
Visual Hull Construction, Alignment and
Refinement for Human Kinematic Modeling,

Motion Tracking and Rendering

Kong Man (German) Cheung

CMU-RI-TR-03-44

A Dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in ROBOTICS

at the

Robotics Institute

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

October 2003

c© Kong Man (German) Cheung, 2003. All rights reserved.

Abstract

The abilities to build precise human kinematic models and to perform accurate human

motion tracking are essential in a wide variety of applications such as ergonomic design,

biometrics, anthropological studies, entertainment, human computer interfaces for intel-

ligent environments, and surveillance. Due to the complexity of the human bodies and

the problem of self-occlusion, modeling and tracking humans using cameras are challeng-

ing tasks. In this thesis, we develop algorithms to perform these two tasks based on the

shape estimation method Shape-From-Silhouette (SFS) which constructs a shape estimate

(known as Visual Hull) of an object using its silhouettes images.

In the first half of this thesis we extend the traditional SFS algorithm so that it can be

used effectively for human kinematic modeling and motion tracking. Though popular and

easy to implement, traditional SFS has two serious disadvantages which greatly limit its

use in human related applications. First of all, SFS involves time-consuming testing steps

which make it inefficient in real-time applications. Moreover, building detailed human

body models using SFS is difficult unless we use a large number of cameras because Visual

Hull built from small number of silhouette images is coarse. We address the first problem

by proposing a fast testing/projection algorithm for voxel-based SFS algorithms. To deal

with the second problem, we combine silhouette information over time to effectively in-

crease the number of cameras without physically adding new cameras. We first propose

a new Visual Hull representation called Bounding Edges. We then analyze the ambiguity

problem of aligning two Visual Hulls. Based on the analysis, we develop an algorithm to

i

ii Abstract

align Visual Hulls over time using stereo and an important property of the Shape-From-

Silhouette principle. This temporal SFS algorithm combines both geometric constraints

and photometric consistency to align Colored Surface Points of the object extracted from

the silhouette and color images. Once the Visual Hulls are aligned, they are refined by

compensating for the motion of the object. The algorithm is developed for both rigid and

articulated objects.

In the second half of this thesis we show how the improved SFS algorithms are used

to perform the tasks of human modeling and motion tracking. First we build a system to

acquire human kinematic models consisting of precise shape (constructed using the rigid

object temporal SFS algorithm) and joint locations (estimated using the SFS algorithm for

articulated objects). Once the kinematic models are built, they are used to track the motion

of the person in new video sequences. The tracking algorithm is based on the Visual Hull

alignment idea used in the temporal SFS algorithms. Finally we demonstrate how the

kinematic model and the tracked motion data can be used for image-based rendering and

motion transfer between two people.

Acknowledgments

I wish to sincerely thank my advisors Takeo Kanade and Simon Baker for their guidance,

encouragement, support, inspiration, patience, persistence and enthusiasm during my time

at CMU. Their advice, idea and suggestions on my research and thesis writing is invaluable.

I am especially grateful to have the opportunity to work with both of them. I would also

like to thank the other members of my thesis committee: Gray Bradski, Bob Collins and

Steve Seitz for their comments, suggestions on this thesis.

I would like to dedicate this thesis to my family: my mom So Lan LAM for her love,

my sisters and brothers: Lai Kuen, Lai Kwan, Wai Kwan, Wai Ngor, Kwong Sang and

Kong Hou for their support, encouragement and more importantly their sacrifices which

made it possible for me to pursue my dreams.

I would like to express my gratitude to Shigeyuki Baba, Ralph Gross, Iain Matthews,

Hideo Saito and Sundar Vedula for their help with the Virtualized Reality Laboratory (3D

Room), to Louise Ditmore and Suzanne Lyons Muth for their help on the administrative

issues. Special thanks should be given to Simon Baker, Erin Bridges, Takeo Kanade and

Yoky Matsuoka for kindly agreed to be the models for my experiments.

Finally I would like to thank my friends from King’s College, HKU and HKUST back

in Hong Kong, my friends Frank A., Nima H., John L., Jeremy L., Tim R., Jim W. here in

Pittsburgh for keeping me entertained and sane throughout these years and Tasty Restaurant

for their superb authentic Chinese food.

