10725/36725 Optimization
Homework 1

Due September 20, 2012 at beginning of class

Instructions: There are four questions in this assignment. Please submit your homework
as 4 separate sets of pages with your name and userid on each set. For the last question
which involves coding, please print out your code and graphs and attach them to the written
part of your homework. Refer to the course webpage for policies regarding collaboration,
due dates, and extensions.

1 Convexity (Kevin)

1.1 Sets

Let A C R"™ be a closed set with non-empty interior that has a supporting hyperplane at
every point on its boundary.

(a) [4 pts] Show that A is convex.

Let X,Y C R" be disjoint convex sets, let {x | a’x +b = 0} be a separating hyperplane and
let f(z) = Cz + d be a function, where C' € R™*" d € R™.

(b) [3 pts] Given that the sets f(X) and f(Y) are disjoint, find a hyperplane, {y | aTy+3 =
0}, that separates f(X) and f(Y).

Here, f(A) ={y |y = f(z),z € A}.

1.2 Voronoi Decomposition

Let a,b € R™ such that a # b.
(a) [2 pts] Show that the set {z | ||x — a||2 < ||z — b||2} is a halfspace.



Let z1,...,2p € R" and let V; = {z | ||z; — z|]2 < ||z; — ]2, j # i}
(b) [2 pts] Show that V; is a polyhedron. That is, V; = {x | Ajz < b, }.

Let P, = {x | A;x < b;} be disjoint polyhedra that cover R™.

(c) [3 pts] Does there exist points x1,...,z; € R" such that V; = P; for i = 1,...,k? If so,
provide the points, otherwise construct a counterexample.

1.3 Farkas’ Lemma

Let A € R™*™ b € R™ such that there is some x where Az = b.

(a) [6 pts] Show that either there exists x > 0 where Az = b, or there exists A such that
ATXN >0, ATX # 0 and bT') < 0.

Hint: First show that ¢’z = d for all x such that Az = b if and only if there exists A such
that ¢ = AT\, d = bT\.

1.4 Functions

=11

(a) [3 pts] Show that the function f(x) = (3 2")!? is concave on R% . for all p € (0,1).

Hint: consider the log-sum-exp and geometric mean functions in Boyd.

Let G = (V, E, ¢, s,t) be an undirected graph with edge capacities c(u,v) > 0, source vertex
s and sink vertex t. We say a vector y € R¥ is a valid s-t-flow if:

o y(u,v) < c(u,v),V(u,v) € E, (Capacity)

o y(u,v) = —y(v,u),¥(u,v) € E, and (Skew Symmetry)

o > v y(u,v) =0,Yu € V\ {s,t}. (Flow Conservation)
Let f(x) = min, ||z — y||, subject to: y is a valid s-t-flow.

(b) [2 pts] Show that f(x) is convex.

2 The meanest nice functions (Shiva)

In this question, as in class, we consider optimizing ‘nice’ functions:

e convex on R",



e Lipschitz-continuous derivative: for some L > 0, ||V f(z) — V f(y)|| < L||z — y|| for all
x, .

We also restrict attention to optimization algorithms that are:

e first-order: the only information the algorithm gets about the function are gradients
Vf(z®). (As in class, xgk) refers to the i’th component of z(*) the n-dimensional
vector chosen by the algorithm on the k’th iteration.)

e gradient-summing: #* is a linear combination of #(*) and V f (2(?)) through V f (z*~1)).
In this question, we will prove the lower bound that was (or soon will be) stated in class.

Run any first-order, gradient summing optimization algorithm starting from any point 2(°) €
R™ for K iterations, where 1 < K < %(n — 1), yielding the last iterate 2. There is a nice
function f such that

12 — 22 > ][ —
_ 3Lz — z||?

(K _ > 22 - 2
f@™) = f= 32(K + 1)2

where the minimizer and minimal cost are T = argmin, f(z) and f = f(Z), respectively.
Thus, even upon nice functions, the convergence of rate of any such algorithm is Q(1/K?).

Let’s prove this lower bound together. First, assume that z(®) = 0.

