How many constraints are there?

Note that S is a finite set and that µv and νf are discrete distributions; we can write
their expectations as

E
xv∼µv

[φ(xv)] =
∑
s∈S

µv(s)φ(s)

E
yf∼νf

[ψ({yfv}v∈f)] =
∑

{sv}v∈f∈S|f |
νf ({sv}v∈f)ψ({sv}v∈f)

(9)

where |f | denotes the cardinality of f , µv(s) denotes the probability of s under the
distribution µv and νf ({sv}v∈f) denotes the probability of {sv}v∈f under the distribution
νf . For the the sake of brevity, we write {sv} for {sv}v∈f when the set v is indexes is
clear from context.

Using the explicit form of the expectation, we can write the optimization problem as a
linear program

maximize
{µv}v∈V
{νf}f∈F

∑
v∈V

∑
s∈S

µv(s)φv(s) +
∑
f∈F

∑
{sv}∈S|f |

νf ({sv})ψ({sv})

subject to µv(s) = νf (sv) ∀f ∈ F, v ∈ f, s ∈ S
µv(s) ≥ 0 ∀v ∈ V, s ∈ S∑
s∈S

µv(s) = 1 ∀v ∈ V

(10)

where νf (sv) denotes the marginal probability of sv

νf (sv) =
∑

{sv′}v′∈f−{v}∈S|f |−1

νf ({sv} ∪ {sv′}) (11)

10

Therefore, the linear program has |S|
∑

f∈F |f |+ |V ||S|+ |V | constraints.

(i) Derive the dual of this linear program.

Let afv,s, bv,s and cv be the dual variables associated with each of the constraints. Then,
at any feasible point we have∑

f∈F

∑
v∈f

∑
s∈S

afv,s(µv,s − νf (sv))−
∑
v∈V

∑
s∈S

bv,sµv,s +
∑
v∈V

cv
∑
s∈S

µv,s ≤
∑
v∈V

cv (12)

for bv,s ≥ 0.

Next, note that for any factor f we can rewrite∑
v∈f

∑
s∈S

afv,sν
f (sv) =

∑
v∈f

∑
s∈S

afv,s
∑

{sv′}v′∈f−{v}∈S|f |−1

νf ({sv} ∪ {sv′})

=
∑

{sv}v∈f∈S|f |
νf ({sv})

∑
v′∈f

afv′,sv′

(13)

which we can use to rearrange the left hand side of our inequality

∑
v∈V

∑
s∈S

µv,s

(
cv − bv,s +

∑
f :v∈f

afv,s

)
−
∑
f∈F

∑
{sv}∈S|f |

νf ({sv})
∑
v′∈f

afv′,sv′ ≤
∑
v∈V

cv (14)

giving us the dual problem

minimize
∑
v∈V

cv

subject to φv(s) = cv − bv,s +
∑
f :v∈f

afv,s ∀v ∈ V, s ∈ S

ψ({sv}v∈f) = −
∑
v′∈f

afv′,s ∀f ∈ F, ∀{sv}v∈f ∈ S
|f |

(15)

3 A bad day for the simplex algorithm

In this question, we’ll explore the geometry of linear programming and a worst case for
the simplex algorithm using a variant of the Klee-Minty cube. Let’s define the cube in n
dimensions as

0 ≤ xk ≤ 2k − 1− 2
k−1∑
i=1

xi. ∀k ∈ {1, 2, . . . , n} (16)

Note that for k = 1, the upper bound constraint degenerates to x1 ≤ 1.

11

(a) Sketch or plot the cube in R2.

Our worst-case example maximizes the sum of the xi’s over this cube.

(b) On your sketch, draw the objective function as a vector and circle the optimal vertex.

Solution for (a) and (b):











Let’s run the simplex algorithm on the cube in R2 and see what it does.

(c) Convert the following linear program into standard form. Name your slack variables
y1 and y2.

min
x

x1 + x2, subject to: (17)

0 ≤ x1 ≤ 1 (18)

0 ≤ x2 ≤ 3− 2x1 (19)

Solution:

min
x

x1 + x2, subject to: (20)

x1 + y1 = 1 (21)

2x1 + x2 + y2 = 3 (22)

x1, x2, y1, y2 ≥ 0 (23)

(d) Write out the simplex tableau for the point x1 = 0, x2 = 0 denoting z as the objective
value. Which variables are in our starting basis?

12

Solution:

y1 = 1− x1 (24)

y2 = 3− 2x1 − x2 (25)

z = x1 + x2 (26)

y1 and y2 are in our starting basis.

(e) Which variables are legal variables to enter our basis? Why?

