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Abstract

Monte-Carlo counterfactual regret minimization
(MCCFR) is the state-of-the-art algorithm for
solving sequential games that are too large for
full tree traversals. It works by using gradient es-
timates that can be computed via sampling. How-
ever, stochastic methods for sequential games
have not been investigated extensively beyond
MCCFR. In this paper we develop a new frame-
work for developing stochastic regret minimiza-
tion methods. This framework allows us to use
any regret-minimization algorithm, coupled with
any gradient estimator. The MCCFR algorithm
can be analyzed as a special case of our frame-
work, and this analysis leads to significantly
stronger theoretical guarantees on convergence,
while simultaneously yielding a simplified proof.
Our framework allows us to instantiate several
new stochastic methods for solving sequential
games. We show extensive experiments on five
games, where some variants of our methods out-
perform MCCFR.

1. Introduction
Extensive-form games (EFGs) are a broad class of games
that can model sequential and simultaneous moves, out-
come uncertainty, and imperfect information. This includes
real-world settings such as negotiation, sequential auctions,
security games (Lisý et al., 2016; Munoz de Cote et al.,
2013), cybersecurity games (DeBruhl et al., 2014; Chen
et al., 2018), recreational games such as poker (Sandholm,
2010) and billiards (Archibald & Shoham, 2009), and med-
ical treatment (Chen & Bowling, 2012; Sandholm, 2015).
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Typically, EFG models are operationalized by computing
either a Nash equilibrium of the game, or an approximate
Nash equilibrium if the game is large. Approximate Nash
equilibrium of zero-sum EFGs has been the underlying idea
of several recent AI milestones, where strong AIs for two-
player poker were created (Moravčík et al., 2017; Brown
& Sandholm, 2017b). In principle, a zero-sum EFG can be
solved in polynomial time using a linear program whose
size is linear in the size of the game tree (von Stengel, 1996).
However, for most real-world games this linear program
is much too large to solve, either because it does not fit in
memory, or because iterations of the simplex algorithm or
interior-point methods become prohibitively expensive due
to matrix inversion. Instead, first-order methods (Hoda et al.,
2010; Kroer et al., 2020) or regret-based methods (Zinke-
vich et al., 2007; Tammelin et al., 2015; Brown & Sandholm,
2019a) are used in practice. These methods work by only
keeping one or two strategies around for each player (typ-
ically the size of a strategy is much smaller than the size
of the game tree). The game tree is then only accessed for
computing gradients, which can be done via a single tree
traversal (which can often be done without storing the tree),
and sometimes game-specific structure can be exploited to
speed this up further (Johanson et al., 2011). Finally, these
gradients are used to update the strategy iterates.

However, for large games, even these gradient-based meth-
ods that require traversing the entire game tree are pro-
hibitively expensive (henceforth referred to as determinis-
tic methods). This was seen in two recent superhuman
poker AIs: Libratus (Brown & Sandholm, 2017b) and
Pluribus (Brown & Sandholm, 2019b). Both AIs were gener-
ated in a two-stage manner: an offline blueprint strategy was
computed, and then refinements to the blueprint solution
were computed online while actually playing against hu-
man opponents. The online solutions were computed using
deterministic methods (since those subgames are signifi-
cantly smaller than the entire game). However, the original
blueprint strategies had to be computed without traversing
the entire game tree, as this game tree is far too large for
even a moderate amount of traversals.

When full tree traversals are too expensive, stochastic meth-
ods can be used to compute approximate gradients instead.
The most common stochastic method for solving large EFGs
is the Monte-Carlo Counterfactual Regret Minimization
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(MCCFR) algorithm (Lanctot et al., 2009). This algorithm,
enhanced with certain dynamic pruning techniques, was
also used to compute the blueprint strategies in the above-
mentioned superhuman poker milestones (Brown & Sand-
holm, 2015; 2017a;b; 2019b; Brown et al., 2017). MC-
CFR combines the CFR algorithm (Zinkevich et al., 2007)
with certain stochastic gradient estimators. Follow-up pa-
pers have been written on MCCFR, investigating various
methods for improving the sampling schemes used in es-
timating gradients and so on (Gibson et al., 2012; Schmid
et al., 2019). However, beyond the MCCFR setting, stochas-
tic methods have not been studied extensively for solving
EFGs1.

In this paper we develop a general framework for con-
structing stochastic regret-minimization methods for solving
EFGs. In particular, we introduce a way to combine any
regret-minimizing algorithm with any gradient estimator,
and obtain high-probability bounds on the performance of
the resulting combined algorithm. As a first application of
our approach, we show that with probability 1 − p, the re-
gret in MCCFR is at most O(

√
log(1/p)) worse than that of

CFR, an exponential improvement over the bound O(
√

1/p)

previously known in the literature. Second, our approach
enables us to develop a slew of other stochastic methods
for solving EFGs. As an example of our framework, we
show how each of two popular online convex optimization
algorithms, follow-the-regularized-leader (FTRL) and on-
line mirror descent (OMD), can be used to obtain stochastic
EFG-solving algorithms with these guarantees. We then pro-
vide extensive numerical simulations on four diverse games,
showing that it is possible to beat MCCFR in several of the
games using our new methods. Because of the flexibility
and modularity of our approach, it paves the way for many
potential future investigations into stochastic methods for
EFGs, either via better gradient estimators, via better de-
terministic regret minimization methods that can now be
converted into stochastic methods, or both.

2. Preliminaries
2.1. Two-Player Zero-Sum Extensive-Form Games

In this subsection we introduce the notation that we will use
in the rest the paper when dealing with two-player zero-sum
extensive-form games.

An extensive-form game is played on a tree rooted at a
node r. Each node v in the tree belongs to a player from
the set {1, 2, c}, where c is called the chance player. The
chance player plays actions from a fixed distribution known
to Player 1 and 2, and it is used as a device to model stochas-

1Kroer et al. (2015) studies the stochastic mirror prox algorithm
for EFGs, but it is not the primary focus of the paper, and seems to
be more of a preliminary investigation.

tic events such as drawing a random card from a deck. We
denote the set of actions available at node v by Av . Each ac-
tion corresponds to an outgoing edges from v. Given a ∈ Av ,
we let ρ(v, a) denote the node that is reached by following
the edge corresponding to action a at node v. Nodes v such
that Av = ∅ are called leaves and represent terminal states of
the game. We denote by Z the set of leaves of the game. As-
sociated with each leaf z ∈ Z is a pair (u1(z), u2(z)) ∈ R2

of payoffs for Player 1 and 2, respectively. We denote
by ∆ the payoff range of the game, that is the value ∆ :=

maxz∈Z max{u1(z), u2(z)}−minz∈Z min{u1(z), u2(z)}. In
this paper we are concerned with zero-sum extensive-form
games, that is games in which u1(z) = −u2(z) for all z ∈ Z.

