
10725/36725 Optimization
Homework 2 Solutions

1 No Regrets About Taking Optimization? (Aaditya)

1.1 A Game Against An Adversary [2.5 points]

We shall deal with a fixed, closed, non-empty, convex set S ⊂ RN , and assume that its
diameter is given to be the constant D = maxx,y∈S ‖x− y‖2. Assume that F is the set of all
convex functions with domain S such that every subgradient of the function is bounded by
G everywhere in its domain, ie ∀f ∈ F, ∀x ∈ S, ∀gx ∈ ∂f(x), ‖gx‖2 ≤ G.

We are going to play a game against an adversary that will last T rounds (T is fixed). In
each round t (1 ≤ t ≤ T), you have to choose a point xt ∈ S. Simultaneously and indepen-
dently, nature chooses a function ft ∈ F . After you choose xt, nature’s choice ft is revealed
completely to you, and you incur a penalty/loss in this round of ft(xt).

Your aim when playing this game is to choose points xt in order to minimize your total
loss/penalty

∑T
t=1 ft(xt). Clearly this is hard because you are forced to choose xt before

finding out ft. To make the problem easier, we are going to instead minimize regret. At the
end of the game, you have seen f1, ..., fT , and you can calculate the best point x∗ that you
could have chosen, when you look back in hindsight. This x∗ can be defined as the one point
that minimizes your total penalty, ie x∗ = arg minx∈S

∑T
t=1 ft(x).

The difference between your total loss and the loss incurred by the best fixed point is called
regret, ie RT =

∑T
t=1 ft(xt) − minx∈S

∑T
t=1 ft(x) (intuitively, at the end of the game, you

think “damn, I used a fancy algorithm and picked x1, ..., xT while I could have just simply
picked x∗, x∗, ..., x∗ and I would’ve suffered a smaller loss by an amount of RT”).

Is Hindsight Easy? Argue that solving for x∗ is a convex optimization problem. Sum
of convex functions is convex. Domain S is convex.

1

1.2 Projected Subgradient Descent To The Rescue! [15 points]

Consider the following algorithm. Start at an arbitrary point x1 ∈ S. After round t, on
receiving ft, calculate any subgradient gt ∈ ∂ft(xt). Take a step in the direction of negative
subgradient gt with constant step-size η. Since you might be outside the set, project back
onto the set S and choose that as your next point xt+1. So xt+1 =

∏
S(xt − ηgt) where∏

S(x) = arg miny∈S ‖x− y‖2 is the projection of x onto S (nearest point in S to x).

Is Projecting Easy? Argue that finding
∏

S(x) is a convex optimization problem. ‖x−y‖
is convex in y (p-norms are convex for p ≥ 1). S is convex.

We are going to show that the regret grows sublinearly - specifically, if we play the game
for T rounds, then our regret is only going to grow like RT = O(

√
T). The proof will keep

track of ‖xt − x∗‖2 where distances will always be in L2-norm. We will use the shorthand
x′t+1 = xt − ηgt to denote the unprojected point, so now, xt+1 =

∏
S(x′t+1).

Projecting Helps! Argue that whatever x∗ might be, the distance between xt+1 and x∗

can only be smaller than the distance between x′t+1 and x∗. Consider the triangle formed
by A = xt+1, B = x′t+1, C = x∗. The angle BAC = θ is obtuse, because AB is in
the normal cone at A and the entire convex set S is on the other side of the
separating hyperplane. Since the largest angle is opposite the largest side, we
get ‖xt+1 − x∗‖2 ≤ ‖x′t+1 − x∗‖2.

To Iterate Is Human, To Recurse Divine! Use the above fact and the algorithm’s
update rule to derive a simple recursive inequality between ‖xt+1 − x∗‖2 and ‖xt − x∗‖2.
Rearrange the terms to get an upper bound on g>t (xt − x∗). Continuing, we get ‖xt+1 −
x∗‖2 ≤ ‖x′t+1 − x∗‖2 = ‖xt − ηgt − x∗‖2 ≤ ‖xt − x∗‖2 + η2G2 − 2ηg>t (xt − x∗). Rearrange

to get g>t (xt − x∗) ≤ ηG2

2
+ ‖xt−x∗‖2−‖xt+1−x∗‖2

2η
.

