
10725/36725 Optimization
Homework 2 Solutions

1 Convexity (Kevin)

1.1 Sets

Let A ⊆ Rn be a closed set with non-empty interior that has a supporting hyperplane at
every point on its boundary.

(a) Show that A is convex.

Solution: Assume that A is closed with non-empty interior and a supporting hyperplane
at every boundary point, but it is not convex. That is, there exists a, b ∈ A and α ∈ (0, 1)
such that t = αa+ (1− α)b /∈ A.

Let c ∈ A◦ be an interior point such that a, b and c are not co-linear. Such a point exists
since there is an open ball contained in the interior. Let d = βt + (1 − β)c ∈ ∂A, for some
β ∈ (0, 1), be first point on the boundary when leaving c on the line towards t.

 







To show a contradiction, it suffices to show that any hyperplane through d that includes a
and c (not strictly as it is in the interior) cannot also include b. This follows as the set of
supporting hyperplanes is a subset of these. That is, for any w such that w · a ≤ w · d and
w · c < w · d, we aim to show w · b > w · d.
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b =
1

1− α

[
d− (1− β)c

β
− αa

]
, (1)

w · b =
w · d

β(1− α)
− (1− β)w · c

β(1− α)
− αw · a

1− α
(2)

≥ (1− βα)w · d
β(1− α)

− (1− β)w · c
β(1− α)

(3)

>
(β − βα)w · d
β(1− α)

= w · d. (4)

Let X, Y ⊆ Rn be disjoint convex sets, let {x | aTx+ b = 0} be a separating hyperplane and
let f(x) = Cx+ d be a function, where C ∈ Rm×n, d ∈ Rm.

(b) [3 pts] Given that the sets f(X) and f(Y ) are disjoint, find a hyperplane, {y | αTy+β =
0}, that separates f(X) and f(Y ).

Here, f(A) = {y | y = f(x), x ∈ A}.

Solution: The general idea behind the solution is that, translation, rotation and scaling
are straightforward to handle, and projection is the only hard case. When moving to a
higher dimension, we can simply ignore the added dimensions. When projecting into a lower
dimension, we can ignore the lost dimensions as we know the resulting sets are disjoint.
Using the psuedoinverse does this.

Choose αT = aTC†, β = aTC†d− b, where C† is the psuedoinverse of C.

Assume ∀x ∈ X, aTx+ b ≤ 0. Let x′ = Cx+ d, then

αTx′ = aTC†Cx+ aTC†d (5)

= aT Ix+ aTC†d (6)

≤ −b+ aTC†d = −β (7)

Here, we used C†C = I, which is not true if we lose dimensions. Sometimes α, β is still a
separator even when this does not hold, but in such cases the sets may flip sides requiring
a point from each set to orient the plane. If the hyperplane only discriminates along the
dimensions that are projected out, though, then α is 0, and hence it is does not define a
hyperplane. Sorry about that.

1.2 Voronoi Decomposition

Let a, b ∈ Rn such that a 6= b.

(a) Show that the set {x | ‖x− a‖2 ≤ ‖x− b‖2} is a halfspace.
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Solution:

‖x− a‖2 ≤ ‖x− b‖2 (8)

⇔ ‖x− a‖2
2 ≤ ‖x− b‖2

2 (9)

⇔ xTx− 2aTx+ aTa ≤ xTx− 2bTx+ bT b (10)

⇔ 2(b− a)Tx ≤ bT b− aTa (11)

Let x1, . . . , xk ∈ Rn and let Vi = {x | ‖xk − x‖2 ≤ ‖xi − x‖2, i 6= k}.

(b) Show that V0 is a polyhedron. That is, V0 = {x | A0x ≤ b0}.

Solution: Let the ith row of A0 be 2(xi − x0) and the ith element of b0 be xTk xk − xT0 x0.
Equivalence follows from part (a).

Let Pi = {x | Aix ≤ bi} be disjoint polyhedra that cover Rn.

(c) Does there exist points x1, . . . , xk ∈ Rn such that Vi = Pi for i = 1, . . . , k? If so, provide
the points, otherwise construct a counterexample.

Solution: False, counterexample is V0 = {(x, y) | x ≤ 0, y ≥ 0}, V1 = {(x, y) | x ≤ 0, y ≤
0}, V2 = {(x, y) | x ≥ 0}.

1.3 Farkas’ Lemma

Let A ∈ Rm×n, b ∈ Rm such that there is some x where Ax = b.

(a) Show that either there exists x > 0 where Ax = b, or there exists λ such that ATλ ≥ 0,
ATλ 6= 0 and bTλ ≤ 0.

