
MIT 6.7220/15.084 — Nonlinear Optimization Thu, Apr 4th 2024

Lecture 11
Distributed optimization and ADMM

Instructor: Prof. Gabriele Farina (gfarina@mit.edu)★

★These notes are class material that has not undergone formal peer review. The TAs and I are grateful for any reports
of typos.

In this last lecture on first-order methods, we will touch on an important aspect of optimization in
machine learning: distributed optimization.

1 Setting
Consider again an empirical risk minimization problem, where we aim to minimize the average loss
over a large training set. When the training set is too large to fit on a single machine, or privacy con-
cerns require different parts of the data to be stored on different machines, it is common to distribute
the optimization problem across multiple machines.

In this setting, we assume that we have 𝑚 machines, each with
access to a local dataset and a local function 𝑓𝑗 : ℝ𝑛 → ℝ. The
goal is to minimize the average of the local functions, that is,

𝑓(𝑥) =
1
𝑚
∑
𝑚

𝑗=1
𝑓𝑗(𝑥),

where the functions 𝑓𝑗 are differentiable.

In our distributed optimization model, each machine can commu-
nicate with a central orchestrator, which can send messages to all
machines and collect messages from all machines. Furthermore,
each machine is powerful enough to solve most optimization prob-
lems on their local dataset.

Orchestrator
𝑥𝑡

Machine 1
𝑥1𝑡 , 𝛼1𝑡

Machine 2
𝑥2𝑡 , 𝛼2𝑡

Machine 3
𝑥3𝑡 , 𝛼3𝑡

Notation: We will denote machine indices as superscripts (these are not powers!) and time indices
as subscripts.

1.1 First attempt: independent optimization

One might be tempted to distribute the optimization problem by simply letting each machine com-
pute the optimal solution on their local dataset, and then try to combine the solutions in some way.
However, this approach in general has no hope without further assumptions about how the different
datasets relate to each other. In the extreme, each solution might carry virtually zero information
regarding the global optimum; for example, consider a multi-class classification problem where each
machine only has access to training data from the same class. Then, a classifier that deterministically
outputs the machine’s class would be an optimal local solution and yet carry no meaning globally.

1

mailto:gfarina@mit.edu

1.2 Second attempt: distributed gradient computation

A more sophisticated approach is to compute the gradient of the loss function at each machine and
then combine the gradients at a central location. This approach would work, but has two major
drawbacks:

1. The total communication cost is mainly determined by the convergence rate of gradient descent.
In particular, when the smoothness or the Lipschitzness of 𝑓 is not very good, then the conver-
gence rate of gradient descent is not very good. We will discuss today a solution that does not
depend on the smoothness of 𝑓 .

2. Gradient descent does not leverage the computation power of each machine very well. At each
iteration, each machine simply computes a gradient. A more cost-effective approach would try
to directly use the computational power of each machine to find some sort of optimal solution
of the problem (while avoiding the naive approach of independent optimization discussed in
Section 1.1).

2 The ADMM algorithm
The ADMM algorithm is a distributed optimization algorithm that combines the best of both worlds:
it uses the computational power of each machine to find an optimal solution, while also ensuring that
the global solution is meaningful.

The algorithm can be thought of as a two-step process parameterized by the learning rate 𝜂 > 0 and
a multiplier 𝜆 > 0, as follows.

Orchestrator
𝑥𝑡

Machine 1
𝑥1𝑡 , 𝛼1𝑡

Machine 2
𝑥2𝑡 , 𝛼2𝑡

Machine 3
𝑥3𝑡 , 𝛼3𝑡

■ Phase I: Local update.

The orchestrator sends the current 𝑥𝑡 to each machine. Each
machine computes their updated multiplier

𝛼𝑗𝑡 = 𝛼
𝑗
𝑡−1 − 𝜂(𝑥𝑡 − 𝑥

𝑗
𝑡)

and optimizes on their local training set

𝑥𝑗𝑡+1 = arg min
𝑥𝑗∈ℝ𝑛

{𝑓𝑗(𝑥𝑗) + 𝜆‖𝑥𝑗 − 𝑥𝑡‖
2
2
+ ⟨𝛼𝑗𝑡 , 𝑥𝑗 − 𝑥𝑡⟩}.

Orchestrator
𝑥𝑡

Machine 1
𝑥1𝑡 , 𝛼1𝑡

Machine 2
𝑥2𝑡 , 𝛼2𝑡

Machine 3
𝑥3𝑡 , 𝛼3𝑡

■ Phase II: Synchronization.