(a) [3 pts] Justify this assumption. That is, if the theorem holds for 2(® = 0, prove it still
holds when z(© = 0.

This makes ||2(°) —zZ|| = ||Z|| which will come in handy later. It also makes the initial solution
‘uninitialized’” in every dimension. Since we required K < %(n — 1), you might have guessed
there are too many dimensions for any algorithm to handle within K iterations. Indeed,
we will set up f so that, after k iterations, z*) is non-zero only in its first k coordinates.
Since the algorithm is gradient-summing, we just need the gradients to satisfy the same
condition:

V1<k <K Vfa®)=( (1)

k numbers n—k zeroes

The lower bound on ||z) — z||? will follow from a lower bound on the last n — K coordinates
of Z. (It would be convenient to have a formula for each coordinate of z.) The lower bound
on f(z%)) — f involves a bit more thought. Imagine we have a function ¢ which agrees with
f at the algorithm’s queries:

V1< k<K g(a®) = f(2W) (2)

By definition, § = argmin,g(z) < g(z®). By the previous two facts, fzB))y - f>g—f.
(Now it would be convenient to have formulae for g and f.)
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Rather than appealing to information theory, communication complexity, the small-set ex-
pansion conjecture, or the like, we will take a direct approach: we will explicitly construct
f and ¢ which satisfy and , and yield the aforementioned convenient formulae. Both
functions come from the same mean family: let f = (?5*1 and g = (), where

k L |1 2 — 2 2
C( )(.f) = Z 5 951+Z(37i—$i+1) +$k — X
=1

(The ugliness of the RHS is balanced by the typographic dubiousness of the LHS.) Convince
yourself, or just take my word, that these functions are convex and continuously differen-
tiable. Now for some math; include all your work!

(b) [3 pts] Show that V2(™(z) = £A® for some n x n matrix A®). (Write it out for a few
k and figure out what the block structure is.)

(c) [3 pts] Write V(¥ (z) in terms of A®). Determine igk) = argmin_ (¥ (z) (for all coordi-
nates 1 < j < n) and (¥ = ¢®(z®) in terms of k, 5, and L. (Just basic calculus.)

(d) [3 pts] Check that V(® is L-Lipschitz. (The definition of L-Lipschitz immediately
suggests a way to check.)

(e) [3 pts] Show (via induction) that ¢(*) satisfies (1]).
(f) [3 pts] Explain (quickly) why (2)) holds.

(g) [4 pts] Lower bound ||z8) — Z||? as previously described. This involves applying the
previous statements (which you should clearly mark) and some algebra (which you don’t
need to explain.)

(h) [3 pts] Using |[z®|]* < 1(k + 1), lower bound f(z®)) — f. Now help yourself to a tasty
square: 0

3 Alternative formulations (Wooyoung)

As discussed in class, there are often more than one way to formulate an optimization
problem. In this problem, we will go through examples in which you can set up your
optimization in a few alternative ways.



3.1 Rank 1 approximation of matrices

In this problem, we will set up minimizing the squared error between a given m X n matrix
A and a rank 1 matrix X.

minimize ank(xy=1||4 — X| K
(a) [1.5 pts| How can you reformulate the objective function and the constraint of the above

optimization by writing the space of rank 1 matrices as outer products of two vectors?

(b) [1.5 pts] One possible disadvantage of writing the space of rank 1 matrices as outer
products of two vectors is degeneracy of the solutions; if a pair of vectors x and y are

solutions, for any non-zero scalar a, ax and —y would also be the solutions. How would

a
you reformulate your objective functions and constraints to avoid this degeneracy?

(c) [3 pts] We started with one optimization variable X, but now we have more than one.
How can you reduce the number of optimization variables in (b)? Show your work. Hint:
try to show that one of the optimization variables is determined when others are fixed.

(d) [2 pts] Reformulate the optimization problem in (c) into an equivalent minimization
problem with a bi-linear objective function.

3.2 Partial minimization of the lasso problem

In classical setting of the lasso problem, the sparsity of solutions are enforced by L1-norm
of the optimization variables (y € R? A € R¥>" x € R", z;: i th element of x).

min|ly — Ax]|2 + Af[x|}:

In this problem, we derive the partial minimization of the lasso problem.