To model private information, the set of all nodes for each
player i ∈ {1, 2, c} is partitioned into a collection Ii of
non-empty sets, called information sets. Each information
set I ∈ Ii contains nodes that Player i cannot distinguish
among. In this paper, we will only consider perfect-recall
games, that is, games in which no player forgets what he or
she observed or knew earlier. Necessarily, if two nodes u
and v belong to the same information set I, the set of actions
Au and Av must be the same (or the player would be able
to tell u and v apart). So, we denote by AI the set of actions
of any node in I.

Sequences. The set of sequences for Player i, denoted Σi,
is defined as the set of all possible information set-action
pairs, plus a special element called empty sequence and
denoted ∅. Formally, Σi := {(I, a) : I ∈ Ii, a ∈ AI} ∪ {∅}.
Given a node v for Player i, we denote with σi(v) the last
information set-action pair of Player i encountered on the
path from the root to node v; if the player does not act
before v, σi(I) = ∅. It is known that in perfect-recall games
σi(u) = σi(v) for any two nodes u, v in the same information
set. For this reason, for each information set I we define
σi(I) to equal σi(v) for any v ∈ I.

Sequence-Form Strategies. A strategy for Player i ∈
{1, 2, c} is an assignment of a probability distribution over
the set of actions AI to each information set I that belongs
to Player i. In this paper, we represent strategies using their
sequence-form representation (Romanovskii, 1962; Koller
et al., 1996; von Stengel, 1996). A sequence-form strategy
for Player i is a non-negative vector z indexed over the set
of sequences Σi of that player. For each σ = (I, a) ∈ Σi, the
entry z[σ] contains the product of the probability of all the
actions that Player i takes on the path from the root of the
game tree down to action a at information set I, included. In
order for these probabilities to be consistent, it is necessary
and sufficient that z[∅] = 1 and∑

a∈AI
z[(I, a)] = z[σi(I)] ∀I ∈ Ii.

A strategy such that exactly one action is selected with
probability 1 at each node is called a pure strategy.
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We denote by X and Y the set of all sequence-form strategies
for Player 1 and Player 2, respectively. We denote by c the
fixed sequence-form strategy of the chance player.

For any leaf z ∈ Z, the probability that the game ends in z is
the product of the probabilities of all the actions on the path
from the root to z. Because of the definition of sequence-
form strategies, when Player 1 and 2 play according to
strategies x ∈ X and y ∈ Y , respectively, this probability is
equal to x[σ1(z)] · y[σ2(z)] · c[σc(z)]. So, Player 2’s expected
utility is computed via the trilinear map

ū2(x,y, c) :=
∑
z∈Z

u2(z) · x[σ1(z)] · y[σ2(z)] · c[σc(z)]. (1)

Since the strategy of the chance player is fixed, the above
expression is bilinear in x and y and therefore can be ex-
pressed more concisely as ū2(x,y) = x>A2 y, where A2 is
called the sequence-form payoff matrix of Player 2.

2.2. Regret Minimization

In this section we present the regret minimization algorithms
that we will work with. We will operate within the frame-
work of online convex optimization (Zinkevich, 2003). In
this setting, a decision maker repeatedly makes decisions
z1,z2, . . . from some convex compact set Z ⊆ Rn. After
each decision zt at time t, the decision maker faces a linear
loss zt 7→ (`t)>zt, where `t is a gradient vector in Rn.

Give ẑ ∈ Z, the regret compared to z of the regret minimizer
up to time T , denoted as RT (ẑ), measures the difference
between the loss cumulated by the sequence of output de-
cisions z1, . . . , zT and the loss that would have been cumu-
lated by playing a fixed, time-independent decision ẑ ∈ Z.
In symbols, RT (ẑ) :=

∑T
t=1(`t)>(zt − ẑ). A “good” regret

minimizer is such that the regret compared to any ẑ ∈ Z
grows sublinearly in T .

The two algorithms beyond MCCFR that we consider as-
sume access to a distance-generating function d : Z → R,
which is 1-strongly convex (with respect to some norm)
and continuously differentiable on the interior of Z. Fur-
thermore, d should be such that the gradient of the convex
conjugate∇d(g) = arg maxz∈Z〈g,z〉−d(z) is easy to com-
pute. From d we also construct the Bregman divergence
D(z ‖ z′) := d(z)− d(z′)− 〈∇d(z′),z − z′〉.

We will use the following two classical regret minimization
algorithms as examples that can be used in the framework
that we introduce in this paper. The online mirror descent
(OMD) algorithm produces iterates according to the rule

zt+1 = arg min
z∈Z

{
〈`t,z〉+

1

η
D(z ‖ zt)

}
. (2)

The follow the regularized leader (FTRL) algorithm pro-
duces iterates according to the rule (Shalev-Shwartz &

Singer, 2007)

zt+1 = arg min
z∈Z

{〈 t∑
τ=1

`τ ,z

〉
+

1

η
d(z)

}
. (3)

OMD and FTRL satisfy regret bounds of the form
maxẑ∈Z R

T (ẑ) ≤ 2L
√
D(z∗‖z1)T , where L is an upper

bound on maxx∈Rn
(`t)>x
‖x‖ for all t. Here ‖ · ‖ is the norm

with respect to which we measure strong convexity of d.
(see, e.g., Orabona (2019)).

2.3. Equilibrium Finding in Extensive-Form Games
using Regret Minimization

It is known that in a two-player extensive-form game, a Nash
equilibrium (NE) is the solution to the bilinear saddle-point
problem

min
x̂∈X

max
ŷ∈Y

x̂>A2 ŷ.

Given a pair (x,y) ∈ X ×Y of sequence-form strategies for
the Player 1 and 2, respectively, the saddle-point gap

ξ(x,y) := max
ŷ∈Y
{x>A2 ŷ} − min

x̂∈X
{x̂>A2 y}

measures of how far the pair is to being a Nash equilibrium.
In particular, (x,y) is a Nash equilibrium if and only if
ξ(x,y) = 0.

Regret minimizers can be used to find a sequence of points
(xt,yt) whose saddle-point gap converges to 0. The funda-
mental idea is to instantiate two regret minimizers R1 and
R2 for the sets X and Y, respectively, and let them respond
to each other in a self-play fashion using a particular choice
of loss vectors (see Figure 1).