Solution:
Both x1 and x2 have positive coefficients in the tableau and therefore may enter.

Let’s have the simplex algorithm choose the entering variable with the maximum objec-
tive coefficient in current tableau breaking ties by picking the variable with the smallest
index.

(f) Which variable enters the basis, and which leaves? Write out the new tableau. What
are the values of x1 and x2? From this point, how many more iterations will be
required?

Solution:
x1 enters and y1 leaves.

x1 = 1− y1 (27)

y2 = 1− x2 (28)

z = 1− y1 + x2 (29)

In this basis, x1 = 1, x2 = 0. Two more iterations will be required.

Let’s take our intuition of what’s happening from the 2-dimensional case and examine the
performance of the simplex algorithm in Rn. Here, we will consider the program

min
x

n∑
i=1

xi, subject to: (30)

0 ≤ xk ≤ 2k − 1− 2
k−1∑
i=1

xi. ∀k ∈ {1, 2, . . . , n} (31)

(g) How many vertices, edges and faces does the polytope being optimized over have as a
function of n? Here, a face is a hyperplane that touches n points on the boundary (no
3 of which are colinear) that does not intersect the interior.

Solution:
There are 2n vertices, n2n/2 edges and 2n facets. Just like a normal cube.

13

(h) Prove that any feasible basis includes either xk, or yk, but not both. Remember that
a basis is a corner point and cannot be written as a linear combination of two other
feasible points.

Solution:
First, we show that xk and yk cannot both be zero by showing that the unit cube fits inside
the Klee-Minty cube. If 0 ≤ x ≤ 1, for all k we have

0 ≤ xk + 2
k−1∑
i=1

xi (32)

≤ 2(k − 1) + 1 = 2k − 1 (33)

≤ 2k − 1 (34)

Assume there is a basis where xk, yk ≥ ε > 0. Consider the points x′k = xk − ε, y′i = yi + ε
and x′′k = xk + ε, y′′i = yi − ε for i = {k, k + 1, . . . , n} with all other coordinates remaining
fixed. These two points are feasible and their midpoint is our basis, contradicting that it is
a corner.

(i) Show the program has optimum x∗ = (0, 0, . . . , 0, 2n − 1) by writing out the corre-
sponding tableau.

Solution:
At x∗, we have y∗ = (1, 3, . . . , 2n−1 − 1, 0). The associated tableau looks like

yk = 2k − 1− 2
k−1∑
i=1

xi ∀k ∈ {1, 2, . . . , n− 1} (35)

xn = 2n − 1− yn − 2
n−1∑
i=1

xi (36)

z = 2n − 1− yn −
n−1∑
i=1

xi (37)

This tableau has no positive coefficients on the non-basis variables in the objective value and
is therefore optimal.

Given that xi and yi cannot be in a basis together, we know that when xi enters, then yi
exits and vice versa. From this, we can represent a transformation to a basis with a number
between 1 and n. That is, the transformation 2 will have x2 enter and y2 exit if y2 is in the
basis.

(j) If {a1, a2, . . . , am}, where for all i, ai ∈ {1, . . . , n}, is the sequence of entering vari-
ables that solves the n dimensional cube, show that the sequence {a1, a2, . . . , am, n +
1, a1, a2, . . . , am} solves the n+ 1 dimensional cube.
Hint: Use your tableau from part (i).

14

Solution:
The tableau after the sequence completes is

yk = 2k − 1− 2
k−1∑
i=1

xi ∀k ∈ {1, 2, . . . , n− 1} (38)

xn = 2n − 1− yn − 2
n−1∑
i=1

xi (39)

yn+1 = 2n+1 − 1− xn+1 − 2
n∑
i=1

xi (40)

z = 2n − 1−
n−1∑
i=1

xi − yn + xn+1. (41)

We have one choice for an entering variable, xn+1, which results in the tableau

yk = 2k − 1− 2
k−1∑
i=1

xi ∀k ∈ {1, 2, . . . , n− 1} (42)

xn = 2n − 1− yn − 2
n−1∑
i=1

xi (43)

xn+1 = 2n+1 − 1− yn+1 − 2
n∑
i=1

xi (44)

z = 2n +
n−1∑
i=1

xi + yn − yn+1. (45)

We notice that since no transformations effect n + 1 ever again we can remove it from
consideration, which results in the starting tableau for the n dimensional problem, except
that xn and yn have been swapped. This is actually inconsequential, though, as they have
the same coefficients everywhere in the tableau once xn+1 has been removed.

(k) How many iterations does the simplex algorithm take when starting from x = (0, 0, . . . , 0)
on the n-dimensional Klee-Minty cube? Use induction where your answer from (f) is
the base case and your answer from (j) is the inductive step.

