Boosting

Machine Learning - 10601
Geoff Gordon, Miroslav Dudík
[partly based on slides of Rob Schapire and Carlos Guestrin]
http://www.cs.cmu.edu/~ggordon/10601/
November 9, 2009

Ensembles of trees

BAGGING and RANDOM FORESTS
- learn many **big trees**
- each tree aims to fit the **same target concept**
 - random training sets
 - randomized tree growth
- voting ≈ averaging: **DECREASE in VARIANCE**

BOOSTING
- learn many **small trees** (**weak classifiers**)
- each tree ‘specializes’ to a **different part** of target concept
 - reweight training examples
 - higher weights where still errors
- voting increases expressivity: **DECREASE in BIAS**
Boosting

• **boosting** = general method of converting rough rules of thumb (e.g., decision stumps) into highly accurate prediction rule

• technically:

 – assume given “weak learning algorithm” that can consistently find classifiers (“rules of thumb”) at least slightly better than random, say, accuracy ≥ 55% (in two-class setting)

 – given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99%
A Formal Description of Boosting

- given training set \((x_1, y_1), \ldots, (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) correct label of instance \(x_i \in X\)
- for \(t = 1, \ldots, T\):
 - construct distribution \(D_t\) on \(\{1, \ldots, m\}\)
 - find weak classifier ("rule of thumb")
 \[h_t : X \rightarrow \{-1, +1\} \]
 with small error \(\epsilon_t\) on \(D_t\):
 \[\epsilon_t = \Pr_{i \sim D_t}[h_t(x_i) \neq y_i] \]
- output final classifier \(H_{\text{final}}\)

AdaBoost

[Freund-Schapire 1995]

- constructing \(D_t\):
 - \(D_1(i) = 1/m\)
 - given \(D_t\) and \(h_t\):
 \[D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases} \]
 \[= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i)) \]

 where \(Z_t = \text{normalization constant}\)
 \[\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0 \]

- final classifier:
 - \(H_{\text{final}}(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \)
Toy example

weak classifiers = decision stumps
(vertical or horizontal half-planes)

Round 1

$\varepsilon_1 = 0.30$
$\alpha_1 = 0.42$
Round 2

Round 3
A typical run of AdaBoost

- training error rapidly drops
 (combining weak learners increases expressivity)
- test error does not increase with number of trees T
 (robustness to overfitting)
Bounding training error

Training error of final classifier is bounded by:

$$\text{err}_{\text{train}}(H) = \frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \frac{1}{m} \sum_{i=1}^{m} \exp(-y_i f(x_i)) = \prod_{t=1}^{T} Z_t$$

where $f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$; $H(x) = \text{sign}(f(x))$.

Last step can be proved by unraveling the definition of $D_t(i)$:

$$D_{t+1}(i) = \frac{D_t(i) \exp(-y_i \alpha_t h_t(x_i))}{Z_t}$$

$$D_{T+1}(i) = \frac{1}{m} \exp(-y_i f(x_i)) \prod_{t=1}^{T} Z_t$$

Optimizing α_t

By minimizing $\prod_t Z_t$, we minimize the training error.

We can tighten this bound greedily, by choosing α_t on each round to minimize Z_t:

$$Z_t = \sum_{i=1}^{m} D_t(i) \exp(-y_i \alpha_t h_t(x_i))$$

Since $h_t(x_i) \in \{-1, 1\}$, we can find this explicitly:

$$\alpha_t = \frac{1}{2} \ln\left(\frac{1 - \epsilon_t}{\epsilon_t}\right)$$

Intuition: In each round, we adjust example weights, so that the accuracy of the last rule of thumb h_t drops to 50%.
Weak learners to Strong learners

Plugging the optimal α_t in the error bound:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t=1}^{T} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} (0.5 - \epsilon_t)^2 \right)$$

