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Part 1: Foundations

- Bilinear saddle-point problems

- Regret minimization



Bilinear Saddle-Point Problems

* Optimization problems of the form

min max x! Ay
XEX YEeY

where X and Y are convex and compact sets, and A is a real
matrix.

e Ubiquitous in game theory:
— Nash equilibrium in zero-sum games

— Trembling-hand perfect equilibrium
— Correlated equilibrium, etc.



Bilinear Saddle-Point Problems

e Quality metric: saddle-point gap
* Gap of approximate solution (x, y):
§(x,y) = maxxTAy’ — min(x")T Ay
y'ey x'ex

* |n the context of approximate Nash equilibrium, the gap
represents the “exploitability” of the strategy profile



Regret Minimization

* Regret minimizer: device for repeated decision making that
supports two operations
— It outputs the next decision, xt*1 € X
— It receives/observes a linear loss function £t used to evaluate the last

decision, x*

* The learning is online, in the sense that the next decision xt*?!
is based only on the previous decision x1, ..., xt and
corresponding observed losses ¢, ..., £t
— No assumption available on future losses!

— Must handle adversarial environments



Regret Minimization

e Quality metric for the device: cumulative regret

“How well do we do against best fixed decision in hindsight?”

T T
RT = ; £t (x?) — rfrlel}l(l {; ft(f)}

* Goal: make sure that the regret grows at a sublinear rate

— Many general-purpose regret minimizers known in the literature
achieve O(v/T) cumulative regret

— This matches the learning-theoretic bound of Q(/T)



Regret Minimization

e Quality metric for the device: cumulative regret

“How well do we do against best fixed decision in hindsight?”

T T
RT = ; £t (x?) — rfrlel}l(l {; ft(a?)}



Connection with Saddle Points

* Regret minimization can be used to converge to saddle-point
— Great success in game theory (e.g., Libratus)
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— Great success in game theory (e.g., Libratus)

e Take the bilinear saddle-point problem min max x” Ay

XeX YyEeY

— Instantiate a regret minimizer for set X and one for set Y
— At each time t, the regret minimizer for X observes loss Ay*®

... and the regret minimizer for Y observes loss —AT x*t

}

“Self-play”




Connection with Saddle Points
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e Take the bilinear saddle-point problem min max x” Ay
— Instantiate a regret minimizer for set X and one for set Y

— At each time t, the regret minimizer for X observes loss Ay*®
— ... and the regret minimizer for Y observes loss —AT x*t

XeX YyEeY

}

“Self-play”

* Well-known folk lemma: at each time T, the profile of average decisions

(x,y) produced by the regret minimizers has gap

of

§(x,y) <

Ry + Ry
— =

1

VT

)




Recap of Part 1

» Saddle-point problems are min-max problems over convex sets

— Many game-theoretical equilibria can be expressed as saddle-point
problems, including Nash equilibrium

e Regret minimization is a powerful paradigm in online convex
optimization
— Useful to converge to saddle-points in “self-play”
— Assumes no information is available on the future loss

— Optimal convergence rate (in terms of saddle-point gap): © (\/if)



Part 2: Recent Advances
(Optimistic/predictive regret minimization)

- Examples of optimistic regret minimizers

- Accelerated convergence to saddle points



Optimistic/Predictive Regret Minimization

e Recent breakthrough in online learning
* Similar to regular regret minimization

* Before outputting each decision x¢, the predictive regret
minimizer also receives a prediction m® of the (next) loss

function #¢
— |Idea: the regret minimizer should take advantage of this prediction
to produce better decisions

— Requirement: a predictive regret minimizer must guarantee that the
regret will not grow should the predictions be always correct



Required Regret Bound

* Enhanced requirement on regret growth

T T
RT<a+f ) [0 —mil2 =y ) flxt = xt1|
t=1 t=1
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Required Regret Bound

* Enhanced requirement on regret growth

T
RT < a+ ) I8 —ml2l-y ) flxt = xt1)1
t=1

Penalty for wrong predictions

* Predictive regret minimizers exist

— Optimistic follow-the-regularized leader (Optimistic FTRL)
[Syrgkanis et al., 2015]

— Optimistic online mirror descent (Optimistic OMD)
[Rakhlin and Sridharan, 2013]



FTRL

* Picks the next decision xt** according to

t
1
xt*1 = argmin,cy Eff,x + Ed(X)’
=1

where d(x) is a 1-strongly convex regularizer over X.