Hint: First show that cTx = d for all x such that Ax = b if and only if there exists λ such
that c = ATλ, d = bTλ.

Solution: Consider the sets {x | x > 0} and {x | Ax = b}. Since the first is open, by the
separating hyperplane partial converse, we know that either the sets intersect, or there is a
separating hyperplane, but not both.

If the sets are disjoint, there exists w 6= 0 such that

wTx ≥ β if x > 0, and (12)

wTx ≤ β if Ax = b. (13)

Let P be a basis for the null space of A. That is, APy = 0 for all y and thus x = x0 + Py
is a solution for Ax = b for any Ax0 = b. We have

wTx = wT (x0 + Py) = wTx0 + wTPy. (14)
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Claim, wTPy = 0 for all y. Assume there is some wTPy∗ = z∗ 6= 0, and choose ŷ =
(β + ε− wTx0)y∗/z∗. Then, x̂ = x0 + P ŷ satisfies Ax̂ = b, but wT x̂ > β.

We are done once we prove the hint. First, given λ such that c = ATλ, d = bTλ, then for
any Ax = b, we have

cTx = λTAx = λT b = d. (15)

Now, the harder direction. Given that cTx = d for all x such that Ax = b, again write
x = x0 + Py. Then,

d =cTx = cT (x0 + Py) = cTx0 + cTPy. (16)

By the above argument, cTPy = 0, which is true only when P T c = 0. Hence, c is orthogonal
to the null space of A. Therefore, by the rank-nullity theorem, it is in the row space of A.
That is, there exists a lambda such that ATλ = c.

1.4 Functions

(a) Show that the function f(x) = (
∑n

i=1 x
p
i )

1/p
is concave on Rn

++ for all p ∈ (0, 1).

Hint: consider the log-sum-exp and geometric mean functions in Boyd.

Solution: We will show that the Hessian is negative semi-definite.

∂f(x)

∂xi
=

(
n∑
k=1

xpk

)1−p/p

xp−1
i (17)

∂f(x)

∂xixj
= (1− p)

(
n∑
k=1

xpk

)1−2p/p

xp−1
i xp−1

j (18)

∂f(x)

∂x2
i

= (1− p)

(
n∑
k=1

xpk

)1−2p/p [
xp−1
i xp−1

i − xp−2
i

n∑
k=1

xpk

]
(19)

For any v, we need to show vT∇2f(x)v ≤ 0, Choosing

K = (1− p)

(
n∑
k=1

xpk

)1−2p/p

> 0 (20)

vT∇2f(x)v = K
n∑
i=1

n∑
j=1

vivjx
p−1
i xp−1

i − v2
i x

p−2
i xpj (21)

= K
n∑
i=1

n∑
j=1

aiajbibj − a2
i b

2
j , for ai = vix

p/2−1
i , bi = x

p/2
i (22)

≤ 0, by applying Cauchy-Schwarz. (23)
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Let G = (V,E, c, s, t) be an undirected graph with edge capacities c(u, v) ≥ 0, source vertex
s and sink vertex t. We say a vector y ∈ RE is a valid s-t-flow if:

• y(u, v) ≤ c(u, v),∀(u, v) ∈ E, (Capacity)

• y(u, v) = −y(v, u),∀(u, v) ∈ E, and (Skew Symmetry)

•
∑

v∈V y(u, v) = 0,∀u ∈ V \ {s, t}. (Flow Conservation)

Let f(x) = miny ‖x− y‖, subject to: y is a valid s-t-flow.

(b) Show that f(x) is convex.

Solution: ‖x − y‖ is convex in x and y and is bounded below by 0. The set of valid flows
is closed and convex, as it is the intersection of linear constraints; and is non-empty, as the
zero flow is valid. Therefore, f(x) is convex by BV Section 3.2.5, p. 87–88.

2 The meanest nice functions

Solution courtesy of Ahmed Hefny

(a) Consider the function g(y) = f(y − y(0)). This is the function f translated by y(0).
Therefore ∇g(y) = ∇f(y − y(0)). Also, arg miny g(y) = arg minx f(x) + y0. Let f
be a function such that when the algorithm starts at x(0) = 0, the two conditions
in question are satisfied. We will show that g satisfies the same condition when the
algorithm starts at y(0). First, we show by induction that y(k) = x(k) + y(0): We
already have y(0) = x(0) + y(0) as a base case. And y(k) = y(k−1) + w(k)∇g(y(k−1)) =
y(0) + x(k−1) + w(k)∇f(x(k−1)) = y(0) + x(k). Therefore,

y(K) − ȳ = x(K) − x̄

and
y(0) − ȳ = −x̄

Therefore

‖x(K) − x̄‖2 ≥ 1

32
‖ − x̄‖2 → ‖y(K) − ȳ‖2 ≥ 1

32
‖y(0) − ȳ‖2 (24)

which shows that g satisfies the first condition.