iii

Table of Contents

1 Introduction 1
1.1 Thesis Outline . 3

2 Shape-From-Silhouette and Visual Hulls 5
2.1 Basic Principle . 5

2.2 Visual Hulls . 7

2.2.1 Problem Scenario and Notation 7

2.2.2 Definitions of Visual Hull . 8

2.2.3 First Fundamental Property of Visual Hulls 9

2.3 Representation and Construction . 10

2.3.1 Two-Dimensional Surface Based Representation 10

2.3.2 Three-Dimensional Volume Based Representation 10

2.4 Silhouette Extraction . 12

2.5 Advantages and Disadvantages . 15

3 Real-time Shape-From-Silhouette 17
3.1 Analysis of Voxel-based SFS with Noisy Silhouettes 17

3.2 A Fast Voxel-based SFS Algorithm: SPOT 23

3.3 Real-time 3D Voxel Reconstruction of Human Motions 25

3.3.1 Surface Voxel Reconstruction . 25

3.3.2 Ellipsoid Fitting . 25

3.3.3 System Architecture and Performance 27

3.4 Related Work . 29

3.5 Discussion . 30

v

vi TABLE OF CONTENTS

4 A New Visual Hull Representation: Bounding Edge 33
4.1 Definition of Bounding Edge . 33
4.2 Second Fundamental Property of Visual Hull 37
4.3 Related Work . 37
4.4 Discussion . 38

5 Visual Hulls Across Time: Rigid Objects 41
5.1 Visual Hull Alignment . 43
5.2 VH Alignment Ambiguity And Geometrical Constraints 44

5.2.1 Geometric Constraints for Aligning 2D Visual Hulls 45
5.2.2 Geometric Constraints for Aligning 3D Visual Hulls 48

5.3 Resolving the Alignment Ambiguity . 50
5.3.1 Colored Surface Points (CSPs) 51
5.3.2 Alignment by Color Consistency 53
5.3.3 Alignment by Color Consistency and Geometrical Constraints . . . 57

5.4 Visibility Issues . 59
5.4.1 Determining Visibility for Locating CSPs 59
5.4.2 Determining Visibility During Alignment 61

5.5 Visual Hull Refinement . 65
5.6 Experimental Results . 66

5.6.1 Synthetic Data Set (Torso Sequence) 66
5.6.2 Real Data Sets: Toy Pooh and Toy Dinosaur 77

5.7 Related Work . 80
5.8 Discussion . 82

6 VH Across Time for Articulated Objects 85
6.1 Temporal SFS for Unknown Articulated Objects 86

6.1.1 Problem Scenario . 86
6.1.2 Alignment with known Segmentation 86
6.1.3 Segmentation with known Alignment 87
6.1.4 Initialization . 90
6.1.5 Summary: Iterative Algorithm . 90
6.1.6 Joint Location Estimation . 91
6.1.7 Shape Refinement . 92

TABLE OF CONTENTS vii

6.2 Experimental Results . 92
6.2.1 Synthetic Data Set . 93
6.2.2 Real Data Sets . 95

6.3 Related Work . 100
6.4 Discussion . 100

7 Human Kinematic Modeling 101
7.1 Joint Skeleton Acquisition . 102

7.1.1 Estimating Individual Joint Positions 102
7.1.2 Joint Registration . 104

7.2 Body Shape Acquisition . 108
7.3 Merging Shape and Joint Information . 111
7.4 Related Work . 114
7.5 Discussion . 116

8 Human Motion Tracking 117
8.1 Image-Based Articulated Object Tracking 118

8.1.1 Problem Scenario . 118
8.1.2 Tracking Principle . 119
8.1.3 Incorporating Joint Constraints into Optimization Equations 121

8.2 Tracking Full Body Human Motion . 123
8.2.1 The Articulated Human Model 123
8.2.2 Hierarchical Tracking . 124
8.2.3 Determining Visibility . 124
8.2.4 Run-time CSPs Segmentation . 126
8.2.5 Dealing with Local Minimum . 128

8.3 Experimental Results . 130
8.3.1 Synthetic Sequences . 130
8.3.2 Real Sequences . 132

8.4 Related Work . 138
8.5 Discussion . 139

9 Human Motion Rendering 141
9.1 Image-Based Articulated Model Rendering Algorithm 142

9.1.1 Input Data . 142

viii TABLE OF CONTENTS

9.1.2 Algorithm Outline . 142
9.1.3 Implementation Details . 145
9.1.4 Experimental Results . 151
9.1.5 Applications . 155

9.2 Related Work . 158
9.3 Discussion . 159

10 Conclusion 161
10.1 Thesis Contributions . 162
10.2 Future Work . 164

Bibliography 167

Appendix 185

A Proof of Equivalence of Visual Hull Definitions 187

B Proofs of Alignment Ambiguity Lemmas 189
B.1 Proof of Lemma 5.1 . 189
B.2 Proof of Lemma 5.2 . 192
B.3 Proof of Lemma 5.3 . 193
B.4 Proof of Lemma 5.4 . 194
B.5 Proof of Lemma 5.5 . 195