Doesn’t Convexity Rock? Use the definition of convexity to upper bound ft(xt)−ft(x∗)
which is the “regret due to round t”, in terms of η, G and [‖xt − x∗‖2 − ‖xt+1 − x∗‖2]. By

convexity ft(xt)− ft(x∗) ≤ g>t (xt − x∗) ≤ ηG2

2
+ ‖xt−x∗‖2−‖xt+1−x∗‖2

2η
.

The Telescope Makes It Clear! Sum the above upper bound over all time steps t =
1, ..., T to derive an upper bound on the regret in terms of η,G,D, T . Summing

∑T
t=1[ft(xt)−

ft(x
∗)] ≤ ηG2T

2
+ ‖x1−x∗‖2−‖xT+1−x∗‖2

2η
≤ ηG2T

2
+ D2

2η
.

2

Balancing Act Show how to set step size η so that the total regret is at most O(GD
√
T).

Set G2T/2 = D2/2η to choose η = D
G
√
T
.

The field of online learning focuses on average per-round regret RT/T . In this problem, we
showed that projected subgradient descent achieves a O(1/

√
T) regret rate, and hence the

average regret tends to zero as T tends to infinity. This is called a no-regret algorithm.

1.3 Stochastic First Order Oracle Model [12.5 points]

In convex optimization theory, we often come across the black-box oracle model of computa-
tion. In this model, there is an oracle which has access to a hidden unknown function f , and
we get to query that oracle at points xt in the domain. A zeroth order oracle, when queried
at xt, will give you only the function value f(xt). A first order oracle gives you both f(xt)
and any subgradient gt ∈ ∂f(xt) (similarly, the second order oracle also provides a Hessian).

In the algorithm of section 1.2, note that we didn’t really need to know the function ft to
calculate our next move (we only need it to calculate our regret). In fact, given only any
one subgradient gt ∈ ∂ft(xt) we could have run the same algorithm, and this proof shows
that we would’ve been sure that whatever the functions were, our average regret would grow
like O(1/

√
T). So, we say that this algorithm achieves a regret rate of 1/

√
T in the first

order oracle model of computation. In online learning, this is also called the full information
model, where you get the entire function ft (and hence its gradient) rather than the bandit
setting where you only get to know ft(xt) but not the function ft.

We will show a reduction from a regret algorithm to traditional convex optimization as seen

in class, ie, any algorithm that achieves a regret bound
∑T

t=1 ft(xt)

T
−ft(x∗) = O(1/

√
T) can be

used as an algorithm to achieve a convex optimization error of O(1/
√
T). For this, assume

that we run the same algorithm from the previous section, but with the additional knowledge
that since this is a convex optimization problem (and not an online game with an adversary),
we have ft = f for all time steps t.

From Regret To Error Let x1, ..., xT be the T points chosen by our algorithm. Define
x̄T = x1+...+xT

T
. Explain why the following equations hold :

f(x̄T) ≤ f(x1) + ...+ f(xT)

T
Jensen’s inequality for convex functions (1)

f(x̄T)− f(x∗) = O(1/
√
T) We know

T∑

t=1

f(xt)− f(x∗) ≤ GD
√
T from regret bound. (2)

3

Stochastic convex optimization deals with the setting where a noiseless subgradient or func-
tion value may not be available (or is too costly to compute exactly). A stochastic first
order oracle captures this setting by not answering a query at xt exactly with (f(xt), gt), but
instead with (f̂(xt), ĝt) satisfying E[f̂(xt)] = f(xt), and E[ĝt] = gt ∈ ∂f(xt) with ‖ĝt‖ ≤ G.
Here, the expectation is with respect to any randomness of the oracle for this particular query
(for example, when you query at xt, it may add Gaussian noise to the true values before re-
turning them to you; alternatively, if f is a sum of a loss function over a very large number of
training examples, it may compute an approximate subgradient at a point by only evaluating
it over a random subset of examples). We will show that the exact same algorithm works
with noisy subgradients by deriving a bound that looks like Ef(x̄T) − f(x∗) = O(1/

√
T),

where the expectation is over all the randomness of the oracle during all rounds.