Also,

f(x(K))− f̄ = g(x(K) + y(0))− g(x̄+ y(0)) = g(y(K)) + g(ȳ) = g(y(K)) + ḡ

Therefore

f(x(K))− f̄ ≥ 3L‖ − x̄‖2

32(K + 1)2
→ g(y(K))− ḡ ≥ 3L‖y(0) − ȳ‖2

32(K + 1)2
(25)

which shows that g satisfies the second condition.
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(b) Assume k ≥ 2
∂ζ(k)

∂x1
(x) = L

4

[
1
2

(2x1 + 2(x1 − x2))− 1
]

= L
4

[(2x1 − x2)− 1]
(26)

∂ζ(k)

∂xk
(x) = L

4

[
1
2

(−2(xk−1 − xk) + 2xk)
]

= L
4

(2xk − xk−1)
(27)

∂ζ(k)

∂xi
(x) = L

4

[
1
2

(−2(xi−1 − xi) + 2(xi − xi+1))
]

= L
4

(xi−1 + 2xi − xi+1) ,
(28)

for 1 < i < k

∂ζ(k)

∂xi
(x) = 0 (29)

for i > k. The second derivatives can now be computed:

∂2ζ(k)

∂xi∂xj
(x) =


0 i > k or j > k
L
2

i = j ≤ k
−L

4
|i− j| = 1 and i, j ≤ k

0 otherwise

(30)

What remains is to show that this pattern remains for k = 1.

∂ζ(1)

∂xi
(x) = 0 (31)

, for i > 1

∂ζ(k)

∂x1
(x) = L

4

[
1
2

(2x1 + 0 + 2x1)− 1
]

= L
4

(2x1 − 1)
(32)

∂2ζ(k)

∂x21
(x) = L

2 (33)

So in general ∇2ζ(k)(x) = L
4
A(k) where A(k) is an n × n matrix with the following

properties:

• A(k)
ii = 2 if 1 ≤ i ≤ k

• A(k)
ij = −1 if |i− j| = 1 and i, j ≤ k

• A(k)
ij = 0 otherwise
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(c) Since ∇2ζ(k)(x) = L
4
A(k) and since A(k) is a symmetric matrix then,

∇ζ(k)(x) =
L

4

(
A(k)x+ c

)
(34)

to obtain c we set x to 0 and based on the derivatives obtained in part b we find that
c = ∇ζ(k)(0) = −e1, where e1 is an n-dimensional vector having the first component
set to 1 and the others set 0. Therefore

∇ζ(k)(x) =
L

4

(
A(k)x− e1

)
(35)

To compute x̄
(k)
j , we notice that setting the gradient to 0 gives Akx̄(k) − e1 = 0, which

translates into the following recurrence relation

x̄
(k)
j = 2x̄

(k)
j−1 − x̄

(k)
j−2 (36)

for 2 ≤ j ≤ k, where the dummy variable x̄
(k)
0 is equal to 1 as implied by first row

of Akx̄(k). This is a homogeneous recurrence relation with characteristic equation
(s− 1)2 = 0 and thus its solution is of the form

x̄
(k)
j = α + βj (0 ≤ j ≤ k) (37)

Since x̄
(k)
0 = 1 then α = 1. To find β we use the last non-zero row of Ak, which gives

the equation

2x̄
(k)
k − x̄

(k)
k−1 = 0 (38)

2βk + 2− β(k − 1)− 1 = 0 (39)

β =
−1

k + 1
(40)

Therefore

x̄
(k)
j =

k + 1− i
k + 1

(0 ≤ j ≤ k) (41)

For j > k, ζ(k) does not depend on xj and thus any value is a minimizer (the partial
derivative is always 0). The minimum value of ζ is then

ζ̄(k) = L
4

[
1

2(k+1)2

(
k2 +

∑k−1
i=1 ((k + 1− i)− (k − i))2 + 1

)
− k

k+1

]
= L

4

[
1

2(k+1)2
(k2 + k)− k

k+1

]
= −L

8

[
k
k+1

] (42)

7



(d)