Now, if each rule of thumb (at least slightly) better than random:

$$\epsilon_t \leq 0.5 - \gamma \text{ for } \gamma > 0$$

then training error drops exponentially fast:

$$\frac{1}{m} \sum_{i=1}^{m} \delta(H(x_i) \neq y_i) \leq \prod_{t=1}^{T} Z_t \leq \exp \left(-2 \sum_{t=1}^{T} (0.5 - \epsilon_t)^2 \right) \leq e^{-2T\gamma^2}$$

Bounding true error [Freund-Schapire 1997]

$$err_{true}(H) \leq err_{train}(H) + \tilde{O} \left(\sqrt{\frac{Td}{m}} \right)$$

- T = number of rounds
- d = VC dimension of weak learner
- m = number of training examples
Bounding **true** error (a first guess)

- training error to continue to drop (or reach zero)
- test error to **increase** when \(H_{\text{final}} \) becomes “too complex”

A typical run **contradicts** a naïve bound

- test error does **not** increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!
Finer analysis: **margins**
[Schapire et al. 1998]

- **key idea:**
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications
- recall: H_{final} is weighted majority vote of weak classifiers
- measure confidence by **margin** = strength of the vote
 $= (\text{fraction voting correctly}) - (\text{fraction voting incorrectly})$

![Margin Distribution Diagram]

Empirical evidence: **margin distribution**

- **margin distribution**
 $= \text{cumulative distribution of margins of training examples}$

![Empirical Evidence Graphs]

<table>
<thead>
<tr>
<th># rounds</th>
<th>5</th>
<th>100</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>train error</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>test error</td>
<td>8.4</td>
<td>3.3</td>
<td>3.1</td>
</tr>
<tr>
<td>% margins ≤ 0.5</td>
<td>7.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>minimum margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Theoretical evidence: large margins ⇒ simple classifiers

- **Theorem:** large margins ⇒ better bound on generalization error (independent of number of rounds)
 - proof idea: if all margins are large, then can approximate final classifier by a much smaller classifier (just as polls can predict not-too-close election)

- **Theorem:** boosting tends to increase margins of training examples (given weak learning assumption)
 - proof idea: similar to training error proof

- so:
 although final classifier is getting larger, margins are likely to be increasing,
 so final classifier actually getting close to a simpler classifier, driving down the test error

More technically...

Previously

\[\text{err}_{true}(H) \leq \text{err}_{train}(H) + O \left(\sqrt{\frac{Td}{m}} \right) \]

With high probability, for all \(\theta > 0 \)

\[\text{err}_{true}(H) \leq \left(\frac{1}{m} \sum_{i=1}^{m} \delta(y_i f(x_i) < \theta) \right) + O \left(\sqrt{\frac{d}{m} \frac{1}{\theta}} \right) \]

Bound depends on:
- \(d = \) VC dimension of weak learner
- \(m = \) number of training examples
- entire distribution of training margins
Practical advantages of AdaBoost

- fast
- simple and easy to program
- no parameters to tune (except T)
- flexible — can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 → shift in mind set — goal now is merely to find classifiers barely better than random guessing
- versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification

Application: detecting faces

[Viola-Jones 2001]

- problem: find faces in photograph or movie
- weak classifiers: detect light/dark rectangles in image

- many clever tricks to make extremely fast and accurate
Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
 - weak classifiers too complex
 → overfitting
 - weak classifiers too weak ($\gamma_t \to 0$ too quickly)
 → underfitting
 → low margins → overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise

“Hard” predictions can slow down learning!