R1

R2

`t−1
1

`t−1
2

xt

yt `t2

`t1 R1

R2

xt+1

yt+1 · · ·· · ·

Figure 1. Self-play method for computing NE in EFGs.

At each time t, the strategies xt and yt output by the regret
minimizers are used to compute the loss vectors

`t1 := A2 y
t, `t2 := −A>2 xt. (4)

Let x̄ and ȳ be the average of the strategies output by
R1 and R2, respectively, up to time T . Furthermore, let
RT1 := maxx̂∈X R

T
1 (x̂) and RT2 := maxŷ∈Y R

T
2 (ŷ) be the

maximum regret cumulated by R1 and R2 against any
sequence-form strategy in X and Y, respectively. A well-
known folk lemma asserts that

ξ(x̄, ȳ) ≤ (RT1 +RT2 )/T.

So, if R1 and R2 have regret that grows sublinearly, then
the strategy profile (x̄, ȳ) converges to a saddle point.
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3. Stochastic Regret Minimization for
Extensive-Form Games

In this section we provide some key analytical tools to un-
derstand the performance of regret minimization algorithms
when gradient estimates are used instead of exact gradient
vectors. The results in this sections are complemented by
those of Section 4, where we introduce computationally
cheap gradient estimators for the purposes of equilibrium
finding in extensive-form games.

3.1. Regret Guarantees when Gradient Estimators are
Used

We start by studying how much the guarantee on the regret
degrades when gradient estimators are used instead of exact
gradient vectors. Our analysis need not assume that we
operate over extensive-form strategy spaces, so we present
our results in full generality.

Let R̃ be a deterministic regret minimizer over a convex and
compact set Z, and consider a second regret minimizer R
over the same set Z that is implemented starting from R̃ as
in Figure 2. In particular, at all times t,

• R queries the next decision zt of R̃, and outputs it;
• each gradient vector `t received by R is used by R to

compute a gradient estimate ˜̀t such that
Et[ ˜̀t] := E[ ˜̀t | ˜̀1, . . . , ˜̀t−1] = `t.

(that is, the estimate in unbiased). The internal regret
minimizer R̃ is then shown ˜̀t instead of `t.

R̃∼`t ˜̀t zt

R
Figure 2. Abstract regret minimizer considered in Section 3.1.

The regret minimizer R is a purely conceptual construction.
We introduce R in order to compare the regret incurred by
R to that incurred by R̃. This will allow us to quantify
the degradation in regret that is incurred when the gradient
vectors are estimated instead of exact. In practice, it is not
necessary to explicitly construct R and fully observe the
gradient vectors `t in order to compute the estimates ˜̀t.
Examples of cheap gradient estimators for extensive-form
games are given in Section 4.

When the estimate of the gradient is very accurate (for in-
stance, it has low variance), it is reasonable to expect that the
regretRT incurred byR up to any time T is roughly equal to
the regret R̃T that is incurred by R̃, plus some degradation
term that depends on the error of the estimates. We can
quantify this relationship by fixing an arbitrary u ∈ Z and
introducing the discrete-time stochastic process

dt := (`t)>(zt − u)− ( ˜̀t)>(zt − u). (5)

Since by hypothesis Et[ ˜̀t] = `t and R̃ is a deterministic
regret minimizer, Et[dt] = 0 and so {dt} is a martingale
difference sequence. This martingale difference sequence is
well-known, especially in the context of bandit regret mini-
mization (Abernethy & Rakhlin, 2009; Bartlett et al., 2008).
Using the Azuma-Hoeffding concentration inequality (Ho-
effding, 1963; Azuma, 1967), we can prove the following.

Proposition 1. Let M and M̃ be positive constants such
that |(`t)>(z − z′)| ≤ M and |( ˜̀)>(z − z′)| ≤ M̃ for all
times t = 1, . . . , T and all feasible points z,z′ ∈ Z. Then,
for all p ∈ (0, 1) and all u ∈ Z,

P
[
RT (u) ≤ R̃T (u) + (M + M̃)

√
2T log

1

p

]
≥ 1− p.

A straightforward consequence of Proposition 1 is that if R̃
has regret that grows sublinearly in T , then also the regret
of R will grow sublinearly in T with high probability.

Remark. As shown in Proposition 1, using gradient esti-
mators instead of exact gradients incurs an additive regret
degradation term that scales proportionally with the bound
M̃ on the norm of the gradient estimates ˜̀t. We remark that
the regret R̃T (u) also scales proportionally to the norm of
the gradient estimates ˜̀t. So, increasing the value of p in
Proposition 1 is not enough to counter the dependence on
M̃ .

3.2. Connection to Equilibrium Finding

We now apply the general theory of Section 3.1 for the
specific application of this paper—that is, Nash equilibrium
computation in large extensive-form games.

We start from the construction of Section 2.3. In particular,
we instantiate two deterministic regret minimizers R̃1, R̃2

and let them play strategies against each other. However,
instead of computing the exact losses `t1 and `t2 as in (4),
we compute their estimates ˜̀t

1 and ˜̀t
2 according to some

algorithm that guarantees that Et[ ˜̀t1] = `t1 and Et[ ˜̀t2] = `t2
at all times t. We will show that despite this modification,
the average strategy profile has a saddle point gap that is
guaranteed to converge to zero with high probability.

Because of the particular definition of `t1, we have that at all
times t,

max
x,x′∈X

∣∣∣(`t1)>(x− x′)
∣∣∣ = max

x,x′∈X

∣∣∣(xt)>A2y
t − (x′)>A2y

t
∣∣∣

= ∆,

where ∆ is the payoff range of the game (see Section 2.1).
(A symmetric statement holds for Player 2.) For i ∈ {1, 2},
let M̃i be positive constants such that |( ˜̀t

i)
>(z−z′)| ≤ M̃i at

all times t = 1, . . . , T and all strategies z,z′ in the sequence-
form polytope for Player i (that is, X when i = 1 and Y
when i = 2). Using Proposition 1, we find that for all x̂ ∈ X
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and ŷ ∈ Y, with probability (at least) 1− p,
T∑
t=1

(xt − x̂)>A2 y
t ≤ R̃T1 (x̂) + (∆ + M̃1)

√
2T log

1

p

−
T∑
t=1

(xt)>A2 (yt − ŷ) ≤ R̃T2 (ŷ) + (∆ + M̃2)

√
2T log

1

p

where R̃i denotes the regret of the regret minimizer R̃i that
at each time t observes ˜̀t

i.