C Proofs of Visibility Lemma 197

List of Figures

2.1 (a) A head-shaped object casts silhouettes on two cameras. (b) The visual cone

formed by the silhouette image and the center of camera 1. (c) The shape of the

object is estimated by intersecting all of the visual cones. The Visual Hull of a

general 3D object contains curved surface patches making it difficult to represent

and visualize. 6

2.2 An example Shape-From-Silhouette problem scenario: a head-shaped object O is

surrounded by four cameras at time t1. The silhouette images and camera centers

are represented by S k
j and Ck respectively. 8

2.3 A two dimensional example of constructing the Visual Hull H1 from the silhou-

ettes {S k
1} and camera centers {Ck}: (a) by direct intersection of visual wedges,

(b) by voxel-based approximation. The orange-shaded region (bounded by thick

black lines) represents the approximate Visual Hull while the polygon (outlined in

green) denotes the true one. The former is significantly larger than the latter. . . . 11

2.4 Example images of the background subtraction algorithm : (a) Run-Time im-

age, (b) Background image, (c) Segmented background image, (d) Extracted fore-

ground silhouette. 14

3.1 An example of a foreground image and its silhouette extracted by real-time back-

ground subtraction method described in Section 2.4. There are wrongly marked

pixels in the silhouette image due to noisy original and background images. 19

3.2 (a) Graphs of log(P(FR)) vs. Zε for different Z, (b) Graphs of log(P(FA)) vs. Zε
for different Z. 21

3.3 (a) Graphs of log(P(FA) + P(FR)) vs. Zε for different Z, (b) Graph of optimal Zε
vs. Z, (c) Graph of optimal log(P(FA) + P(FR)) vs. Z. 22

3.4 The SPOT-modified voxel-based Shape-From-Silhouette. 23

ix

x LIST OF FIGURES

3.5 (a) The system architecture of the real-time human motion model reconstruction

system. (b) A screen shot of the user interface. 27
3.6 Twenty four selected frames from the movie clip Realtime-SFS-reconstruction-

fitting.mpg illustrating our real-time human motion reconstruction system [CKBH00]. 31

4.1 The Bounding Edge E i
1 is obtained by first projecting the ray ri

1 onto S 2
1, S 3

1, S 4
1

and then re-projecting the segments overlapped with the silhouettes back into the

3D space. Ei
1 is the intersection of the reprojected segments. 34

4.2 A situation where the Bounding Edge E i
1 consists of more than one segment when

one or more of the silhouettes are not convex. In this case E i
1 contains two seg-

ments
(

S V i
1(1), FV i

1(1)
)

and
(

S V i
1(2), FV i

1(2)
)

. 35
4.3 (a) A toy dinosaur placed on a bunch of bananas. (b) Six silhouette images of the

dinosaur and the bananas captured from six different cameras. (c) Three different

views of the Bounding Edges extracted from sampled boundary points of the six

silhouette images. (d) Three different views of a voxel model reconstructed using

the the standard voxel-based SFS algorithm as discussed in Section 2.3.2. Each

side of the voxel is about 1.5cm long and the dimensions of the toy dinosaur are

about 30cm by 14cm by 15cm. 36

5.1 (a) An image of the toy dinosaur and bananas. (b) The 3D colored Visual Hull

voxel model reconstructed using six silhouette images of the dinosaur/bananas.

Some shape details such as the legs and the horns of the dinosaur are missing in

this model. (c) Voxel model reconstructed using 36 silhouette images. Much better

shape estimation is obtained. (d) Voxel model reconstructed using 66 silhouette

images. An even better shape estimate is obtained. 42
5.2 A 2D example showing the ambiguity issue of aligning Visual Hulls. Both cases

in (a) and (b) have the same silhouette image sets at times t1 and t2 but they are

formed from two different objects with different motion. 44
5.3 (a)(b) Two Visual Hulls of the same object at different positions and orientations.

(c) All edges satisfy Lemma 5.3 when the alignment (R, t) is consistent, (d) edges

E1
1, E4

1 , E5
1 , T−1

(R′,t′)(E
1
2), T−1

(R′,t′)(E
2
2), T−1

(R′,t′)(E
7
2) all violate Lemma 5.3 when the

Visual Hulls are not aligned consistently. 46
5.4 (a) An example of two synthetic 2D Visual Hulls (each with four edges) and the

space of consistent alignments. (b) An example of two synthetic 2D Visual Hulls

(each with six edges) and the solution space of consistent alignments. 47

LIST OF FIGURES xi

5.5 An example scenario of a solid cube with a through hole in the x-direction. The

sufficient part of Lemma 5.5 is not valid in this example. 49

5.6 Locating the touching point (Colored Surface Point) by searching along the Bound-

ing Edge for the point with the minimum projected color variance. 52

5.7 Two sets of CSPs of the dinosaur/bananas dataset (see Figure 5.1) obtained at

two time instants with different positions and orientations (the points are drawn as