Each machine reports their local solution 𝑥𝑗𝑡+1 and their local
multiplier 𝛼𝑗𝑡 to the orchestrator.

The orchestrator computes

𝑥𝑡+1 =
1
𝑚
(∑

𝑚

𝑗=1
𝑥𝑗𝑡+1)+

1
2𝑚𝜆

(∑
𝑚

𝑗=1
𝛼𝑗𝑡).

2

2.1 ADMM as Lagrangian relaxation

At this point, one might wonder how the update rules of ADMM were picked. The answer is pretty
ingenious. ADMM is based on the fundamental idea of rewriting the problem

𝑣 ≔ min
𝑥

1
𝑚
∑
𝑚

𝑗=1
𝑓𝑗(𝑥)

as the equivalent problem

min
𝑥,𝑥𝑗

s.t.

1
𝑚
∑
𝑚

𝑗=1
(𝑓𝑗(𝑥𝑗) + 𝜆‖𝑥𝑗 − 𝑥‖2

2
)

𝑥𝑗 = 𝑥.
(1)

The next step is to relax the equality constraint 𝑥𝑗𝑡+1 = 𝑥𝑡+1 by introducing the Lagrange relaxation
of the problem, in which the constraint is replaced by a penalization term in the objective function.
In particular, the following key result shows that the maximum value of the Lagrange relaxation is
the same as the value of the original problem when all 𝑓𝑗 are convex.

Theorem 2.1. Assuming all 𝑓𝑗 are convex, the optimal value of the original problem is equal to
the maximum of the Lagrange function ℒ over all multipliers 𝛼𝑗, that is,

𝑣 = max
𝛼1,…,𝛼𝑚

min
𝑥,𝑥𝑗

{ℒ(𝑥, 𝑥𝑗; 𝛼𝑗) ≔
1
𝑚
∑
𝑚

𝑗=1
(𝑓𝑗(𝑥𝑗) + 𝜆‖𝑥𝑗 − 𝑥‖2

2
+ ⟨𝛼𝑗, 𝑥𝑗 − 𝑥⟩)}.

In light of this result, the ADMM algorithm can be seen as a way to maximize the Lagrange function
ℒ over the multipliers 𝛼𝑗 by performing alternating optimization steps on different groups of variables:

• Assuming fixed 𝑥𝑡−1 and 𝑥𝑗𝑡−1, the multipliers 𝛼𝑗𝑡−1 are updated by gradient ascent, performing
a step in the direction of the gradient of the objective function:

𝛼𝑗𝑡 = 𝛼
𝑗
𝑡−1 + 𝜂(𝑥

𝑗
𝑡−1 − 𝑥𝑡−1) = 𝛼

𝑗
𝑡−1 − 𝜂(𝑥𝑡−1 − 𝑥

𝑗
𝑡−1).

• Assuming now fixed 𝛼𝑗𝑡 and 𝑥𝑡, each machine now solves the optimization problem

𝑥𝑗𝑡+1 = arg min
𝑥𝑗∈ℝ𝑛

{𝑓𝑗(𝑥𝑗) + 𝜆‖𝑥𝑗 − 𝑥𝑡‖
2
2
+ ⟨𝛼𝑗𝑡 , 𝑥𝑗 − 𝑥𝑡⟩}.

• Assuming now fixed 𝛼𝑗𝑡 and 𝑥𝑗𝑡+1, the orchestrator computes the next iterate 𝑥𝑡 by solving the
optimization problem

𝑥𝑡+1 = arg min
𝑥∈ℝ𝑛

{
1
𝑚
∑
𝑚

𝑗=1
𝑓𝑗(𝑥𝑗) + 𝜆‖𝑥𝑗 − 𝑥‖2

2
+ ⟨𝛼𝑗𝑡 , 𝑥𝑗 − 𝑥⟩}

= arg min
𝑥∈ℝ𝑛

{
𝜆
𝑚
∑
𝑚

𝑗=1
‖𝑥𝑗 − 𝑥‖2

2
− ⟨𝛼𝑗𝑡 , 𝑥⟩}.

By setting the gradient with respect to 𝑥 to 0 and solving for 𝑥, we obtain

1
𝑚
∑
𝑚

𝑗=1
(2𝜆(𝑥 − 𝑥𝑗) − 𝛼𝑗𝑡) = 0

So, the optimal 𝑥𝑡+1 is written in closed form as

3

𝑥𝑡+1 =
1
𝑚
∑
𝑚

𝑗=1
𝑥𝑗𝑡+1 +

1
2𝑚𝜆

∑
𝑚

𝑗=1
𝛼𝑗𝑡 .