(a) [2 pts] How would you reformulate the optimization if we only care about the sparsity
of the first k£ elements of x: x1, 9, - , p.

(b) [3 pts] Show how you can eliminate zyi1, Txi2,- - , T, from the objective function.



3.3 Equality constraint

Consider an convex optimization problem with equality constraint,

minimize f(x)
subject to Ax = b

Assume that the feasible set is non-empty.

(a) [3 pts]Can you remove the equality constraint by reformulating = as a linear function of
z. What conditions does the parameters of your linear function need to satisfy?

3.4 Building a box-shape structure

You are asked to build a box-shape structure. The area of the wall paper provided to you
for the job is Aqu, and the area of the floor cannot exceed Ay, Your picky boss even
wants to control the ratio of height (h) to width (w) and also the ratio of width (w) to depth
(d) of the wall structure; the ratio between h and w should be in the range of [, ], the
ratio between w and d in [y,d]. Your mission is to maximize the volume of the box-shape
structure while satisfying all the constraints.

(a) [2 pts] Formulate your optimization problem as a maximization problem. Show your
objective functions and constraints.

(b) [2 pts] A geometric program is an optimization problem of the form

minimize  fo(z)
subject to  fi(z) <1, i=1,---,m
gz(x) = 17 L= 1a P

where g;(x) = ;a7 x5? - - 28, (¢; > 0,a; € R) and fi(x) = 22(21 T et P L (A
0,a; € R). Recently, efficient and robust algorithms have been developed to solve even
large-scale geometric programs. Convert the optimization problem in (a) into a geomet-
ric programming problem.

4 Node by node (Kevin, Shiva)

Recall that a zero-mean, p-dimensional Gaussian distribution is defined by its covariance
matrix . So ‘learning’ such a distribution from some iid samples T = {X®1 ... X}
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amounts to an estimate & of X. Since we have an iid sample from a known family of distri-
butions, a natural approach is to pick the ¥ which maximizes the likelihood of the sample.
However, if m < p, the estimate is not well-defined. Further, even if m < p but m and p are of
comparable size, the maximum likelihood estimate can have high variability, leading to bad
predictive performance. Since p is big, we are inclined to restrict attention to sparse distribu-
tions, for some appropriate notion of sparsity. A tempting, but unrealistic, kind of sparsity
is independence of a large number of the features i and j: 3;; = Exnox)(XiX;) = 0.
A more realistic kind of sparsity is conditional independence of features ¢ and j given the
other features. Since the distribution is Gaussian, this happens when E;jl = 0. Since our
sparsity belief/assumption concerns X!, let’s orient our notation around that, starting with
the log-likelihood function:

(r(0) = log det(©) — tr(SO)

where © is a symmetric positive semidefinite p x p matrix meant to estimate X7!, the
empirical covariance matrix S = 1= 3" (X; — X)(X; — X)T and the sample mean X =
L 3" Xi. The maximizer of ((0) is generally ill-defined and non-sparse. As we saw in
class, one way to obtain sparse solutions is via forward stagewise regression. A bit later, we

saw this algorithm is equivalent to normalized steepest descent with the 1-norm. So let’s use
that for —(7(0).

(a) [10 pts] Derive —V{7(O).

(b) Download the data file from http://www.cs.cmu.edu/~ggordon/10725-F12/hws/hwl/
in either MATLAB or ASCII format. Both have a training set 7" and a test set U.

(c) [8 pts| Implement normalized steepest descent with the 1-norm yourself in Matlab or R.
Use a constant stepsize v = 0.01.

(d) [9 pts] Run your algorithm for K = 5000 iterations upon 7" starting from the identity
matrix. For each k € {1,..., K}, plot the training likelihood ¢7-(©®)) and test likelihood
(y(©®) where O is the kth iterate.

(e) [8 pts] Plot the matrix @) in a way that emphasizes the sparsity pattern (e.g. imagesc).


http://www.cs.cmu.edu/~ggordon/10725-F12/hws/hw1/
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