Summing the above inequalities, dividing by T , and using
the union bound, we obtain that, with probability at least
1− 2p,

x̄>A2 ŷ − x̂>A2 ȳ ≤ (R̃T1 (x̂) + R̃T2 (ŷ))/T

+ (2∆ + M̃1 + M̃2)

√
2

T
log

1

p
,

(6)

where x̄ := 1
T

∑T
t=1 x

t and ȳ := 1
T

∑T
t=1 y

t. Since (6)
holds for all x̂ ∈ X and ŷ ∈ Y, we obtain the following.

Proposition 2. With probability at least 1− 2p,

ξ(x̄, ȳ) ≤ R̃T1 (x̂) + R̃T2 (ŷ)

T
+ (2∆ + M̃1 + M̃2)

√
2

T
log

1

p
.

If R̃1 and R̃2 have regret that is sublinear in T , then we
conclude that the saddle point gap ξ(x̄, ȳ) converges to 0

with high probability like in the non-stochastic setting. So,
(x̄, ȳ) converges to a saddle point over time.

4. Game-Theoretic Gradient Estimators
We complete the theory of Sections 3.1 and 3.2 by show-
ing some examples of computationally cheap gradient esti-
mators designed for game-theoretic applications. We will
illustrate how each technique can be used to construct an
estimate ˜̀t

1 for the gradient `t1 = A2 y
t for Player 1 defined

in (4). The computation of an estimate for `t2 is analogous.

4.1. External Sampling

An unbiased estimator of the gradient vector `t1 = A2 y
t can

be easily constructed by independently sampling pure strate-
gies ỹt for Player 2 and c̃t for the chance player. Indeed,
as long as Et[ỹt] = yt and Et[c̃t] = c, from (1) we have
that for all x ∈ X , ū2(x,yt, c) = Et[ū2(x, ỹt, c̃t)]. Hence,
the vector corresponding to the (random) linear function
x 7→ ū2(x, ỹt, c̃t) is an unbiased gradient estimator, called
the external sampling gradient estimator.

Since at all times t, ỹt and c̃t are sequence-form strategies,
ū2(x, ỹt, c̃t) is lower bounded by the minimum payoff of
the game and upper bounded by the maximum payoff of
the game. Hence, for this estimator, M̃ in Proposition 1 is
equal to the payoff range ∆ of the game. Substituting that
value into Proposition 2, we conclude that when the external
sampling gradient estimator is used to estimate the gradient

for both players, with probability at least 1− 2p the saddle
point gap of the average strategy profile (x̄, ȳ) is

ξ(x̄, ȳ) ≤ R̃T1 (x̂) + R̃T2 (ŷ)

T
+ 4∆

√
2

T
log

1

p
. (7)

The external sampling gradient estimator, that is, the vector
corresponding to the linear function x 7→ ū2(x, ỹt, c̃t), can
be computed via a simple traversal of the game tree. The
algorithm starts at the root of the game tree and starts visiting
the tree. Every time a node that belongs to the chance
player or to Player 2 is encountered, an action is sampled
according to the strategy c or yt, respectively. Every time
a node for Player 1 is encountered, the algorithm branches
on all possible actions and recurses. A simple linear-time
implementation is given as Algorithm 1. For every node of
Player 2 or chance player, the algorithm branches on only
one action. Thus computing an external sampling gradient
estimate is significantly cheaper to compute than the exact
gradient `t1.

Algorithm 1: Efficient implementation of the external
sampling gradient estimator

Input: yt strategy for Player 2

Output: ˜̀t
1 unbiased gradient estimate for `t1 defined

in (4)

1 ˜̀t
1 ← 0 ∈ R|Σ1|

2 subroutine TRAVERSEANDSAMPLE(v)
3 I ← infoset to which v belongs
4 if v is a leaf then
5 ˜̀t

1[σ1(v)]← u1(v)
6 else if v belongs to the chance player then
7 Sample an action a∗ ∼

(
c[(I,a)]
c[σc(I)]

)
a∈Av

8 TRAVERSEANDSAMPLE(ρ(v, a∗))
9 else if v belongs to Player 2 then

10 Sample an action a∗ ∼
(
yt[(I,a)
yt[σ2(I)]

)
a∈Av

11 TRAVERSEANDSAMPLE(ρ(v, a∗))
12 else if v belongs to Player 1 then
13 for a ∈ Av do
14 TRAVERSEANDSAMPLE(ρ(v, a))

15 TRAVERSEANDSAMPLE(r) . r is root of the game tree
16 return ˜̀t

1

Remark. Analogous estimators where only the chance
player’s strategy c or only Player 2’s strategy yt are sampled
are referred to as chance sampling estimator and opponent
sampling estimator, respectively. In both cases, the same
value of M̃ = ∆ (and therefore the bound in (7)) applies.

Remark. In the special case in which R1 and R2 run the
CFR regret minimization algorithm, our analysis imme-
diately implies the correctness of external-sampling MC-
CFR, chance-sampling MCCFR, and opponent-sampling
MCCFR, while at the same time yielding a significant im-
provement over the theoretical convergence rate to Nash
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equilibrium of the overall algorithm: the right hand side
of (7) grows as

√
log(1/p) in p, compared to the O(

√
1/p)

of the original analysis by Lanctot et al. (2009).

Finally, we remark that our regret bound has a more favor-
able dependence on game-specific constants (for example,
the number of information sets of each player) than the
original analysis by (Lanctot et al., 2009).

4.2. Outcome Sampling

Let wt ∈ X be an arbitrary strategy for Player 1. Further-
more, let z̃t ∈ Z be a random variable such that for all
z ∈ Z,

Pt[z̃t = z] = wt[σ1(z)] · yt[σ2(z)] · c[σc(z)],

and let ez be defined as the vector such that ez [σ1(z)] = 1

and ez [σ] = 0 for all other σ ∈ Σ1, σ 6= σ1(z). It is a simple
exercise to prove that the random vector

˜̀t
1 :=

u2(z̃t)

wt[σ1(z̃t)]
ez̃t

is such that Et[ ˜̀t1] = `t1 (see Appendix A for a proof). This
particular definition of ˜̀t

1 is called the outcome sampling
gradient estimator.

Computationally, the outcome sampling gradient estimator
is cheaper than the external sampling gradient estimator.
Indeed, since wt ∈ X , one can sample z̃t by following a
random path from the root of the game tree by sampling
(from the appropriate player’s strategy) one action at each
node encountered along the way. The walk terminates as
soon as it reaches a leaf, which corresponds to z̃.