Great Expectations Let Et−1 denote taking expectation of the randomness of round t
conditioned on all randomness till round t−1. Justify why the following equations hold:

Et−1[ĝt] = gt (3)

f(xt)− f(x∗) ≤ Et−1[ĝt]>(xt − x∗) (4)

E[f(xt)]− f(x∗) ≤ E[ĝt]
>(xt − x∗) (5)

Conditioning on randomness in first t−1 rounds, the only randomness left is that
of the oracle in round t, and by the first order stochastic oracle model definition
we have Et−1[ĝt] = gt. By the definition of convexity f(xt) − f(x∗) ≤ g>t (xt − x∗) =
Et−1[[ĝt]>(xt − x∗)]. Note xt, f(xt),Et−1[ĝt] are still random variables which depend
on the randomness of the first t−1 rounds. Also, conditioned on the randomness
of the first t − 1 rounds, f(xt) and xt are fully determined, and so we can take
their conditional expectations as if they were constants, ie Et−1[f(xt)] = f(xt)
etc. Taking expectation wrt the first t− 1 rounds, and using the law of iterated
expectations, we get Ef(xt)− f(x∗) ≤ E[[ĝt]

>(xt − x∗)], where the expectations are
now with respect to all the randomness of the oracle in all rounds. Note that
even though the brackets weren’t given for the expectation, this is the only way
the scope makes sense. Such in-depth explanation was not required, but is just
explained here for clarity.

The rest of the proof should carry through just like the noiseless regret case (but you don’t
need to show that it does), finally proving that projected subgradient descent achieves a
O(1/

√
T) rate for any general convex function over any general convex set in the black-box

stochastic first order oracle model of optimization.

4

2 Subgradient Smörg̊asbord (Shiva)

2.1 Normal-er

Let C ⊂ Rn be a possibly non-convex set. During our discussion of subgradients, we said
that g is normal to C at x when gT (x − x′) ≥ 0 for all x′ ∈ C. The set of all such vectors
constitutes the normal cone NC(x). Some examples are drawn in the slides. Let’s consider
some special normal vectors, but in reverse: first geometry, then subgradients. Let the

212 6. Variational Geometry

Proof. This is the case of 6.14 with D = D1 × · · · ×Dm, as applied to 6(11).
For normal vectors to boxes, see 6.10.

The four cases of sign restriction in this Lagrange multiplier rule corre-
spond to the constraint fi(x) ∈ Di being inactive, upper active, lower active,
or doubly active—an equality constraint. When X = IRn, the cone NX(x̄)
reduces to {0} and the gradient relations turn into simple equations. When X
is a box, on the other hand, these relations take the form of sign restrictions
on the partial derivatives of these gradient combinations, cf. 6.10.

E. Proximal Normals and Polarity

The basic optimality condition in Theorem 6.12 is useful not only as a foun-
dation for such multiplier rules but for theoretical purposes. This is illustrated
in the following analysis of a special kind of normal vector.

C

x
_

v

_
τx+ v

Fig. 6–11. Proximal normals from nearest-point projections.

6.16 Example (proximal normals). Consider a set C ⊂ IRn and its projection
mapping PC (which assigns to each x ∈ IRn the point, or points, of C nearest
to x). For any x ∈ IRn,

x̄ ∈ PC(x) =⇒ x− x̄ ∈ N̂C(x̄), so λ(x− x̄) ∈ N̂C(x̄) for all λ ≥ 0.

Any such vector v = λ(x − x̄) is called a proximal normal to C at x̄. The
proximal normals to C at x̄ are thus the vectors v such that x̄ ∈ PC(x̄ + τv)
for some τ > 0. Then actually PC(x̄+ τ ′v) = {x̄} for every τ ′ ∈ (0, τ).

Detail. For any point x̃ ∈ IRn, we have PC(x̃) = argminx∈C f0(x) with f0(x) =
1
2 |x− x̃|2, ∇f0(x) = x− x̃. Hence by 6.12, x̄ ∈ PC(x̃) implies x̃− x̄ ∈ N̂C(x̄).
Here we apply these relationships to cases where x̃ = x̄+ τv, see Figure 6–11.
It’s elementary from the triangle inequality that when x̄ is one of the points of
C nearest to x̃, then for all intermediate points x on the line segment joining
x̃ with x̄, the unique nearest point of C to x is x̄.

In essence, a vector v �= 0 is a proximal normal to C at x̄ when v points from
x̄ toward the center of a closed ball that touches C only at x̄. This condition is

Figure 1: The p-normal v of C at x̄ points from x̄ to the center of a closed ball that touches C at
only x̄. Sorry for the inconsistent notation.

projection ΠC(x) map x to the set of points of C closest to x. If g satisfies x ∈ ΠC(x+ τg)
for some τ > 0, then g is called p-normal of C at x. For nice C, this distinction lacks a
difference.

(a) [4 points] Prove that for convex C every normal is p-normal. (Write the projection as
an optimization, then consider optimality conditions.)