- ideally, want weak classifier that says:
 \[
 h(x) = \begin{cases}
 +1 & \text{if } x \text{ above } L \\
 "don't know" & \text{else}
 \end{cases}
 \]

- problem: cannot express using “hard” predictions
- if must predict ±1 below L, will introduce many “bad” predictions
 - need to “clean up” on later rounds
- dramatically increases time to convergence
Confidence-rated Predictions

[Schapire-Singer 1999]

- useful to allow weak classifiers to assign \textit{confidences} to predictions

- formally, allow $h_t : X \rightarrow \mathbb{R}$

 \[
 \text{sign}(h_t(x)) = \text{prediction} \\
 |h_t(x)| = \text{“confidence”}
 \]

- use identical update:

 \[
 D_{t+1}(i) = \frac{D_t(i)}{Z_t} \cdot \exp(-\alpha_t y_i h_t(x_i))
 \]

 and identical rule for combining weak classifiers

- \textbf{question}: how to choose α_t and h_t on each round

Confidence-rated Predictions

- saw earlier:

 \[
 \text{training error}(H_{\text{final}}) \leq \prod_t Z_t = \frac{1}{m} \sum \exp \left(-y_i \sum_t \alpha_t h_t(x_i) \right)
 \]

- therefore, on each round t, should choose $\alpha_t h_t$ to minimize:

 \[
 Z_t = \sum_i D_t(i) \exp(-\alpha_t y_i h_t(x_i))
 \]

- in many cases (e.g., decision stumps), best confidence-rated weak classifier has simple form that can be found efficiently
Confidence-rated predictions help a lot!

<table>
<thead>
<tr>
<th>% error</th>
<th>round first reached</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>conf.</td>
<td>no conf.</td>
</tr>
<tr>
<td>40</td>
<td>268</td>
<td>16,938</td>
</tr>
<tr>
<td>35</td>
<td>598</td>
<td>65,292</td>
</tr>
<tr>
<td>30</td>
<td>1,888</td>
<td>>80,000</td>
</tr>
</tbody>
</table>

Loss in logistic regression

Logistic regression assumes:

\[P(Y = 1 | X = x) = \frac{1}{1 + \exp(-f(x))} \]

And tries to maximize conditional likelihood:

\[P(y_1, \ldots, y_m | x_1, \ldots, x_m, H) = \prod_{i=1}^{m} \frac{1}{1 + \exp(-y_i f(x_i))} \]

Equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln \left(1 + \exp(-y_i f(x_i)) \right) \]
Loss in AdaBoost

Logistic regression equivalent to minimizing log loss

\[\sum_{i=1}^{m} \ln \left(1 + \exp(-y_if(x_i)) \right) \]

Boosting minimizes similar loss function!

\[\frac{1}{m} \sum_{i=1}^{m} \exp(-y_if(x_i)) = \prod_{t} Z_t \]

Logistic regression vs AdaBoost

Logistic regression:

- Minimize *log loss*
 \[\sum_{i=1}^{m} \ln \left(1 + \exp(-y_if(x_i)) \right) \]

- Define
 \[f(x) = \sum_j w_j x_j \]
 where \(x_j \)'s predefined

- \(w_j \)'s optimized jointly

AdaBoost:

- Minimize *exponential loss*
 \[\sum_{i=1}^{m} \exp(-y_if(x_i)) \]

- Define
 \[f(x) = \sum_t \alpha_t h_t(x) \]
 where \(h_t \)'s defined dynamically to fit the data

- \(\alpha_t \)'s optimized one at a time
Benefits of model-fitting view

- immediate generalization to other loss functions
 - e.g. squared error for regression
 - e.g. logistic regression (by only changing one line of AdaBoost)
- sensible approach for converting output of boosting into conditional probability estimates
- caveat: wrong to view AdaBoost as just an algorithm for minimizing exponential loss
 - other algorithms for minimizing same loss will (provably) give very poor performance
 - thus, this loss function cannot explain why AdaBoost “works”

What you should know about boosting

- **weak classifiers ⇒ strong classifiers**
 - weak: slightly better than random on training data
 - strong: eventually zero error on training data
- AdaBoost prevents overfitting by increasing margins
- regimes when AdaBoost overfits
 - weak learner too strong: use small trees or stop early
 - data noisy: stop early
- **AdaBoost vs Logistic Regression**
 - exponential loss vs log loss
 - single-coordinate updates vs full optimization