As we show in Appendix A, the value of M̃ for the outcome
sampling gradient estimator is

M̃ = ∆ · max
σ∈Σ1

1

wt[σ]
.

So, the high-probability bound on the saddle point gap is in-
versely proportional to the minimum entry in wt, as already
noted by Lanctot et al. (2009).

4.2.1. EXPLORATION-BALANCED OUTCOME SAMPLING

In Appendix A we show that a strategy w∗ exists such
that w∗[σ] ≥ 1/(|Σ1| − 1) for every σ ∈ Σ1. Since w∗

guarantees that all of the |Σ1| entries of w∗ are at least
1/(|Σ1| − 1), we call w∗ the exploration-balanced strategy,
and the corresponding outcome sampling regret estimator
the exploration-balanced outcome sampling regret estimator.
As a consequence of the above analysis, when both play-
ers’ gradients are estimated using the exploration-balanced
outcome sampling regret estimator, with probability at least
1 − 2p the saddle point gap of the average strategy profile
(x̄, ȳ) is upper bounded as

ξ(x̄, ȳ) ≤ R̃T1 (x̂) + R̃T2 (ŷ)

T
+ 2(|Σ1|+ |Σ2|)∆

√
2

T
log

1

p
.

To our knowledge, this is the first time that the exploration-
balanced outcome sampling gradient estimator has been
introduced.

The final remark of Section 4.1 applies to outcome sampling
as well.

5. Experiments
In this section we perform numerical simulations to investi-
gate the practical performance of several stochastic regret-
minimization algorithms. First, we have the MCCFR algo-
rithm instantiated with regret matching (Hart & Mas-Colell,
2000). Second, we instantiate two algorithms through our
framework: FTRL and OMD, both using the dilated entropy
distance-generating function from Kroer et al. (2020), using
their theoretically correct recursive scheme for information-
set weights.2 We will show two sections of experiments, one
with external sampling and one with exploration-balanced
outcome sampling.

For each game, we try four choices of stepsize η in FTRL
and OMD: 0.1, 1, 10, 100. For each algorithm-game pair we
show only the best-performing of these four stepsizes in
the plots below. The results for all stepsizes can be found
in Appendix C. The stepsize is important: for most games
where FTRL or OMD beats MCCFR, only the best stepsize
does so. At the same time, we did not extensively tune
stepsizes (four stepsizes increasing by a factor of 10 per
choice leads to very coarse tuning), so there is room for
better tuning of these. Figuring out how to intelligently
choose, or adapt, stepsizes is an important future research
direction to the present paper, and would likely lead to even
faster algorithms.

For each game-algorithm pair, we run the experiment 50
times, in order to account for variance in gradient estimates.
All plots show the mean performance, and each line is
surrounded by shading indicating one standard deviation
around the mean performance.

In each plot we show the number of nodes of the game
tree touched on the x-axis. On the y-axis we show the
saddle-point gap. All algorithms are run until the number
of nodes touched corresponds to 50 full tree traversals (or,
equivalently, 25 iterations of deterministic CFR or CFR+).

We run our experiments on four different games. Below,
we summarize some key properties of the games. The full
description of each game is in Appendix B.

Leduc poker is a standard parametric benchmark game in
the EFG-solving community (Southey et al., 2005). For our
experiments we consider the largest variant of the game,

2We do this as opposed to constant information-set weights as
used numerically by some past papers. Our preliminary experi-
ments with constant weights gave worse results.
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Figure 3. Performance of MCCFR, FTRL, and OMD when using the external sampling gradient estimator.

Leduc13. Leduc13 uses a deck of 13 unique cards, with two
copies of each card. The game has 166,336 nodes and 6,007
sequences per player.

Goofspiel The variant of Goofspiel (Ross, 1971) that we use
in our experiments is a two-player card game, employing
three identical decks of 4 cards each. This game has 54,421
nodes and 21,329 sequences per player.

Search is a security-inspired pursuit-evasion game. The
game is played on a graph shown in Figure 5 in Appendix B.
We consider two variants of the game, which differ in the
number k of simultaneous moves allowed before the game
ties out. Search-4 uses k = 4 and has 21,613 nodes, 2,029 de-
fender sequences, and 52 attacker sequences. Search-5 uses
k = 5 and has 87,972 nodes, 11,830 defender sequences,
and 69 attacker sequences. Our search game is a zero-sum
variant of the one used by Kroer et al. (2018). A similar
search game was considered by Bošanskỳ et al. (2014) and
Bošanskỳ & Čermák (2015).

Battleship is a parametric version of a classic board game,
where two competing fleets take turns shooting at each
other (Farina et al., 2019c). The game has 732,607 nodes,
73,130 sequences for Player 1, and 253,940 sequences for
Player 2.

5.1. External Sampling

Figure 3 (top left) shows the performance on Battleship
with external sampling. We see that both FTRL and OMD

perform better than MCCFR when using stepsize η = 10.
In Goofspiel (top right plot) we find that OMD performs
significantly worse than MCCFR and FTRL. MCCFR per-
forms slightly better than FTRL also. In Leduc 13 (bottom
left) we find that OMD performs significantly worse than
MCCFR and FTRL. FTRL performs slightly better than
MCCFR. Finally, in Search-4 (bottom right) we find that
OMD and MCCFR perform comparably, while FTRL per-
forms significantly better. Due to space limitations, we show
the experimental evaluation for Search-5 in Appendix C. In
Search-5 all algorithms perform comparably, with FTRL
performing slightly better than OMD and MCCFR.

Summarizing across all five games for external sampling,
we see that FTRL, either with η = 10 or η = 100, was better
than MCCFR on four out of five games (and essentially tied
on the last game), with significantly better performance in
the Search games. OMD performs significantly better then
MCCFR and FTRL on Battleship.

5.2. Exploration-Balanced Outcome Sampling

Next, we investigate the performance of our exploration-
balanced outcome sampling. For that gradient estimator we
drew 100 outcome samples per gradient estimate, and use
the empirical mean of those 100 samples as our estimate.
The reason for this is that FTRL and OMD seem more
sensitive to stepsize issues under outcome sampling. It can
be shown easily that by averaging gradient estimators, the
constant M̃ required in Proposition 1 does not increase.
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Figure 4. Performance of MCCFR, FTRL, and OMD when using the exploration-balanced outcome sampling gradient estimator.