Solution courtesy of Carl Doersch First, for fixed x and g, the closest point in the plane
gT (x− x′) = 0 to the point x+ τg is x, because the ray τg is orthogonal to the plane. Next,
let y ∈ C. It must be either on the plane, or on the opposite side of the plane from x+τg, so
the ray connecting y and x+ τg must pass through the plane at some point p. This means
‖y − x + τg‖ ≥ ‖p− x + τg‖ ≥ ‖x− x + τg‖. Hence x is at least as close to x + τg as any
other point in the set, and so it must be in Πc(x).

g is called a p-subgradient of f at x if there exist ρ > 0 and δ > 0 such that for all x′ that
are δ-close to x,

f(x′) ≥ f(x) + gT (x′ − x)− ρ

2
||x′ − x||2

(b) [8 points] Prove that g is a p-subgradient of the indicator function IC at x only if g
is p-normal to C at x. Don’t assume C is convex. Drop some terms, write in terms of

5

ε = 1/ρ, apply Cauchy-Schwarz, and incorporate τ = min(ε, δ/2||g||).
We wish to show that x ∈ ΠC(x + τg) for some τ . Hence, we wish to show that all x′ ∈ C
are at least as far from x + τg as x. Let τ‖g‖ ≤ δ/2. Then there are 2 cases for the
point x′. Ifx′ is outside of the ball of radius δ around x, then by the triangle inequality,
‖x′ − x+ τ‖g‖‖ ≥ ‖x′ − x‖ − ‖x− x+ τ‖g‖‖ ≥ δ − δ/2 ≥ τ‖g‖ = ‖x− x+ τ‖g‖‖. For the
second case, we know that for all x′ within δ/2 of x, the following holds:

f(x′) ≥ f(x) + gT (x′ − x)− ρ

2
‖x′ − x‖2 (6)

−ρ
2
‖x′ − x‖2 ≤ f(x′)− f(x)− gT (x′ − x) (7)

Note that x′ ∈ C, f(x′)−f(x) = 0 since x, x′ ∈ C. Set τ ≤ (1/ρ) (hence, τ = min(δ/2‖g‖, 1/ρ)
is sufficient). Rewriting:

0 ≤ −2τgT (x′ − x) + ‖x′ − x‖2 (8)

‖x− x‖2 − 2τgT (x− x) + ‖τg‖2 ≤ ‖x′ − x‖2 − 2τgT (x′ − x) + ‖τg‖2 (9)

‖x− (x− τg)‖2 ≤ ‖x′ − (x− τg)‖2 (10)

2.2 Decomposable norms

Recall the ‘nuclear’ (or ‘trace’) norm is

||A||∗ =
r∑

i=1

σi

where {σi} are the singular values of the rank-r matrix A ∈ Rm×n with m ≤ n. We will now
prove its subdifferential is

∂||A||∗ = {UV T +W : UTW = 0,WV = 0, ||W ||2 ≤ 1,W ∈ Rm×n} (11)

where A = UΣV T is singular-value decomposed (into U ∈ Rm×r, Σ ∈ Rr×r, and V ∈ Rn×r)
and ||·||2 is the spectral norm. There is a direct way to grind this out with matrix derivatives.
Instead, we’ll take the scenic route, featuring projections, orthogonal decompositions, and
the usual matrix inner product 〈A,B〉 =

∑
ij AijBij = tr(ATB). The key insight is that, at

each A, the subdifferential of the nuclear norm admits a subspace T upon which it can be
‘decomposed.’

T = {UY T +XV T : X ∈ Rm×r, Y ∈ Rn×r} ∩ {matrices with orthonormal rows}
As we’ll see in recitation, a similar property is shared by the `1 norm. Let ΠT and ΠT ⊥
denote projections upon T and its orthogonal complement, respectively.

6

(a) [0 points] It turns out that ΠT (A) = UV T .

(b) [4 points] Prove that W in (11) is orthogonal to T . Just simplify the definition.

We use the theorem that two matrices A and B are orthogonal iff ∀µ : ‖A + µB‖ ≥ ‖A‖.
Thus we have:

‖UY T +XV T + µW‖2 = ‖UY T +XV T‖2 + 2µ‖UY T ◦W +XV T ◦W‖+ µ2‖W‖2(12)

= ‖UY T +XV T‖2 + 2µ(tr(W TUY T +XV TW T) + µ2‖W‖2(13)

= ‖UY T +XV T‖2 + µ2‖W‖2 (14)

≥ ‖UY T +XV T‖2 (15)

Hence, T ,W are orthogonal.