∇ζ(k)(x)−∇ζ(k)(y) = L
4
A(k)(x− y) = L

4
(2(x− y)∗ − (x− y)− − (x− y)+), (43)

where x∗i = xi if i ≤ k and 0 otherwise, x+i = xi+1 if i < k and 0 otherwise and
similarly x−i = xi−1 if 1 < i ≤ k and 0 otherwise. It is obvious that ‖(x−y)∗‖ ≤ ‖x−y‖,
‖(x − y)−‖ ≤ ‖x − y‖ and ‖(x − y)+‖ ≤ ‖x − y‖, since the three of them share some
components of x− y while setting the other components to 0. Therefore, by triangular
inequality

‖∇ζ(k)(x)−∇ζ(k)(y)‖ ≤ L

4
(2‖x− y‖+ ‖x− y‖+ ‖x− y‖) = L‖x− y‖ (44)

(e) Base case (k = 1, x(k−1) = 0):

∇f(x(k−1)) = A(2K+1)x(k−1) − e1 = −e1, (45)

which contains only 1 non-zero element.

Induction Step (1 < k ≤ K):

∇f(x(k−1)) = A(2K+1)x(k−1) − e1 (46)

Considering the ith component (i > k + 1):

∂ζ(k)

∂xi
(x) = L

4
(xi−1 + 2xi − xi+1) , (47)

By induction hypothesis and the fact the algorithm is gradient summing, xi−1 = xi =
xi+1 = 0 for i > k + 1

(f) Knowing that x
(k)
i = 0 for i > k, it can be shown that g(x(k))− f(x(k)) = 0

g(x(k))− f(x(k)) = ζ(K)(x(k))− ζ(2K + 1)(x(k))

= L
4

[
1
2

(
x2
k − (xk − xk+1)2 −

∑2k
i=k+1(xi − xi+1)2 − x2

2k+1

)]
= 0

(48)

(g) Since, by condition (1) and gradient summing property, x
(K)
j = 0 for all j > K. Then,

‖x(K) − x̄‖2 ≥
∑2K+1

j=K+1 x̄
2
j = 1

(2K+2)2

∑2K+1
j=K+1(2K + 2− j)2

= 1
(2K+2)2

(∑2K+1
j=K+1(2K + 2− j)2

)
= 1

(2K+2)2

∑K+1
i=1 i2 = 1

(2K+2)2
. (K+1)(K+2)(2K+3)

6

(49)
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We also have

‖x(0) − x̄‖2 = ‖x̄‖ ≥
∑2K+1

j=0 x̄2
j = 1

(2K+2)2

∑2K+1
j=0 (2K + 2− j)2

= 1
(2K+2)2

(∑2K+1
i=1 i2

)
= 1

(2K+2)2
(2K+1)(2K+2)(4K+3)

6

(50)

Therefore,
‖x(K) − x̄‖2

‖x(0) − x̄‖2
≥ (K + 1)(K + 2)(2K + 3)

(2K + 1)(2K + 2)(4K + 3)
≥ 1

8
>

1

32
, (51)

since it is decreasing in K (the denominator increases with a higher rate) and thus its
lower bound is when K →∞ which is 1

8
.

(h) Knowing that g = ζ(K) and f = ζ(2K)

f(x(K))− f̄ ≥ ḡ − f̄ = −L
8
( K
K+1

) + L
8
(2K+1

2K+2
) = L

16(K+1)

= L(K+1)
16(K+1)2

≥ 3L‖x(0)−x̄(2K+1)‖
32(K+1)2

�
(52)

3 Alternative formulations (Wooyoung)

Solution courtesy of Xuezhi Wang

As discussed in class, there are often more than one way to formulate an optimization
problem. In this problem, we will go through examples in which you can set up your
optimization in a few alternative ways.

3.1 Rank 1 approximation of matrices

In this problem, we will set up minimizing the squared error between a given m× n matrix
A and a rank 1 matrix X.

minimizerank(X)=1||A−X||2

(a) [1.5 pts] How can you reformulate the objective function and the constraint of the above
optimization by writing the space of rank 1 matrices as outer products of two vectors?

Solution:
minimize ‖A−X‖2, s.t.X = UV T , U ∈ Rm, V ∈ Rn
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(b) [1.5 pts] One possible disadvantage of writing the space of rank 1 matrices as outer
products of two vectors is degeneracy of the solutions; if a pair of vectors x and y are

solutions, for any non-zero scalar a, ax and
1

a
y would also be the solutions. How would

you reformulate your objective functions and constraints to avoid this degeneracy?

Solution:

minimize ‖A− λUV T‖2,

s.t. U ∈ Rm, ‖U‖ = 1,

V ∈ Rn, ‖V ‖ = 1,

λ ≥ 0

(c) [3 pts] We started with one optimization variable X, but now we have more than one.
How can you reduce the number of optimization variables in (b)? Show your work. Hint:
try to show that one of the optimization variables is determined when others are fixed.