Solution: 2n − 1.

The case presented here is a contrived worst-case. As stated in class, in practice the simplex
algorithm often performs quite well. Smoothed analysis, where one bounds the expected per-
formance of an algorithm on a slightly perturbed worst-case input, is a tool that attempts to
describe this phenomenon. See D. Spielman and S. Teng, “Smoothed analysis of algorithms:
why the simplex algorithm usually takes polynomial time”, ACM Symposium on Theory of
Computing, 2001 for more details.

15

4 Newton’s method

In this problem, we will implement the Newton’s method to solve logistic regression. Given
a dataset with two types of binary labels (yi) and and p dimensional features (xi) (i =
1, · · · , n), we will estimate θ ∈ Rp that minimizes the negative of log likelihood (equivalently
maximizing the log likelihood). Our objective function would be

− log(L(θ|X, Y)) =
1

n

n∑
i=1

(−yi log(σθ(xi))− (1− yi) log(1− σθ(xi))) (46)

where σθ(x) =
1

1 + exp(−xT θ)
, yi ∈ {0, 1} refers to i th element of Y , xi ∈ Rp corresponds

to the ith column of X and n is the total number of samples.

Taking the derivative of the objective function with respect to the parameter (θ) results in
the gradient,

d(− log(L(θ|X, Y)))

dθ
=

1

n

n∑
i=1

(σθ(xi)− yi)xi) (47)

Finally, the Hessian of our objective function results in

d2(− log(L(θ|X, Y)))

dθ2
=

1

n

n∑
i=1

[
σθ(xi)(1− σθ(xi))xixTi

]
(48)

(a) [2 pts] Implement code for computing the likelihood of the data. Please name it
computeL.m or computeL.r. The input to the computeL function should be θ, X and
Y . The output should be the objective function value.

SOLUTION: note that you can easily avoid for-loops.

1 function L = computeL (theta ,X,Y)
2

3 L = mean(−Y’ . ∗ log (1./(1+exp(−theta ’∗X)))−(1−Y’) .∗ log (exp(−theta ’∗X
) ./(1+exp(−theta ’∗X)))) ;

(b) [2 pts] Implement code for computing the gradient of the likelihood with respect to
θ. Please name it computeG.m or computeG.r. The input to the computeG function
should be θ, X and Y . The output should be the gradient.

SOLUTION: note that you can easily avoid for-loops. You can make your code more efficient
by using bsxfun in MATLAB.

1 function g = computeG(theta ,X,Y)
2

3 g = mean(X∗diag ((1 ./(1+exp(−theta ’∗X))−Y’)) ,2) ;

16

(c) [2 pts] Implement code for computing the Hessian of the likelihood with respect to
θ. Please name it computeH.m or computeH.r. The input to the computeH function
should be θ and X. The output should be the value of the Hessian.

SOLUTION:

1 function h = computeH (theta ,X)
2

3 m = s ize (X, 2) ;
4 h = 1/m∗(X∗diag ((s igmoid(−theta ’∗X)))) ∗(X∗diag(1− s igmoid(−theta ’∗X

))) ’ ;

(d) [5 pts] Implement backtrack line search method (Boyd and Vandenberghe Ch. 9.2).
Name the code backtrack.m or backtrack.r. The input to the function should be θ, the
pointers to the functions computing the objective function (computeL) and the gradient
(computeG), the direction along which you are moving (for the gradient method this
will correspond to −g and for the Newton’s method this will correspond to −H−1g),
α, β and the input you need to compute the objective function and the gradient (X
and Y). To prevent infinitely reducing the step size until the criterion is met, exit
the program when step size is too small (say, when the stepsize is less than 10−6).
The output should include the new estimate of θ, the stepsize used, the new objective
function value and the number of times computeL was called.

1 function [newtheta , t , newobj , n fc] = backtrack (theta , obj func ,
gradfunc , de l ta , alpha , beta , dataparam) ;

2

3 t = 1 ;
4 f c = obj func (theta , dataparam { :}) ;
5 fn = obj func (theta+t∗de l ta , dataparam { :}) ;
6 nfc = 3 ;
7 d = gradfunc (theta , dataparam { :}) ;
8

9 while (fn>f c+alpha∗ t∗d ’∗ de l t a)
10 t = beta∗ t ;
11 fn = obj func (theta+t∗de l ta , dataparam { :}) ;
12 nfc = nfc + 1 ;
13 i f t<1e−6
14 break ;
15 end
16 end
17

18 newtheta = theta+t∗ de l t a ;
19 newobj = obj func (theta+t∗de l ta , dataparam { :}) ;

Please download wine-data.mat from http://www.cs.cmu.edu/~ggordon/10725-F12/hws/

17

http://www.cs.cmu.edu/~ggordon/10725-F12/hws/hw3/

hw3/. This data includes the quality ratings of 1599 types of wine (1 corresponds to good,
0 to bad) and the volatile acidity (the first row of X) and the alcohol ratio (the second row
of X) of each type.