3 Analysis
The analysis of the correctness of ADMM can be broken down into several steps.

3.1 Part I: Orchestrating machine

Theorem 3.1. If the initial multipliers 𝛼𝑗0 are chosen such that ∑𝑚
𝑗=1 𝛼

𝑗
0 = 0, then, at all times 𝑡,

∑
𝑚

𝑗=1
𝛼𝑗𝑡 = 0, and 𝑥𝑡+1 =

1
𝑚
∑
𝑚

𝑗=1
𝑥𝑗𝑡+1.

Proof . By definition,

𝛼𝑗𝑡+1 = 𝛼
𝑗
𝑡 − 𝜂(𝑥𝑡+1 − 𝑥

𝑗
𝑡+1).

So, averaging over 𝑗 = 1,…,𝑚, we can write

1
𝑚
∑
𝑚

𝑗=1
𝛼𝑗𝑡+1 =

1
𝑚
∑
𝑚

𝑗=1
𝛼𝑗𝑡 − 𝜂(𝑥𝑡+1 −

1
𝑚
∑
𝑚

𝑗=1
𝑥𝑗𝑡+1). (2)

Using the definition of 𝑥𝑡+1, we also have

𝑥𝑡+1 = (
1
𝑚
∑
𝑚

𝑗=1
𝑥𝑗𝑡+1)+

1
2𝑚𝜆

∑
𝑚

𝑗=1
𝛼𝑗𝑡 ⟹ 𝑥𝑡+1 −

1
𝑚
∑
𝑚

𝑗=1
𝑥𝑗𝑡+1 =

1
2𝑚𝜆

∑
𝑚

𝑗=1
𝛼𝑗𝑡 . (3)

Substituting the last expression into (2), we get

1
𝑚
∑
𝑚

𝑗=1
𝛼𝑗𝑡+1 =

1
𝑚
∑
𝑚

𝑗=1
𝛼𝑗𝑡 −

𝜂
2𝑚𝜆

∑
𝑚

𝑗=1
𝛼𝑗𝑡 =

1
𝑚
(1 −

𝜂
2𝜆
)∑

𝑚

𝑗=1
𝛼𝑗𝑡 .

This shows that by induction, ∑𝑚
𝑗=1 𝛼

𝑗
𝑡 = 0 at all 𝑡 as long as the assumption holds for 𝑡 = 0.

Plugging the expression ∑𝑚
𝑗=1 𝛼

𝑗
𝑡 = 0 into (3), then yields

𝑥𝑡+1 =
1
𝑚
∑
𝑚

𝑗=1
𝑥𝑗𝑡+1

at all times, which is the second part of the claim. □

3.2 Part II: Worker machines

Theorem 3.2 (Euclidean mirror descent lemma for ADMM). Let each 𝑓𝑗 : ℝ𝑛 → ℝ be convex,
and 𝜂 = 2𝜆. Then, for any 𝑦 ∈ ℝ𝑛 we have

4

1
𝑚
∑
𝑚

𝑗=1
𝑓𝑗(𝑥𝑗𝑡+1) ≤ 𝑓(𝑦) +

𝜂
2
(‖𝑦 − 𝑥𝑡‖

2
2 − ‖𝑦 − 𝑥𝑡+1‖

2
2
− ‖𝑥𝑡 − 𝑥𝑡+1‖

2
2
)

+
1
𝑚
∑
𝑚

𝑗=1

1
2𝜂
(‖𝛼𝑗𝑡‖

2

2
− ‖𝛼𝑗𝑡+1‖

2

2
− ‖𝛼𝑗𝑡+1 − 𝛼

𝑗
𝑡‖
2

2
).

Proof . Recall that each machine computes the update

𝑥𝑗𝑡+1 = arg min
𝑥𝑗∈ℝ𝑛

{𝑓𝑗(𝑥𝑗) + 𝜆‖𝑥𝑗 − 𝑥𝑡‖
2
2
+ ⟨𝛼𝑗𝑡 , 𝑥𝑗 − 𝑥𝑡⟩}.