Using the above results, we can set Z = UV T +W , and rewrite (11) as:

∂||A||∗ = {Z : ΠT (Z) = UV T , ||ΠT ⊥(Z)||2 ≤ 1} (16)

We’re calculating the subdifferential of a norm, not some arbitrary convex function, so let’s
exploit this additional structure. In particular, the dual norm

||Z||∗∗ = max
||A||∗≤1

〈Z,A〉

can be used to rewrite the subdifferential as

∂||A||∗ = {Z : 〈Z,A〉 = ||A||∗, ||Z||∗∗ ≤ 1}

That follows from applying the subdifferential calculus (in particular, the max rule) to the
standard subgradient definition. The trace norm’s dual is the spectral norm; we won’t prove
that. We can complete the proof by showing that

∂||A||∗ = {Z : 〈Z,A〉 = ||A||∗, ||Z||2 ≤ 1}

(c) [4 points] Via just equalities, prove any Z satisfying (16) satisfies 〈Z,A〉 = ||A||∗. Use
previously mentioned techniques.

〈Z,A〉 = 〈UV T +W,UΣV T 〉 (17)

= 〈UV T , UΣV T 〉+ 〈W,UΣV T 〉 (18)

= tr(UV TV ΣUT) (19)

We can apply trace rotation, and furthermore by the definition of SVD, V TV = I and
UTU = I.

7

= tr(V TV ΣUTU) (20)

= tr(Σ) = ‖A‖∗ (21)

(d) [5 points] Via equalities followed by one last inequality, prove any Z satisfying (16)
satisfies ||Z||2 ≤ 1. Use ||A||2 = maxx 6=0 ||Ax||/||x||, where || · || is the `2 norm, and
that ΠT (Z) has orthonormal rows.

We wish to show that ‖Z‖2 < 1. This is equivalent to showing that:

max
x 6=0

‖Zx‖
‖x‖ ≤ 1

or equivalently, for all x 6= 0:

‖Zx‖2 ≤ ‖x‖2

We will bound the LHS.

‖Zx‖2 = xT (UV T +W)T (UV T +W)xT (22)

= xT (V UTUV T)x+ xTUV TWx+ xTWUV Tx+ xTW TWx (23)

= xT (V V T)x+ xTW TWx (24)

Note that we can decompose x into two vectors x′ and x′′ such that x′ + x′′ = x and x′′ is
orthogonal to the rows of V T , and x′ is orthogonal to the rows of W T (since W and V T are
mutually orthogonal). Then the above expression is equal to:

= (x′)T (V V T)(x′) + (x′′)TW TW (x′′) (25)

= ‖V Tx′‖2 + ‖Wx′′‖2 (26)

Note that V is an orthonormal matrix, i.e. a rotation, so multiplying x′ by it does not affect
its norm. Furthermore, because the norm of W is bounded by 1, we have that for any x′,
‖Wx′‖ ≤ ‖x′‖. Hence:

≤ ‖x′‖2 + ‖x′′‖2 (27)

= ‖x‖2 (28)

8

(e) [1 points] Prove (in one sentence) why any Z satisfying 〈Z,A〉 = ||A||∗ and ||Z||2 ≤ 1
satisfies (16).

If Z’s norm is less than 1, its projection onto anything will be less than 1, so ‖ΠT ⊥(Z)‖2 ≤ 1;
furthermore, Z can be decomposed into a part which is orthogonal to A and part that is
not, so if M = UY T + XV T is the non-orthogonal part, 〈Z,A〉 = 〈M + W,A〉 = 〈M,A〉 ⇒
tr(Y TAU) + tr(V TAX) = ‖A‖∗ ⇒ X ∝ U and Y ∝ V .

3 Logistic Regression (Kevin)

In this question, we will derive a fast and numerically stable training procedure for binary
logistic regression based on the iteratively-reweighted least squares algorithm. First, we
define the logistic function as

σ(t) =
1

1 + e−t
. (29)

(a) [3 points] Compute the derivative σ′(t) and write it in terms of σ(t).

Solution:

σ′(t) =
e−t

(1 + e−t)2
(30)

= σ(t) [1− σ(t)] . (31)

We will learn a probabilistic binary classifier from a set of training data. Let X−, X+ ⊆ Rn

denote finite sets of negative and positive examples respectively.