Due to computational time issues, we present performance
for only 10 random seeds per game in outcome sampling.
For this reason we omit performance on Search-4, which
seemed too noisy to make conclusions about. Search-4 plots
can be found in Appendix C.

Figure 4 (top left) shows the performance on Battleship with
outcome sampling. Here all algorithms perform essentially
identically, with MCCFR performing significantly worse
for a while, then slightly better, and then they all become
similar around 3× 107 nodes touched.

In Goofspiel (top right), MCCFR performs significantly
better than both FTRL and OMD. Both FTRL and OMD
were best with η = 100, our largest stepsize. It thus seems
likely that even more aggressive stepsizes are needed in
order to get better performance in Goofspiel.

In Leduc13 (bottom left), FTRL with outcome sampling is
initially slower than MCCFR, but eventually overtakes it.
OMD is significantly worse than the other algorithms.

Finally, in Search-5 (bottom right), MCCFR performs signif-
icantly better than FTRL and OMD, although FTRL seems
to be catching up in later iterations.

Overall, when the exploration-balanced outcome sampling
gradient estimator is used for all three algorithms, MCCFR
seems to perform better than FTRL and OMD. In two out of
four games it is significantly better, in one it is marginally
better, and in one FTRL is marginally better. We hypothe-

size that FTRL and OMD are much more sensitive to step-
size issues with outcome sampling as opposed to external
sampling. This would make sense, as the variance becomes
much higher.

6. Conclusion
We introduced a new framework for constructing stochastic
regret-minimization methods for solving zero-sum games.
This framework completely decouples the choice of regret
minimizer and gradient estimator, thus allowing any regret
minimizer to be coupled with any gradient estimator. Our
framework also yields a streamlined and dramatically sim-
pler proof of MCCFR. Furthermore, it immediately gives
a significantly stronger bound on the convergence rate of
MCCFR, whereby with probability 1− p the regret grows
as O(

√
T log(1/p)) instead of O(

√
T/p) as in the original

analysis—an exponentially better bound. We also instanti-
ated stochastic variants of the FTRL and OMD algorithms
for solving zero-sum EFGs using our framework. Exten-
sive numerical experiments showed that it is often possible
to beat MCCFR using these algorithms, even with a very
mild amount of stepsize tuning. Due to its modular na-
ture, our framework opens the door to many possible future
research questions around stochastic methods for solving
EFGs. Among the most promising are methods for control-
ling the stepsize in, for instance, FTRL or OMD, as well as
instantiating our framework with other regret minimizers.
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One potential avenue for future work is to develop gradient-
estimation techniques with stronger control over the vari-
ance. In that case, it is possible to derive a variation of Propo-
sition 1 that is based on the sum of conditional variances,
an intrinsic notion of time in martingales (e.g., Blackwell
& Freedman (1973)). In particular, using the Freedman-
style (Freedman, 1975) concentration result of Bartlett et al.
(2008) for martingale difference sequences, we obtain:

Proposition 3. Let T ≥ 4, and let M and M̃ be positive
constants such that |(`t)>(z−u)| ≤M and |( ˜̀)>(z−u)| ≤
M̃ for all times t = 1, . . . , T and all feasible points z,u ∈
X . Furthermore, let σ :=

√∑T
t=1 Var[dt | ˜̀1, . . . , ˜̀t−1] be

the square root of the sum of conditional variances of the
random variables dt introduced in (5). Then, for all p ∈
(0, 1/2] and all u ∈ X ,

P
[
RT (u) ≤ R̃T (u) + 4 max{σβ, (M + M̃)β2}

]
≥ 1− p,

where

β :=

√
log

(
log T

p

)
.

The concentration result of Proposition 3 takes into account
the variance of the martingale difference sequences. When
the variance is low, the dominant term in the right hand side
of the inequality is (M+M̃)β2 = O(log log T ). On the other
hand, when the variance is high (that is, σ grows as

√
T ), we

recover a bound similar to the Azuma-Hoeffding inequality
(albeit with a slightly worse polylog dependence on T ).

Finally, our framework can also be applied to more general
EFG-like problems, and thus this work also enables one
to instantiate MCCFR or other stochastic methods for new
sequential decision-making problems, for example by using
the generalizations of CFR in Farina et al. (2019a) or Farina
et al. (2019b).
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A. Proofs
A.1. Regret Guarantees when Gradient Estimators are Used

For completeness, we show a proof of Proposition 1. As mentioned, it is an application of the Azuma-Hoeffding inequality
for martingale difference sequences, which we now state (see, e.g., Theorem 3.14 of McDiarmid (1998) for a proof).

Theorem 1 (Azuma-Hoeffding inequality). Let Y1, . . . , Yn be a martingale difference sequence with ak ≤ Yk ≤ bk for each
k, for suitable constants ak, bk. Then for any τ ≥ 0,

P
[∑

Yk ≥ τ
]
≤ e−2τ2/

∑
(bk−ak)2 .

Proposition 1. Let M and M̃ be positive constants such that |(`t)>(z − z′)| ≤ M and |( ˜̀)>(z − z′)| ≤ M̃ for all times
t = 1, . . . , T and all feasible points z,z′ ∈ Z. Then, for all p ∈ (0, 1) and all u ∈ Z,

P
[
RT (u) ≤ R̃T (u) + (M + M̃)

√
2T log

1

p

]
≥ 1− p.

Proof. As observed in the body, dt := (`t)>(zt − u)− ( ˜̀t)>(zt − u) is a martingale difference sequence. Furthermore, at
all times t,

|dt| = |(`t)>(zt − u)− ( ˜̀t)>(zt − u)|

≤ |(`t)>(zt − u)|+ |( ˜̀t)>(zt − u)|
≤M + M̃, (8)

and therefore −(M + M̃) ≤ dt ≤ (M + M̃) for each t.

Furthermore,
T∑
t=1

dt =

(
T∑
t=1

(`t)>(zt − u)

)
−

(
T∑
t=1

( ˜̀t)>(zt − u)

)
= RT (u)− R̃T (u).

So, using Theorem 1, for all τ ≥ 0

P
[
RT (u) ≤ R̃T (u) + τ

]
= P

[
T∑
t=1

dt ≤ τ

]

= 1− P

[
T∑
t=1

dt ≥ τ

]

≥ 1− exp

{
− 2τ2∑T

t=1 4(M + M̃)2

}

= 1− exp

{
− 2τ2

4T (M + M̃)2

}
.

Finally, substituting τ = (M + M̃)
√

2T log(1/p) yields the statement.