(e) [2 pts] Run the Newton’s method and the gradient descent method for 5 iterations
with backtracking line search. Start from θ0 = 0 (e.g., a vector with all elements set
to 0). Use α = 0.01 and β = 0.8 for the backtracking line search. For both algorithms,
plot the objective function values at each iteration including the initial value of the
objective function.

SOLUTION:

0 1 2 3 4 5
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

Iterations

O
bj

 F
un

c
Va

l

 GD
Newton

Figure 1: Figure for 4(e)

(f) [2 pts] Plot your data (using distinct markers or color for the two classes) and the
separating hyperplane estimated by the Newton’s method and the gradient method.
How would you conclude on the volatile acidity and alcohol level’s relation to the
quality of wine?

SOLUTION: Good wines and bad ones are not totally separable, but those with more alcohol
and low volitive acidity tends to be categorized as good ones (Figure 2).

In addition to the printout, please submit your code by
1. zipping the three files for (a) - (d) into one zip file (please name it youAndrewID hw3.zip)
2. send the zip file to submission10725f12@gmail.com before the due date. Please include in
the subject line of your email, your name, AndrewID and the assignment number.

Now that we know your code works fine with low dimensional data, let’s move onto more

18

http://www.cs.cmu.edu/~ggordon/10725-F12/hws/hw3/

−4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

4

5

6

x1:volatile acidity

x 2: a
lc

oh
ol

GD
Newton

Figure 2: Figure for 4(f)

high dimensional data. Please download newton-data.mat from http://www.cs.cmu.edu/

~ggordon/10725-F12/hws/hw3/. . The data consists of 4500 samples. The dimensionality
of the features is 1000. Run the gradient descent method with backtracking line search for 30
iterations and the Newton’s method with backtracking linear search for 10 iterations starting
from 0.

(g) [2 pts] Plot the objective function values as a function of the number of iterations
including the initial objective function values for both the gradient method and the
Newton’s method in one figure.

SOLUTION: Please refer to Figure 3.

(h) [2 pts] Plot the objective function values as a function of the running time t for both
the gradient method and the Newton’s method in one figure. Please include the initial
objective function value at t = 0. Compute the elapsed time per iteration. (Hint: you
can use the tic and toc functions in MATLAB to record the elapsed times.)

SOLUTION: Please refer to Figure 4.

(i) [2 pts] Plot the histogram of step sizes returned by the backtracking line search over all
iterations for one run. Make separate plots for the gradient method and the Newton’s
method each. Does the stepsize distribution for the descent gradient method differ
from that of the Newton’s method? Explain why.

SOLUTION: Please refer to Figure 5.

(j) [2 pts] Plot the histogram of number of times the function that computes the objective

19

http://www.cs.cmu.edu/~ggordon/10725-F12/hws/hw3/
http://www.cs.cmu.edu/~ggordon/10725-F12/hws/hw3/

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Iterations

O
bj

 F
un

c
Va

l

 GD
Newton

Figure 3: Figure for 4(g)

function was called by the backtracking line search over all iterations. Make separate
plots for the gradient method and the Newton’s method each. Does the histogram for
the descent gradient method differ from that of the Newton’s method? Explain why.

SOLUTION: Newton’s method always returns step size 1. This is because Please refer to
Figure 6.

(k) [2 pts] Run your code again starting from θ0 = 1. Which algorithm do you think is more
sensitive to the initial points? Explain why.

SOLUTION: Newton’s method is more sensitive to the initial point. This is because the
second order approximation is less accurate when the initial point is far from the optimal
point.

20

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Elapsed time (sec)

O
bj

 F
un

c
Va

l

 GD
Newton

Figure 4: Figure for 4(h)

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

step sizes

ra
tio

gradient descent

0 0.5 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

step sizes

ra
tio

Newton

Figure 5: Figure for 4(i)

21

0 20 40 60 80
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

num func calls

ra
tio

gradient descent

0 20 40 60 80
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

num func calls

ra
tio

Newton

Figure 6: Figure for 4(j)

22

	From Vector To Matrix Calculus [Thanks to Abhinav Shrivastava]
	PCA [10 points]
	Matrix Factorization [15 points]

	Dual with Dual Duo
	Round 1
	Round 2

	A bad day for the simplex algorithm
	Newton's method