Given an instance, x ∈ Rn, we let the conditional probabilities be

P (Y = −|X = x, θ) = σ(xT θ), and (32)

P (Y = +|X = x, θ) = 1− σ(xT θ). (33)

Here, θ ∈ Rn is a linear function of the features that we will learn by maximizing the
likelihood of our training set. We define the likelihood function as

L(θ|X−,X+) =
∏

x∈X−
P (Y = −|X = x, θ)

∏

x∈X+

P (Y = +|X = x, θ). (34)

As the likelihood function is non-negative and log is strictly increasing, it is equivalent to
maximize the log-likelihood.

(b) [3 points] Write down and simplify the log-likelihood function, f(θ) = logL(θ|X−,X+).
Your final answer should not be in terms of σ.

9

Solution:

f(θ) =
∑

x∈X−
logP (Y = −|X = x, θ) +

∑

x∈X+

logP (Y = +|X = x, θ) (35)

=
∑

x∈X−
log σ(xT θ) +

∑

x∈X+

log
[
1− σ(xT θ)

]
(36)

=
∑

x∈X−
− log

[
1 + exp(−xT θ)

]
+
∑

x∈X+

−xT θ − log
[
1 + exp(−xT θ)

]
(37)

=
∑

x∈X+

−xT θ −
∑

x∈X

log
[
1 + exp(−xT θ)

]
(38)

(c) [4 points] For a fixed x, write ∇ logP (Y = −|X = x, θ) with respect to θ in terms of
σ and x using matrix differentials.

Solution:

∇ logP (Y = −|X = x, θ) = ∇ log σ(xT θ) (39)

=
σ′(xT θ)

σ(xT θ)
xT (40)

=
[
1− σ(xT θ)

]
xT (41)

(d) [4 points] For a fixed x, write ∇2 logP (Y = −|X = x, θ) with respect to θ in terms
of σ and x using matrix differentials. What statistical quantity does this expression
remind you of?

Solution:

∇2 logP (Y = −|X = x, θ) = ∇
[
1− σ(xT θ)

]
xT (42)

= −σ′(xT θ)xxT (43)

= −σ(xT θ)[1− σ(xT θ)]xxT (44)

This is the sample’s covariance weighted by the variance of its label.

(e) [3 points] Write down the gradient, ∇f(θ).

Solution:

∇f(θ) =
∑

x∈X+

−xT −
∑

x∈X

[
1− σ(xT θ)

]
xT (45)

(f) [3 points] Write down the Hessian, ∇2f(θ).

Solution:

∇2f(θ) = −
∑

x∈X

σ(xT θ)[1− σ(xT θ)]xxT (46)

10

When applying Newton’s method to this problem, we compute the search direction, ∆θk, on
the kth iteration by solving the system ∇2f(θk)∆θk = ∇f(θk). Normally we would use a
line search to guarantee convergence with Newton’s method, but let’s hope for the best and
let θk+1 = θk + ∆θk.

Now, we reformulate this Newton step as a weighted least-squares regression:

(g) [7 points] Write θk+1 as the solution to an optimization problem of the form

θk+1 = θk + ∆θk = argmin
γ∈Rn

∑

x∈X

wx [yx − hx(γ)]2 . (47)

That is, what are wx, yx and hx(γ) in terms of x, its label and σ(xT θk).
Hint: wx is in terms of x and σ(xT θk), yx is in terms of x, its label and σ(xT θk), and
hx(γ) is in terms of x. Also, recall that the solution of argminx x

TQx/2−b is x = Q−1b
for symmetric positive definite Q.

(h) [3 points] How does this iteratively-reweighted least squares approach that you just
derived compare with the first-order methods we’ve discussed in class? Under what
circumstances would the Newton method be better or worse? Your answer should be
a few sentences and should describe a situation where you’d prefer using Newton’s
method and a situation where you’d prefer using a first-order method.

wx = σ(xT θk)[1− σ(xT θk)]/2 (48)

yx =

{
xT θk − 1/

[
1− σ(xT θk)

]
if x ∈ X+

xT θk + 1/σ(xT θk) otherwise
(49)

fx(γ) = xTγ (50)

Newton’s method is better with high accuracy requirements and a moderate number of
variables; first-order methods are better when the number of variables is high enough to
make solving the least-squares problem expensive, although they typically can’t achieve the
same solution accuracy.