A.2. Properties of the Outcome Sampling Gradient Estimator

Let wt ∈ X be an arbitrary strategy for Player 1. Furthermore, let z̃t ∈ Z be a random variable such that for all z ∈ Z,

Pt[z̃t = z] = wt[σ1(z)] · yt[σ2(z)] · c[σc(z)],

and let ez be defined as the vector such that ez [σ1(z)] = 1 and ez [σ] = 0 for all other σ ∈ Σ1, σ 6= σ1(z).

Lemma 1. The random vector
˜̀t
1 :=

u2(z̃t)

wt[σ1(z̃t)]
ez̃t

is such that Et[ ˜̀t1] = `t1.
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Proof. For all x ∈ R|Σ1|,

Et[`t1]>x =

∑
z∈Z

P[z̃t = z] · u1(z)

wt[σ1(z)]
ez

>x
=

∑
z∈Z

u2(z) · yt[σ2(z)] · c[σc(z)] · ez

>x
=
∑
z∈Z

u2(z) · yt[σ2(z)] · c[σc(z)] · (e>z x)

=
∑
z∈Z

u2(z) · yt[σ2(z)] · c[σc(z)] · x[σ1(z)]

= u2(x,yt, c) = `>1 x.

Since the equality holds for all x ∈ R|Σ1|, we conclude Et[ ˜̀t1] = `1.

Furthermore,
Lemma 2. For all x,x′ ∈ X ,

( ˜̀
1)>(x− x′) ≤ ∆ · max

σ∈Σ1

1

wt[σ]
.

Proof. Using the definition of ˜̀
1,

( ˜̀
1)>(x− x′) =

u2(z̃t)

wt[σ1(z̃t)]

(
x[σ1(z̃t)]− x′[σ1(z̃t)]

)
.

Since each entry of x and x′ is in the interval [0, 1], the quantity x[σ1(z̃t)]− x′[σ1(z̃t)] has absolute value in [0, 1] as well.
Hence, ∣∣∣( ˜̀

1)>(x− x′)
∣∣∣ ≤ max

z∈Z

∣∣∣∣ u2(z)

wt[σ1(z)])

∣∣∣∣ ≤ ∆ · max
σ∈Σ1

1

wt[σ]

as we wanted to show.

A.3. Exploration-Balanced Strategy

We now describe the construction of the exploration-balanced strategy w∗. Given σ ∈ Σ1, we let Cσ be the set of information
sets IinI1 such that σ1(I) = σ. Furthermore, let mσ , for σ ∈ Σ1, be the number of terminal sequences in the subtree rooted
under σ; formally, mσ is defined recursively as

mσ =


1 if Cσ = ∅;∑
I∈Cσ

∑
a∈AI

m(I,a) otherwise.

Clearly, mσ ≤ |Σ1| − 1, since the empty sequence is never terminal (assuming Player 1 acts at least once). With that, we
define w∗ such that w∗[∅] = 1 and that for all σ = (I, a) ∈ Σ1,

w∗[σ] =
mσ∑

a′∈AI m(I,a′)
w∗[σ1(I)].

It is immediate to verify that w∗ is indeed a valid sequence-form strategy. Furthermore, since for all I ∈ I1, I ∈ Cσ1(I), we
have ∑

a′∈AI
m(I,a′) ≤ mσ(I).

So,
w∗[σ] ≥ mσ

mσ1(I)
w∗[σ1(I)].

By recursively expanding the definition of w∗[σ1(I)] on the right-hand side until σ1(I) = ∅, we ultimately obtain

w∗[σ] ≥ 1

m∅
≥ 1

|Σ1| − 1

for all σ, as we wanted to show.
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A.4. Proposition 3

As mentioned in the body of the paper, Proposition 3 is a direct consequence of the concentration result for martingale
difference sequences of Bartlett et al. (2008), which we state next.

Lemma 3 (Lemma 2 of Bartlett et al. (2008)). Suppose X1, . . . , XT is a martingale difference sequence with |Xt| ≤ b. Let

VartX
t := Var[Xt | X1, . . . , Xt−1].

Let V :=
∑T
t=1 VartX

t be the sum of conditional variances of Xt’s. Further, let σ :=
√
V . Then we have, for any δ < 1/e

and T ≥ 4,

P

[
T∑
t=1

Xt > 2 max{2σ, b
√

log(1/δ)}
√

log(1/δ)

]
≤ log(T )δ.

Proposition 3. Let T ≥ 4, and let M and M̃ be positive constants such that |(`t)>(z − u)| ≤M and |( ˜̀)>(z − u)| ≤ M̃ for

all times t = 1, . . . , T and all feasible points z,u ∈ X . Furthermore, let σ :=

√∑T
t=1 Var[dt | ˜̀1, . . . , ˜̀t−1] be the square

root of the sum of conditional variances of the random variables dt introduced in (5). Then, for all p ∈ (0, 1/2] and all
u ∈ X ,

P
[
RT (u) ≤ R̃T (u) + 4 max{σβ, (M + M̃)β2}

]
≥ 1− p,

where

β :=

√
log

(
log T

p

)
.

Proof. We apply Lemma 3 to the martinagle difference sequence Xt = dt. As argued in (8), |Xt| ≤ (M + M̃) at all times t,
so the constant b = M + M̃ satisfies the requirements of Lemma 3. Finally, we set δ = p/ log(T ) in Lemma 3, so that

√
log(1/δ) =

√
log

(
log T

p

)
= β.

Furthermore, since by hypothesis T ≥ 4 and p ≤ 1/2, δ = p/ log(T ) ≤ 1/(2 log 4) ≤ 1/e, so all hypotheses of Lemma 3 are
satisfied. Hence, we have

P
[
RT (u)− R̃T (u) ≤ 4 max{σβ, (M + M̃)β2}

]
= P

[
T∑
t=1

Xt ≤ 4 max{σβ, bβ2}

]

= P

[
T∑
t=1

Xt ≤ 4 max{σ
√

log(1/δ), b log(1/δ)}

]

= P

[
T∑
t=1

Xt ≤ 2 max{2σ, 2b
√

log(1/δ)}
√

log(1/δ)

]

≥ P

[
T∑
t=1

Xt ≤ 2 max{2σ, b
√

log(1/δ)}
√

log(1/δ)

]
≥ 1− log(T )δ = 1− p,

where the last inequality follows from Lemma 3.

B. Description of the Game Instances Used in the Experiments
We run our experiments on four different games, each described below.

