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Part 1: Foundations

- Bilinear saddle-point problems

- Regret minimization



Bilinear Saddle-Point Problems

• Optimization problems of the form
min
𝑥∈𝑋

max
𝑦∈𝑌

𝑥𝑇𝐴𝑦

where 𝑋 and 𝑌 are convex and compact sets, and 𝐴 is a real 
matrix.

• Ubiquitous in game theory:

– Nash equilibrium in zero-sum games

– Trembling-hand perfect equilibrium

– Correlated equilibrium, etc.



Bilinear Saddle-Point Problems

• Quality metric: saddle-point gap

• Gap of approximate solution (𝑥, 𝑦):

𝜉 𝑥, 𝑦 ≔ max
𝑦′∈𝑌

𝑥𝑇𝐴𝑦′ − min
𝑥′∈𝑋

𝑥′ 𝑇𝐴𝑦

• In the context of approximate Nash equilibrium, the gap 
represents the “exploitability” of the strategy profile



Regret Minimization

• Regret minimizer: device for repeated decision making that 
supports two operations

– It outputs the next decision, 𝑥𝑡+1 ∈ 𝑋

– It receives/observes a linear loss function ℓ𝑡 used to evaluate the last 
decision, 𝑥𝑡

• The learning is online, in the sense that the next decision 𝑥𝑡+1

is based only on the previous decision 𝑥1, … , 𝑥𝑡 and 
corresponding observed losses ℓ1, … , ℓ𝑡

– No assumption available on future losses!

– Must handle adversarial environments



Regret Minimization

• Quality metric for the device: cumulative regret

“How well do we do against best fixed decision in hindsight?”

𝑅𝑇 ≔෍

𝑡=1

𝑇

ℓ𝑡 𝑥𝑡 −min
ො𝑥∈𝑋

෍

𝑡=1

𝑇

ℓ𝑡 ො𝑥

• Goal: make sure that the regret grows at a sublinear rate

– Many general-purpose regret minimizers known in the literature 

achieve 𝑂( 𝑇) cumulative regret

– This matches the learning-theoretic bound of Ω( 𝑇)
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Connection with Saddle Points

• Regret minimization can be used to converge to saddle-point
– Great success in game theory (e.g., Libratus)

• Take the bilinear saddle-point problem min
𝑥∈𝑋

max
𝑦∈𝑌

𝑥𝑇𝐴𝑦

– Instantiate a regret minimizer for set 𝑋 and one for set Y

– At each time t, the regret minimizer for 𝑋 observes loss 𝐴𝑦𝑡

– … and the regret minimizer for 𝑌 observes loss −𝐴𝑇𝑥𝑡

• Well-known folk lemma: at each time T, the profile of average decisions 
( ҧ𝑥, ത𝑦) produced by the regret minimizers has gap

𝜉 ҧ𝑥, ത𝑦 ≤
𝑅𝑋
𝑇 + 𝑅𝑌

𝑇

𝑇
= 𝑂

1

𝑇
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Recap of Part 1

• Saddle-point problems are min-max problems over convex sets

– Many game-theoretical equilibria can be expressed as saddle-point 
problems, including Nash equilibrium

• Regret minimization is a powerful paradigm in online convex 
optimization

– Useful to converge to saddle-points in “self-play”

– Assumes no information is available on the future loss

– Optimal convergence rate (in terms of saddle-point gap): Θ
1

𝑇



Part 2: Recent Advances
(Optimistic/predictive regret minimization)

- Examples of optimistic regret minimizers

- Accelerated convergence to saddle points



Optimistic/Predictive Regret Minimization

• Recent breakthrough in online learning

• Similar to regular regret minimization

• Before outputting each decision 𝑥𝑡, the predictive regret 
minimizer also receives a prediction 𝑚𝑡 of the (next) loss 
function ℓ𝑡

– Idea: the regret minimizer should take advantage of this prediction 
to produce better decisions

– Requirement: a predictive regret minimizer must guarantee that the 
regret will not grow should the predictions be always correct



Required Regret Bound

• Enhanced requirement on regret growth

𝑅𝑇 ≤ 𝛼 + 𝛽෍

𝑡=1

𝑇

ℓ𝑡 −𝑚𝑡
∗
2 − 𝛾෍

𝑡=1

𝑇

𝑥𝑡 − 𝑥𝑡−1 ∗
2
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• Predictive regret minimizers exist

– Optimistic follow-the-regularized leader (Optimistic FTRL)
[Syrgkanis et al., 2015]

