Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks

Gabriele Farina¹ Chun Kai Ling¹ Fei Fang²
Tuomas Sandholm^{1,3,4,5}

¹ Computer Science Department, Carnegie Mellon University

² Institute for Software Research, Carnegie Mellon University

³ Strategic Machine, Inc.

⁴ Strategy Robot, Inc.

⁵ Optimized Markets, Inc.

The concept of correlation

- Nash equilibrium assumes a fully decentralized interaction
 - Not the best solution concept in situations where some intermediate form of centralized control can be achieved
- Correlated equilibrium [Aumann 1974]: a mediator can recommend behavior but not enforce it
 - Well understood in normal-form games but not in extensive-form games

Summary of main contributions

- Primary objective: spark more interest in the community towards a deeper understanding of the behavioral and computational aspects of extensive-form correlation
- We propose two parametric benchmark games
 - Chosen to illustrate natural application domains of EFCE: conflict resolution and bargaining/negotiation
 - They can scale in size as desired
- We isolate two mechanisms through which a mediator is able to compel the agents to follow the recommendations
- We show that the problem of computing an optimal extensiveform correlated equilibrium is a saddle-point problem

Extensive-Form Games

- Can capture sequential and simultaneous moves
- Private information
- Each information set contains a set of "undistinguishable" tree nodes
- We assume perfect recall: no player forgets what the player knew earlier

Extensive-Form Correlated Equilibrium (EFCE)

- Introduced by von Stengel and Forges in 2008
- Correlation device selects private signals for the players before the game starts
 - The correlated distribution of signals is known to the players
- Recommendations are revealed incrementally as the players progress in the game tree
 - A recommended move is only revealed when the player reaches the decision point for which the recommendation is relevant
 - Players are free to defect, at the cost of future recommendations

Extensive-Form Correlated Equilibrium (EFCE)

- The players don't know exactly what pair of strategies the correlation device is trying to induce the players to play
 - Bayesian reasoning: after observing each recommendation, the players update their posterior
- The players are free to defect, at the cost of future recommendations
 - The orchestrator cannot enforce behavior
 - The recommendations must be incentive-compatible
 - One of the orchestrator's leverages: stop giving recommendations

Extensive-Form Correlated Equilibrium (EFCE)

- A social-welfare-maximizing orchestrator that is provably incentive-compatible can be constructed in polynomial time in two-player general-sum games with no chance moves [von Stengel and Forges, 2008]
 - Players can be induced to play strategies with significantly higher social welfare than Nash equilibrium...
 - ...even despite the fact that each player to defect
 - Added benefit: players get told what to do---they do not need to come up with their own optimal strategy as in Nash equilibrium

Benchmark games

- EFCE can lead to better social welfare than Nash equilibrium
 - EFCE is often highly nontrivial

First benchmark game: Battleship

Conflict resolution via a mediator

Battleship

- Players take turns to secretly place a set of ships of varying sizes and value on separate grids of size $H \times W$
- After placements, players take turns firing at their opponent
- Ships which have been hit at all the tiles they lie on are considered destroyed
- The game continues until either one player has lost all of their ships, or each player has completed n shots
- Payoff: (value of opponent's ships that were destroyed) γ · (value of own ships that were destroyed)

Toy example

- For now, let's focus on a specific instance of the game:
 - Board size: 3x1
 - Each player only has one ship: length 1, value 1
 - Max 2 rounds of shooting per player

Nash vs EFCE

- The social-welfare-maximizing Nash equilibrium is to place ships at random, and to shoot at random
 - Player 1 wins with probability: 5/9
 - Player 2 wins with probability: 1/3
 - Probability of no ship destroyed: 1/9
 - Social welfare of Nash equilibrium: -8/9 when $\gamma=2$

Nash vs EFCE

- The social-welfare-maximizing Nash equilibrium is to place ships at random, and to shoot at random
 - Player 1 wins with probability: 5/9
 - Player 2 wins with probability: 1/3
 - Probability of no ship destroyed: 1/9
 - Social welfare of Nash equilibrium: -8/9 when $\gamma=2$
- The EFCE mediator is able to compel the players into not sinking any ship with probability **5/18** (when $\gamma = 2$)
 - 2.5x higher probability of peaceful outcome than Nash
 - Social welfare: -13/18 when $\gamma = 2$

Probability of sinking ships

Probability of sinking ships

The strategy of the mediator

- In a nutshell:
 - Correlation plan is constructed so that players are recommended to deliberately miss
 - Incentive-compatibility: deviations are punished by the mediator,
 who reveals to the opponent the ship location that was
 recommended to the deviating player
- Details are complicated---see paper
 - Mediator must keep under check how much information is revealed with each recommendation, and account for the fact that players are free to defect at any point