Optimistic FTRL

* Picks the next decision xt** according to
: 1
xt*1 = argmin,ey | mt*? +2 Y, x|+ Ed(x),
T=1

where d(x) is a 1-strongly convex regularizer over X.



Optimistic OMD

 Slightly more complicated rule for picking the next decision

* Implementation again parametric on a 1-strongly convex
regularizer just like optimistic FTRL



Accelerated convergence to saddle points

» When the prediction m! is set up to be equal to #~1, one can
improve the folk lemma:

The average decisions output by predictive regret minimizers
that face each other satisfy

1
xX,y)=0|=
§(x,y) (T)
— This again matches the learning-theoretic bound for (accelerated)
first-order methods



Recap of Part 2

Predictive regret minimization is a recent breakthrough in
online learning

Idea: predictive regret minimizers receive a prediction of the
next loss

“Good” predictive regret minimizers exist in the literature
Predictive regret minimizers enable to break the learning

theoretic bound of © (\%

1 :
enable accelerated ©® (;) convergence instead.

) convergence to saddle points, and



Part 3: Applications to Game Theory

- Extensive-form games

- How to construct regularizers in games



Extensive-Form Games

@ e Can capture sequential and
simultaneous moves

e Private information

i ,  Each information set contains a
/ / set of “undistinguishable” tree
15  hodes

a b/ \C d acl\pd — Information sets correspond to
" decision points in the game
—3 6 * We assume perfect recall: no

/\f e/ \f e/ \f e/\f ELaeyV?/ref;)rr“gee:S what the player

(0]

1 -16 0 0 —-41 2



Decision Space for an Extensive-Form Game

* The set of strategies in an extensive-form games is best expressed in
sequence form [von Stengel, 1996]
— For each action a at decision point/information set j, associate a real

number that represents the probability of the player taking all actions on
the path from the root of the tree to that (information set, action) pair

e (Non-predictive) regret minimizers that can output decisions on the
space of sequence-form strategies exist

— Notably, CFR and its later variants CFR+ [Tammelin et al., 2015] and Linear
CFR [Brown and Sandholm, 2019]

: . 1
— Great practical success, but suboptimal O (\/_T) convergence rate to
equilibrium



Natural Question

How can we set up optimistic regret minimizers for
the space of sequence-form strategies?



Regularizers for Sequence-Form Strategies

* Both optimistic FTRL and optimistic OMD are parametric on a
choice of regularizers for the domain of decisions

— In the case of extensive-form games: space of sequence-form
strategies

* |n the paper we focus on dilated regularizers:
— Pick a local regularizer at each decision point in the game

— “Connect” the local regularizer via dilation (a convexity-preserving
operation)



Regularizers for Sequence-Form Strategies

We give a framework for how to set up dilated regularizers in
extensive-form games

We give guarantees on the strong convexity modulus of the
regularizers (wrt Euclidean norm)

We give specific examples of such regularizers
These regularizers can be used in conjunction with optimistic

FTRL and optimistic OMD to converge to equilibrium as ® (%)



Dilated Regularizers Imply Local Regret
Minimization

* We show that optimistic FTRL and optimistic OMD instantiated
with our regularizers decompose regret over the extensive-
form strategy space as a sum of contributions local to each
information set

* Optimistic OMD in particular can be seen as using local regret
minimizers, one for each information set, to minimize regret
over the whole sequential strategy space

* This matches the CFR paradigm, the leading state of the art in
extensive-form game solving



Experimental Observations
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» Several orders of magnitude faster than CFR/CFR+ in shallow
games



Experimental Observations
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* On the other hand, deeper games seem to pose more

challenges

Cumulative regret

Leduc

—
o
in

_.
=

M CFR'

CFR

10°

10!

Iteration number (7°)

102

10°




Conclusions

We studied how optimistic regret minimization can be applied
in the context of extensive-form games

— Fundamental ingredient: tractable regularizers for the domain at
hand (extensive-form strategy space)

First explicit bound on strong convexity properties of dilated
distance-generating functions wrt Euclidean norm

We prove that regret updates are local at each decision point

In shallow games, these methods can outperform state-of-the-
art CFR/CFR+ by up to 12 orders of magnitude

— Acceleration in deeper games remains elusive