– Optimistic online mirror descent (Optimistic OMD)
[Rakhlin and Sridharan, 2013]

Penalty for wrong predictions



Optimistic FTRL

• Picks the next decision 𝑥𝑡+1 according to

𝑥𝑡+1 = argmin𝑥∈𝑋 𝑚𝑡+1 +෍

𝜏=1

𝑡

ℓ𝜏 , 𝑥 +
1

𝜂
𝑑 𝑥 ,

where 𝑑(𝑥) is a 1-strongly convex regularizer over 𝑋.
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Optimistic OMD

• Slightly more complicated rule for picking the next decision

• Implementation again parametric on a 1-strongly convex 
regularizer just like optimistic FTRL



Accelerated convergence to saddle points

• When the prediction 𝑚𝑡 is set up to be equal to ℓ𝑡−1, one can 
improve the folk lemma:

The average decisions output by predictive regret minimizers 
that face each other satisfy

𝜉 ҧ𝑥, ത𝑦 = 𝑂
1

𝑇

– This again matches the learning-theoretic bound for (accelerated) 
first-order methods



Recap of Part 2

• Predictive regret minimization is a recent breakthrough in 
online learning 

• Idea: predictive regret minimizers receive a prediction of the 
next loss

• “Good” predictive regret minimizers exist in the literature

• Predictive regret minimizers enable to break the learning 

theoretic bound of Θ
1

𝑇
convergence to saddle points, and 

enable accelerated Θ
1

𝑇
convergence instead.



Part 3: Applications to Game Theory

- Extensive-form games

- How to construct regularizers in games



Extensive-Form Games

• Can capture sequential and 
simultaneous moves

• Private information
• Each information set contains a 

set of “undistinguishable” tree 
nodes
– Information sets correspond to 

decision points in the game

• We assume perfect recall: no 
player forgets what the player 
knew earlier



Decision Space for an Extensive-Form Game

• The set of strategies in an extensive-form games is best expressed in 
sequence form [von Stengel, 1996]
– For each action 𝑎 at decision point/information set 𝑗, associate a real 

number that represents the probability of the player taking all actions on 
the path from the root of the tree to that (information set, action) pair

• (Non-predictive) regret minimizers that can output decisions on the 
space of sequence-form strategies exist
– Notably, CFR and its later variants CFR+ [Tammelin et al., 2015] and Linear 

CFR [Brown and Sandholm, 2019]

– Great practical success, but suboptimal 𝑂
1

𝑇
convergence rate to 

equilibrium



Natural Question

How can we set up optimistic regret minimizers for 
the space of sequence-form strategies?



Regularizers for Sequence-Form Strategies

• Both optimistic FTRL and optimistic OMD are parametric on a 
choice of regularizers for the domain of decisions

– In the case of extensive-form games: space of sequence-form 
strategies

• In the paper we focus on dilated regularizers:

– Pick a local regularizer at each decision point in the game

– “Connect” the local regularizer via dilation (a convexity-preserving 
operation)



Regularizers for Sequence-Form Strategies

• We give a framework for how to set up dilated regularizers in 
extensive-form games

• We give guarantees on the strong convexity modulus of the 
regularizers (wrt Euclidean norm)

• We give specific examples of such regularizers

• These regularizers can be used in conjunction with optimistic 

FTRL and optimistic OMD to converge to equilibrium as Θ
1

𝑇



Dilated Regularizers Imply Local Regret 
Minimization

• We show that optimistic FTRL and optimistic OMD instantiated 
with our regularizers decompose regret over the extensive-
form strategy space as a sum of contributions local to each 
information set

• Optimistic OMD in particular can be seen as using local regret 
minimizers, one for each information set, to minimize regret 
over the whole sequential strategy space

• This matches the CFR paradigm, the leading state of the art in 
extensive-form game solving



Experimental Observations

• Several orders of magnitude faster than CFR/CFR+ in shallow 
games



Experimental Observations

• On the other hand, deeper games seem to pose more 
challenges



Conclusions

• We studied how optimistic regret minimization can be applied 
in the context of extensive-form games

– Fundamental ingredient: tractable regularizers for the domain at 
hand (extensive-form strategy space)

• First explicit bound on strong convexity properties of dilated 
distance-generating functions wrt Euclidean norm

• We prove that regret updates are local at each decision point

• In shallow games, these methods can outperform state-of-the-
art CFR/CFR+ by up to 12 orders of magnitude

– Acceleration in deeper games remains elusive