As the domain is open, the first-order necessary optimality conditions imply that

∇𝑓𝑗(𝑥𝑗𝑡+1) + 2𝜆(𝑥
𝑗
𝑡+1 − 𝑥𝑡) + 𝛼

𝑗
𝑡 = 0. (4)

Since 𝑓𝑗 is convex, the linear lower bound property of convex functions we can write

𝑓𝑗(𝑦) ≥ 𝑓𝑗(𝑥𝑗𝑡+1) + ⟨∇𝑓𝑗(𝑥
𝑗
𝑡+1), 𝑦 − 𝑥

𝑗
𝑡+1⟩

= 𝑓𝑗(𝑥𝑗𝑡+1) + ⟨−2𝜆(𝑥
𝑗
𝑡+1 − 𝑥𝑡) − 𝛼

𝑗
𝑡 , 𝑦 − 𝑥

𝑗
𝑡+1⟩. (from (4))

Rearranging the terms and using the hypothesis 𝜂 = 2𝜆, we get

𝑓𝑗(𝑥𝑗𝑡+1) ≤ 𝑓𝑗(𝑦) + 𝜂⟨𝑥
𝑗
𝑡+1 − 𝑥𝑡, 𝑦 − 𝑥

𝑗
𝑡+1⟩ + ⟨𝛼

𝑗
𝑡 , 𝑦 − 𝑥

𝑗
𝑡+1⟩. (5)

At this point, we can use the update rule 𝛼𝑗𝑡+1 = 𝛼
𝑗
𝑡 − 𝜂(𝑥𝑡+1 − 𝑥

𝑗
𝑡+1) to write

𝑥𝑗𝑡+1 = 𝑥𝑡+1 +
𝛼𝑗𝑡+1 − 𝛼

𝑗
𝑡

𝜂
.

Substituting the above expression into the first inner product of (5) then yields

𝑓𝑗(𝑥𝑗𝑡+1) ≤ 𝑓𝑗(𝑦) + 𝜂⟨𝑥𝑡+1 − 𝑥𝑡, 𝑦 − 𝑥
𝑗
𝑡+1⟩ + ⟨𝛼

𝑗
𝑡+1, 𝑦 − 𝑥

𝑗
𝑡+1⟩.

(Note that change in time index from 𝛼𝑗𝑡 to 𝛼𝑗𝑡+1 in the last term.) Substituting the expression for
𝑥𝑗𝑡+1 into the last inner product, we finally obtain

𝑓𝑗(𝑥𝑗𝑡+1) ≤ 𝑓𝑗(𝑦) + 𝜂⟨𝑥𝑡+1 − 𝑥𝑡, 𝑦 − 𝑥
𝑗
𝑡+1⟩ + ⟨𝛼

𝑗
𝑡+1, 𝑦 − 𝑥𝑡+1⟩ −

1
𝜂
⟨𝛼𝑗𝑡+1, 𝛼

𝑗
𝑡+1 − 𝛼

𝑗
𝑡⟩. (6)

From Theorem 3.1, we know that

1
𝑚
∑
𝑚

𝑗=1
⟨𝛼𝑗𝑡+1, 𝑦 − 𝑥𝑡+1⟩ = 0, and

1
𝑚
∑
𝑚

𝑗=1
⟨𝑥𝑡+1 − 𝑥𝑡, 𝑦 − 𝑥

𝑗
𝑡+1⟩ = ⟨𝑥𝑡+1 − 𝑥𝑡, 𝑦 − 𝑥𝑡+1⟩

for all 𝑡. Furthermore, we know that 𝑓(𝑦) = 1
𝑚∑

𝑚
𝑗=1 𝑓

𝑗(𝑦). Hence, averaging (6) across all machines
𝑗 = 1,…,𝑚, we obtain

1
𝑚
∑
𝑚

𝑗=1
𝑓𝑗(𝑥𝑗𝑡+1) ≤ 𝑓(𝑦) + 𝜂⟨𝑥𝑡+1 − 𝑥𝑡, 𝑦 − 𝑥𝑡+1⟩ −

1
𝑚𝜂

∑
𝑚

𝑗=1
⟨𝛼𝑗𝑡+1, 𝛼

𝑗
𝑡+1 − 𝛼

𝑗
𝑡⟩.