Second Benchmark game: Sheriff

Bargaining and negotiation

Sheriff game

- The smuggler is trying to smuggle illegal items in their cargo
- The sheriff is trying to stop the Smuggler
- At the beginning of the game, the smuggler secretly loads his cargo with $n \in \{0, ..., n_{\max}\}$ illegal items
- At the end of the game, the sheriff decides whether to inspect the cargo or not
 - If yes, the smuggler must pay a fine $n \cdot p$ if n > 0, otherwise the sheriff must compensate the smuggler with a utility of s
 - If no, the smuggler utility is $n \cdot v$, and the sheriff's utility is 0

Sheriff game: bribery and bargaining rounds

- The game is made interesting by two additional elements (present in the original game too): bribery and bargaining
- After the smuggler loaded the cargo, the two players engage in r rounds of bargaining:
 - At each round $i=1,\ldots,r$, the smuggler offers a bribe $b_i\in\{0,\ldots,b_{\max}\}$, and the sheriff responds whether or not he would accept the proposed bribe
 - This decision is non-consequential
 - If the sheriff accepts bribe b_r the smuggler gets a utility of $p\cdot n$ b_r and the sheriff gets a utility of b_r

EFCEs in the Sheriff game

• Baseline instance: v=5, p=1, s=1, $n_{\max}=10$, $b_{\max}=2$, r=2

- Non-monotonic behavior
- Not even continuous!

EFCEs in the Sheriff game

- With sufficient bargaining steps, the smuggler, with the help of the mediator, is able to convince the sheriff that they have complied with the recommendation by the mediator
 - The mediator spends the first r-1 bribes to give a 'passcode' to the smuggler, so that the sheriff can verify compliance
 - If an unexpected bribe is suggested, then the smuggler must have deviated, and the sheriff will inspect the cargo as punishment

Main takeaways

- EFCE is often nontrivial
- We offer the first empirical observations as to how EFCE is able achieve a better social welfare than Nash equilibrium while only recommending behavior without enforcing it
 - Mediator makes sure that the fact that players stop receiving recommendations upon defection is a deterrent
 - Furthermore, the mediator recommends punitive behavior to the opponent if the mediator detects deviations from the recommendations

- EFCE can be formulated as a bilinear min-max problem (just like Nash equilibrium)
 - This enables the use of a wide array of tools beyond linear programming

 Finding an EFCE in a two-player game can be seen as a bilinear saddle-point problem

$$\min_{x \in X} \max_{y \in Y} x^T A y$$

where:

- -X,Y are convex polytopes
- -A is a real matrix
- This brings the problem of computing EFCE closer to several other concepts in game theory

- From a geometric angle, the saddle-point formulation better captures the combinatorial structure of the problem
 - Sets X and Y have well-defined meaning in terms of the input game tree
 - Algorithmic implications. For example, because of the structure of Y, the minimization problem can be performed via a single bottom-up game tree traversal

- From a computational point of view, the bilinear saddle-point formulation opens the way to the plethora of optimization algorithm that has been developed specifically for saddle-point problems
 - First-order methods (e.g., subgradient descent)
 - Regret minimization methods
- Our saddle-point formulation can be used to prove the correctness of the linear-programming-based approach of von Stengel and Forges (2008)

Projected subgradient method

- As a proof of concept, we implemented a recent method based on subgradient descent [Wang and Bertsekas, 2013] to solve the bilinear saddle-point problem
- Our method beats the commercial linear programming solver Gurobi in large Battleship games

(H, W)	r	Ship	#Actions		#Relevant	Time (LP) 10^{-1} 10^{-2} 10^{-3}			Time (ours)		
		length	Pl 1	P1 2	seq. pairs	10^{-1}	10^{-2}	10^{-3}	10^{-1}	10^{-2}	10^{-3}
(2, 2)	3	1	741	917	35241	2s	2s	2s	1s	2s	
(3, 2)	3	1	15k	47k	3.89M	3m 6s	3m 17s	3m 24s	8s	34s	52s
(3, 2)	4	1	145k	306k	26.4M	42m 39s	42m 44s	43m	2m 48s	14m 1s	23m 24s
(3, 2)	4	2	970k	2.27M	111 M	—- out of memory [†] —-			— did not achieve [‡] —-		

Projected subgradient method

- Our method trades off feasibility of the iterates with their optimality
- Game instance in experiment to the right:
 - 15k unique actions for Pl. 1
 - 47k unique actions for Pl. 2

Regret minimization method

- We also designed the first efficient regret minimization method for computing EFCE
 - Designing such an algorithm is significantly more challenging than designing one for the Nash equilibrium counterpart: the constraints that define the space of correlation plans lack a hierarchical structure and might even form cycle
 - Our approach is based on a special convexity-preserving operation that we coin 'scaled extension'
- Our regret-based approach is significantly faster than Gurobi in large games, and guaranteed to produce feasible iterates

Conclusions

- We introduced two benchmark games in which EFCE exhibits interesting behaviors
- We analyzed those behaviors both qualitatively and quantitatively
- We isolated two ways in which the mediator is able to compel the agents to follow the recommendations
- We showed that an EFCE can be computed via a bilinear saddle-point problem and demonstrated the merits of this formulation by designing algorithms that outperform standard LP-based methods