There are two major advantages to using iteratively-reweighted least squares to solve for the
Newton step when learning a logistic regression classifier. First, we can employ specialized
solvers that have been optimized for weighted least squares. Second, this approach can be
more numerically stable. In particular, instead of manipulating XWXT , we can instead
factorize XW 1/2 to compute the next iterate more accurately.

Additionally, by understanding that the logistic regression classifier is the solution to a
particular weighted least squares problem, we gain insight into its statistical properties. For
example, we can derive confidence intervals for and analyze the correlations between the
classifier’s parameters.

11

4 Node by node revisited (Wooyoung)

In Homework 1, given a small number of p-dimensional iid samples T = {X(1), . . . , X(m)},
we estimated the inverse of the covariance matrix Σ−1 that characterized the multivariate
Gaussian distributions from which the samples were drawn. Although the sparsity of the
inverse of the covariance was desired, we did not explicitly introduce the sparsity constraint
to the objective function since we only knew how to deal with convex and differentiable
functions. Now that we know how to deal with convex but non-differentiable objective
functions, let’s minimize the new objective function with the L1 norm term :

L(Θ) = −`T (Θ) + λ||Θ||1 = −log det(Θ) + tr(SΘ) + λ||P ∗Θ||1

where Θ is a symmetric positive semidefinite p × p matrix meant to estimate Σ−1, λ is a
non-negative scalar, the empirical covariance matrix S = 1

m−1
∑m

i=1(Xi − X̄)(Xi − X̄)T

and the sample mean X̄ = 1
m

∑m
i=1Xi. ∗ refers to element-wise matrix multiplication

and P is a square matrix of size p × p with all all off-diagonal elements set to one and
diagonal set to zero. Note that in this way, we only penalize the off-diagonal elements
of Θ. In this problem, we are going to implement the iterative soft-thresholding algo-
rithm and the fast iterative soft-thresholding algorithm. Please download the data files
from http://www.cs.cmu.edu/~ggordon/10725-F12/hws/hw2/. In addition to the print-
out, please submit your code by
1. zipping the three files for (a), (b) and (c) into one zip file (please name it youAn-
drewID hw2.zip)
2. send the zip file to submission10725f12@gmail.com before the due date. Please include in
the subject line of your email, your name, AndrewID and the assignment number.

(a) [6 pts] Implement the soft-thresholding operator in Matlab or R. Please name the func-
tion softthresholder.m or softthresholder.r.

1 function outX = s o f t t h r e s h o l d e r (X, th r e sho ld)
2

3 % X : nxn matrix
4 % th r e s h o l d : nxn matrix , each (i , j) en try corresponds to the

t h r e s o l d f o r
5 % each (i , j) en try in X. t h i s framework i s u s e f u l when

you want
6 % to p ena l i z e d i f f e r e n t e n t r i e s wi th d i f f e r e n t degrees

. Note
7 % tha t you can avoid us ing for−l oop s .
8

9 outX = zeros (s ize (X)) ;
10 outX (X>th r e sho ld) = X(X>th r e sho ld)−th r e sho ld (X>th r e sho ld) ;

12

http://www.cs.cmu.edu/~ggordon/10725-F12/hws/hw2/

11 outX (X<−th r e sho ld) = X(X<−th r e sho ld) + thre sho ld (X<−th r e sho ld) ;

(b) [6 pts] Implement the iterative soft-thresholding algorithm in Matlab or R. Please name
the function ista.m or ista.r.

1 function [Theta h i s t o r y] = i s t a (in i tTheta , numiter , t , thresholdmat
, Stra in , S t e s t)

2

3 % ini tX : i n i t i a l po in t (nxn matrix)
4 % numiter : number o f t o t a l i t e r a t i o n s
5 % t : s t ep s i z e
6 % thresho ldmat : nxn matrix : lambda ∗(ones (n)−eye (n))
7

8 h i s t o r y . o b j t r a i n = zeros (1 , numiter) ;
9 h i s t o r y . o b j t r a i n = zeros (1 , numiter) ;

10 Theta = in i tTheta ;
11

12 for i t e r = 1 : numiter
13 Theta = s o f t t h r e s h o l d e r (Theta−t∗(−inv (Theta)+St ra in) , t∗

thresholdmat) ;
14 h i s t o r y . o b j t r a i n (i t e r) = −l ogde t (Theta)+trace (S t ra in ∗Theta)+

sum(sum(abs (thresholdmat .∗Theta))) ;
15 h i s t o r y . o b j t e s t (i t e r) = −l ogde t (Theta)+trace (S t e s t ∗Theta)+sum

(sum(abs (thresholdmat .∗Theta))) ;
16 end

(c) [6 pts] Implement the fast iterative soft-thresholding algorithm in Matlab or R. Please
name the function fista.m or fista.r.