Leduc poker is a standard benchmark in the EFG-solving community (Southey et al., 2005). Our variant, Leduc 13, has a
deck of 13 unique cards, with two copies of each card. The game consists of two rounds. In the first round, each player
places an ante of 1 in the pot and receives a single private card. A round of betting then takes place with a two-bet maximum,
with Player 1 going first. A public shared card is then dealt face up and another round of betting takes place. Again, Player 1
goes first, and there is a two-bet maximum. If one of the players has a pair with the public card, that player wins. Otherwise,
the player with the higher card wins. All bets in the first round are 1, while all bets in the second round are 2. This game has
166336 nodes and 6007 sequences per player.
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Goofspiel The variant of Goofspiel (Ross, 1971) that we use in our experiments is a two-player card game, employing three
identical decks of 4 cards each. At the beginning of the game, each player receives one of the decks to use it as its own hand,
while the last deck is put face down between the players, with cards in increasing order of rank from top to bottom. Cards
from this deck will be the prizes of the game. In each round, the players privately select a card from their hand as a bet to
win the topmost card in the prize deck. The selected cards are simultaneously revealed, and the highest one wins the prize
card. In case of a tie, the prize card is discarded. Each prize card’s value is equal to its face value, and at the end of the game
the players’ score are computed as the sum of the values of the prize cards they have won. This game has 54421 nodes and
21329 sequences per player.

Search is a security-inspired pursuit-evasion game. The game is played on the graph shown in Figure 5.

P1 P2

S

5

10

3

Figure 5. The graph on which the search game is played.

It is a simultaneous-move game (which can be modeled as a turn-taking EFG with appropriately chosen information sets).
The defender controls two patrols that can each move within their respective shaded areas (labeled P1 and P2). At each
time step the controller chooses a move for both patrols. The attacker is always at a single node on the graph, initially the
leftmost node labeled S. The attacker can move freely to any adjacent node (except at patrolled nodes, the attacker cannot
move from a patrolled node to another patrolled node). The attacker can also choose to wait in place for a time step in order
to clean up their traces. If a patrol visits a node that was previously visited by the attacker, and the attacker did not wait to
clean up their traces, they can see that the attacker was there. If the attacker reaches any of the rightmost nodes they receive
the respective payoff at the node (5, 10, or 3, respectively). If the attacker and any patrol are on the same node at any time
step, the attacker is captured, which leads to a payoff of −1 for the attacker and a payoff of 1 for the defender. Finally, the
game times out after k simultaneous moves, in which case both players defender receive payoffs 0. Search-4 (Search-5) has
21613 (87,927) nodes, 2029 (11,830) defender sequences, and 52 (69) attacker sequences.

Our search game is a zero-sum variant of the one used by Kroer et al. (2018). A similar search game considered by Bošanskỳ
et al. (2014) and Bošanskỳ & Čermák (2015).

Battleship is a parametric version of a classic board game, where two competing fleets take turns shooting at each
other (Farina et al., 2019c). At the beginning of the game, the players take turns at secretly placing a set of ships on separate
grids (one for each player) of size 3× 2. Each ship has size 2 (measured in terms of contiguous grid cells) and a value of 1,
and must be placed so that all the cells that make up the ship are fully contained within each player’s grids and do not overlap
with any other ship that the player has already positioned on the grid. After all ships have been placed. the players take turns
at firing at their opponent. Ships that have been hit at all their cells are considered sunk. The game continues until either one
player has sunk all of the opponent’s ships, or each player has completed r shots. At the end of the game, each player’s
payoff is calculated as the sum of the values of the opponent’s ships that were sunk, minus the sum of the values of ships
which that player has lost. The game has 732607 nodes, 73130 sequences for player 1, and 253940 sequences for player 2.

C. Additional Experimental Results
C.1. External Sampling

The Search-5 plot omitted from the main paper is shown here.
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Figure 6. Performance of MCCFR, FTRL, and OMD with external sampling on Search-5.

Figures 7 through 11 show the performance of FTRL and OMD for all four stepsizes that we tried on each game:
η = 0.1, 1, 10, 100.
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Figure 7. Performance of FTRL and OMD with four stepsizes on Battleship with external sampling. MCCFR shown for reference
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Figure 8. Performance of FTRL and OMD with four stepsizes on Goofspiel with external sampling. MCCFR shown for reference



Stochastic Regret Minimization in Extensive-Form Games

1 2 3 4 5 6 7 8

Number of nodes touched (×106)

10−1

100

Sa
dd

le
-p

oi
nt

ga
p

Leduc13, external sampling, 50 seeds

MCCFR
FTRL (η = 0.1)
FTRL (η = 1)
FTRL (η = 10)
FTRL (η = 100)

1 2 3 4 5 6 7 8

Number of nodes touched (×106)

10−1

100

Sa
dd

le
-p

oi
nt

ga
p

Leduc13, external sampling, 50 seeds

MCCFR
OMD (η = 0.1)
OMD (η = 1)
OMD (η = 10)
OMD (η = 100)

Figure 9. Performance of FTRL and OMD with four stepsizes on Leduc 13 with external sampling. MCCFR shown for reference
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Figure 10. Performance of FTRL and OMD with four stepsizes on Search-4 with external sampling. MCCFR shown for reference
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Figure 11. Performance of FTRL and OMD with four stepsizes on Search-5 with external sampling. MCCFR shown for reference

C.2. Exploration-Balanced Outcome Sampling

The Search-4 plot omitted from the main paper is shown here.
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Figure 12. Performance of MCCFR, FTRL, and OMD with outcome sampling on Search-4.

Figure 12 shows the performance on Search-4 and Search-5 with outcome sampling. In Search-4 we find that MCCFR
performs better than FTRL and OMD, though FTRL is comparable at later iterations.

Figures 13 through 17 show the performance of FTRL and OMD with outcome sampling for all four stepsizes that we tried
on each game: η = 0.1, 1, 10, 100.
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Figure 13. Performance of FTRL and OMD with four stepsizes on Battleship with outcome sampling. MCCFR shown for reference
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Figure 14. Performance of FTRL and OMD with four stepsizes on Goofspiel with outcome sampling. MCCFR shown for reference
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Figure 15. Performance of FTRL and OMD with four stepsizes on Leduc 13 with outcome sampling. MCCFR shown for reference
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Figure 16. Performance of FTRL and OMD with four stepsizes on Search-4 with outcome sampling. MCCFR shown for reference
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Figure 17. Performance of FTRL and OMD with four stepsizes on Search-5 with outcome sampling. MCCFR shown for reference
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