Subtituting the three-point equalities

5

⟨𝑥𝑡+1 − 𝑥𝑡, 𝑦 − 𝑥𝑡+1⟩ =
1
2
(‖𝑥𝑡 − 𝑦‖

2
2 − ‖𝑥𝑡+1 − 𝑦‖

2
2
− ‖𝑥𝑡 − 𝑥𝑡+1‖

2
2
)

and −⟨𝛼𝑗𝑡+1, 𝛼
𝑗
𝑡+1 − 𝛼

𝑗
𝑡⟩ =

1
2
(‖𝛼𝑗𝑡‖

2

2
− ‖𝛼𝑗𝑡+1‖

2

2
− ‖𝛼𝑗𝑡+1 − 𝛼

𝑗
𝑡‖
2

2
)

yields the statement. □

3.3 Putting the pieces together: telescoping step

The sum on the right-hand side of Theorem 3.2 telescopes. In particular, since 𝛼𝑗0 = 0 for all 𝑗, we have

1
𝑚𝑇

∑
𝑇−1

𝑡=0
∑
𝑚

𝑗=1
𝑓𝑗(𝑥𝑗𝑡+1) ≤ 𝑓(𝑦) +

𝜂
2𝑇
‖𝑦 − 𝑥0‖

2
2 −

1
2𝜂𝑚𝑇

∑
𝑇−1

𝑡=0
∑
𝑚

𝑗=1
‖𝛼𝑗𝑡+1 − 𝛼

𝑗
𝑡‖
2

2
.

Since by definition 𝛼𝑗𝑡+1 − 𝛼
𝑗
𝑡 = 𝜂(𝑥

𝑗
𝑡+1 − 𝑥𝑡+1), the last term satisfies

−
1

2𝜂𝑚𝑇
∑
𝑇−1

𝑡=0
∑
𝑚

𝑗=1
‖𝛼𝑗𝑡+1 − 𝛼

𝑗
𝑡‖
2

2
= −

𝜂
2𝑚𝑇

∑
𝑇−1

𝑡=0
∑
𝑚

𝑗=1
‖𝑥𝑗𝑡+1 − 𝑥𝑡+1‖

2

2
,

leading to

1
𝑚𝑇

∑
𝑇−1

𝑡=0
∑
𝑚

𝑗=1
𝑓𝑗(𝑥𝑗𝑡+1) ≤ 𝑓(𝑦) +

𝜂
2𝑇
‖𝑦 − 𝑥0‖

2
2 −

𝜂
2𝑚𝑇

∑
𝑇−1

𝑡=0
∑
𝑚

𝑗=1
‖𝑥𝑗𝑡+1 − 𝑥𝑡+1‖

2

2
.

Rearranging the terms and applying 𝑦 = 𝑥⋆, we therefore have

1
𝑇
∑
𝑇

𝑡=0
(
1
𝑚
∑
𝑚

𝑗=1
𝑓𝑗(𝑥𝑗𝑡+1) +

𝜂
2
‖𝑥𝑗𝑡+1 − 𝑥𝑡+1‖

2

2
) ≤ 𝑓(𝑥⋆) +

𝜂
2𝑇
‖𝑥⋆ − 𝑥0‖

2
2.

Thus, we have the following guarantee.

Theorem 3.3. Let each 𝑓𝑗 : ℝ𝑛 → ℝ be convex and nonnegative, 𝜆 =
√
𝑇 and 𝜂 = 2𝜆. Then, for

any 𝑇 > 0, at least one of the iterates 𝑡 ∈ {0,…, 𝑇 − 1} satisfies

1
𝑚
∑
𝑚

𝑗=1
𝑓𝑗(𝑥𝑗𝑡+1) ≤ 𝑓(𝑥⋆) +

1
√
𝑇
‖𝑥⋆ − 𝑥0‖

2
2,

and
1
𝑚
∑
𝑚

𝑗=1
‖𝑥𝑗𝑡+1 − 𝑥𝑡+1‖

2

2
≤

1
√
𝑇
𝑓(𝑥⋆) +

1
𝑇
‖𝑥⋆ − 𝑥0‖

2
2.

So, as time progresses, the iterates 𝑥𝑗𝑡+1 concentrate around the average 𝑥𝑡+1, and the average of the
function values 𝑓𝑗(𝑥𝑗𝑡+1), which concentrates around 𝑓(𝑥𝑡+1), converges to the optimal value at a rate
of 1√

𝑇
.

4 Further readings
The review article by Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., & others. [Boy+11] is
a modern and approachable introduction to ADMM and its variants and extensions.

[Boy+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, and others, “Distributed optimization
and statistical learning via the alternating direction method of multipliers,” Foundations
and Trends in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

6

	Setting
	First attempt: independent optimization
	Second attempt: distributed gradient computation

	The ADMM algorithm
	ADMM as Lagrangian relaxation

	Analysis
	Part I: Orchestrating machine
	Part II: Worker machines
	Putting the pieces together: telescoping step

	Further readings