1 function [Theta h i s t o r y] = f i s t a (in i tTheta , numiter , t ,
thresholdmat , Stra in , S t e s t)

2

3 % in i tThe ta : i n i t i a l po in t (nxn matrix)
4 % numiter : number o f t o t a l i t e r a t i o n s
5 % t : s t ep s i z e
6 % thresho ldmat : nxn matrix : lambda ∗(ones (n)−eye (n))
7

8 h i s t o r y . o b j t r a i n = zeros (1 , numiter) ;
9 h i s t o r y . o b j t e s t = zeros (1 , numiter) ;

10

11 Theta old1 = in i tTheta ;
12 Theta old2 = Theta old1 ;
13

14 for i t e r = 1 : numiter

13

15 Theta = Theta old1 + (i t e r −2)/(i t e r +1)∗(Theta old1−Theta old2)
;

16 Theta = s o f t t h r e s h o l d e r (Theta−t∗(−inv (Theta)+St ra in) , t∗
thresholdmat) ;

17 h i s t o r y . o b j t r a i n (i t e r) = −l ogde t (Theta)+trace (S t ra in ∗Theta)+
sum(sum(abs (thresholdmat .∗Theta))) ;% note t ha t 1−norm here
i s the sum of a bo l u t e va l u e s

18 h i s t o r y . o b j t e s t (i t e r) = −l ogde t (Theta)+trace (S t e s t ∗Theta)+sum
(sum(abs (thresholdmat .∗Theta))) ;% note t ha t 1−norm here i s
the sum of a bo l u t e va l u e s

19 Theta old2 = Theta old1 ;
20 Theta old1 = Theta ;
21 end

Run ISTA and FISTA for K = 5000 iterations with 30 values of logarithmically spaced
λs between 0.001 and 0.3 (e.g., use logspace(log10(0.001),log10(0.30),30)), starting from the

identity matrix. We will refer to the estimate of k th iteration with λ as Θ
(k)
λ . Use a fixed step

size t = 0.001. Also, run the steepest descent algorithm with L1-norm (you can either use
your own implementation for Homework 1 or the solution) for K = 5000 iterations starting
from the same initial point and the step size.

(d) [4 pts] Plot the log of objective function values minus constant, log(L(Θk
λ) − c) for the

train set each iteration k = 1, · · · , K for both ISTA and FISTA when λ = 0.0106. Set
the constant c = min(LFISTA(ΘK

λ), LISTA(ΘK
λ))−10−6 (where LFISTA(ΘK

λ) refers to the
objective function value of Θ estimated with FISTA at K th iteration with λ.

(e) [4 pts] For ISTA and FISTA each, plot the coefficient profiles of the off-diagonal elements

of Θ
(k=5000)
λ (as Θk=5000 is a symmetric matrix, you can plot either the elements of the

upper or the lower triangular matrix) as a function of ||P ∗ Θ
(k=5000)
λ ||1 for all values of

λ.

(f) [4 pts] For the steepest descent gradient method with L1-norm, plot the off-diagonal
elements of Θ(k) as in (e) as a function of ||P ∗ Θ(k)||1 for k = 1, · · · , K. Compare with
the results in (e).

14

0 1000 2000 3000 4000 5000
−6

−5

−4

−3

−2

−1

0

1

2

Iteration

lo
g(

ob
j−

c)

FISTA
ISTA

Figure 2: Figure for 4(d)

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

||P*O||1

O
i,j

Figure 3: Figure for 4(e). ISTA

15

0 1 2 3 4 5 6 7
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

||P*O||1

O
i,j

Figure 4: Figure for 4(e). FISTA

0 1 2 3 4 5 6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

||P*O||1

O
i,j

Figure 5: Figure for 4(f).

16

	No Regrets About Taking Optimization? (Aaditya)
	A Game Against An Adversary [2.5 points]
	Projected Subgradient Descent To The Rescue! [15 points]
	Stochastic First Order Oracle Model [12.5 points]

	Subgradient Smörgåsbord (Shiva)
	Normal-er
	Decomposable norms

	Logistic Regression (Kevin)
	Node by node revisited (Wooyoung)