Solution:
‖A− λUV T‖2 = tr((A− λUV T )T (A− λUV T ))

= tr(ATA− λV UTA− λATUV T + λ2)
= tr(ATA+ λ2 − 2λV UTA)

since tr(ATA) is fixed, if U and V are fixed, the above formula will achieve the minimum if
we take λ = tr(V UTA). Hence the original problem reduces to:

min tr(ATA)− (tr(V UTA))2 s.t. ‖U‖ = 1, ‖V ‖ = 1

(d) [2 pts] Reformulate the optimization problem in (c) into an equivalent minimization
problem with a bi-linear objective function.

Solution: Since tr(ATA) is fixed, we just need to minimize −(tr(V UTA))2. And since
λ = tr(V UTA) ≥ 0, we just need to minimize −(tr(V UTA)), which can be written in the
following bilinear form:

min
‖U‖=1,‖V ‖=1

(−
m∑
i=1

n∑
j=1

VjUiaij)

3.2 Partial minimization of the lasso problem

In classical setting of the lasso problem, the sparsity of solutions are enforced by L1-norm
of the optimization variables (y ∈ Rd, A ∈ Rd×n, x ∈ Rn, xi: i th element of x).

min||y − Ax||2 + λ||x||1

In this problem, we derive the partial minimization of the lasso problem.
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(a) [2 pts] How would you reformulate the optimization if we only care about the sparsity
of the first k elements of x: x1, x2, · · · , xk.

Solution:

min ‖y − Ax‖2
2 + λ

k∑
i=1

|xi|

(b) [3 pts] Show how you can eliminate xk+1, xk+2, · · · , xn from the objective function.

Solution: We can reformulate the equation Ax = y by[
A1 A2

] [ x1

x2

]
= y

where x1 represents the first k elements in x, and x2 represents the rest. So minimizing
||y − Ax|| is equivalent to minimizing ||y − A1x1 − A2x2||. Since we don’t care about the
sparsity of x2, we can fix x1 and get the least squared error solution of x2:

min ||y − A1x1 − A2x2|| ⇒ f = min (y − A1x1 − A2x2)T (y − A1x1 − A2x2)

By setting the derivative of f with respect to x2 to zero we can get:

x2 = (AT2A2)−1AT2 (y − A1x1)

Hence we can eliminate xk+1, xk+2, · · · , xn by reformulating the problem as:

min ‖(I − A2(AT2A2)−1AT2 )(y − A1x1)‖2
2 + λ||x1||1

where x1 represents [x1 x2 · · · xk].

3.3 Equality constraint

Consider an convex optimization problem with equality constraint,

minimize f(x)

subject to Ax = b

Assume that the feasible set is non-empty.

(a) [3 pts]Can you remove the equality constraint by reformulating x as a linear function of
z. What conditions does the parameters of your linear function need to satisfy?

Solution:
minimize f(Fz + x0)

where x0 is a paricular solution to Ax = b, and F lies in the range of the nullspace of A.
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3.4 Building a box-shape structure

You are asked to build a box-shape structure. The area of the wall paper provided to you
for the job is Awall, and the area of the floor cannot exceed Afloor. Your picky boss even
wants to control the ratio of height (h) to width (w) and also the ratio of width (w) to depth
(d) of the wall structure; the ratio between h and w should be in the range of [α, β], the
ratio between w and d in [γ,δ]. Your mission is to maximize the volume of the box-shape
structure while satisfying all the constraints.

(a) [2 pts] Formulate your optimization problem as a maximization problem. Show your
objective functions and constraints.

Solution:

max hwd

subject to 2hw + 2hd ≤ Awall

wd ≤ Afloor

α ≤ h/w ≤ β

γ ≤ w/d ≤ δ

(b) [2 pts] A geometric program is an optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, · · · ,m
gi(x) = 1, i = 1, · · · , p

where gi(x) = cix
a1
1 x

a2
2 · · ·xann , (ci > 0, aj ∈ R) and fi(x) =

∑K
k=1 ci,kx

a1k
1 xa22 · · ·xank

n , (ci,k >
0, aik ∈ R). Recently, efficient and robust algorithms have been developed to solve even
large-scale geometric programs. Convert the optimization problem in (a) into a geomet-
ric programming problem.

Solution:

min 1/hwd

subject to 2h(w + d)/Awall ≤ 1

wd/Afloor ≤ 1

αwh−1 ≤ 1

β−1hw−1 ≤ 1

δ−1wd−1 ≤ 1

γdw−1 ≤ 1
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