small cubes for better display). Note that the CSPs are sparsely sampled and there

is no point-to-point correspondence between the two sets of CSPs. 53

5.8 Visual Hull Alignment using color consistency. The error between the colors of

the 3D surface points and their projected image colors is minimized. 56

5.9 (a) Visibility of points with respect to cameras using Lemma 5.6. (b) An example

where C5 is behind C1. The correct line to be used in Lemma 5.6 is the outer

segment which passes through infinity instead of the direct segment. (c) Bound-

ary points that can be used to construct Bounding Edges are marked by the thick

boundary. These boundary points are the ones which the resulting Bounding Edges

can be seen by at least two other cameras besides camera 1. 60

5.10 (a) The “Direct approach” of applying Lemma 5.6 to determine the visibility of

RW i
1+ t w.r.t. {S k

2}. The projection of RW i
1+ t almost always lies inside {S k

2}. The

over-conservative nature of Lemma 5.6 prohibits us for determining the visibility

of RW i
1 + t. (b) The “Reverse approach” of applying Lemma 5.6 to determine

visibility of RW i
1 + t w.r.t. {S k

2}. The camera centers are inversely transformed by

(RT ,−RT t) and then projected onto {S k
1}. The visibility can then be determined

by checking if the lines joining ui
1 and the projections of the transformed camera

centers intersect with S 1
1 exactly as in Lemma 5.6. 63

5.11 Two measures to increase the conservativeness of the visibility test at the begin-

ning of the optimization process. (a) “Expand the silhouette away” from the point

under consideration. (b) Create a “safe zone” around the local normal at the sil-

houette image point. 64

5.12 Visual Hull Refinement: the silhouette images at time t2 are incorporated into time

t1 by transforming the camera centers according to the recovered rigid motion (R, t). 65

5.13 Some of the input images of cameras 1 and cameras 6 of the synthetic torso sequence. 67

xii LIST OF FIGURES

5.14 Results of X-axis rotation angle and X-component of translation estimated over

time from Experiment Set 1 with different error measure: only geometric con-

straints is used (blue dashed-dotted lines with circle), only color consistency is

used (red dashed lines with asterisks), both geometric constraints and color consis-

tency are used (magenta dotted lines with inverted triangle). The solid black lines

represents the ground-truth values. Results obtained using both error components

are the best followed by results using only color consistency. Due to the alignment

ambiguity, results using only geometrical constraints are the worst among the three. 69

5.15 Results of Y-axis rotation angle and Y-component of translation estimated over

time from Experiment Set 1 with different error measure. See caption of Fig-

ure 5.14 for further details. 70

5.16 Results of Z-axis rotation angle and Z-component of translation estimated over

time from Experiment Set 1 with different error measure. See caption of Fig-

ure 5.14 for further details. 71

5.17 Graphs of refinement errors (missing and extra voxels) across time (frames). Using

both color consistency and geometric constraints has lower error ratio than just

using either one of them. 72

5.18 Graphs of the average RMS errors in rotation and translation against the threshold

used in SC in algorithm V. The bottom half of the figure illustrates the amplified

part of the graph near the optimal threshold value (0.108). Using Bounding Edges

(the red dashed line) is always more accurate than using SC in alignment, even if

the optimal threshold is used for SC. 74

5.19 Results of Y-axis rotation angle and X-component of translation estimated over

time from Experiment Set 2 with different input data: Bounding Edges/Colored

Surface Points (red dashed lines with asterisks), SFS voxel models (magenta dotted-

dashed lines), SFS+SC voxel models with optimal threshold (blue thick dotted

lines) and ground-truth values (solid black lines). Using Bounding Edges/Colored

Surface Points are better than using either SFS or SFS+SC. 75

5.20 Graphs of refinement errors (missing and extra voxels) across time (frames). Using

Bounding Edges has lower error ratio than using either SFS or SFS+SC. 76

5.21 (a) Voxel model constructed at t1 using only 6 silhouette images. (b) Refined SFS

voxel model at t11 using 66 silhouette images. (c) Refined SFS voxel model at t21

using 126 silhouette images. There is significant improvement in shape from (a)

to (c). 77

LIST OF FIGURES xiii

5.22 Some of the input images of camera 1 and camera 4 of the Pooh sequence. 78

5.23 Pooh Data Set. (a) Colored surface points at t1. (b) Unaligned Colored Surface

Points from all frames. (c) Aligned Colored Surface Points of all frames. (d) SFS

model at t1 (6 images used). (e) SFS refined shape at t6 (36 images used). (f) SFS

refined shape at t15 (90 images used). (g) SFS + SC model at t1. (h) SFS + SC

refined model at t6. (i) SFS + SC refined model at t15. See Pooh.mpg for a movie

illustrating these results. 79

5.24 Dinosaur-Banana Sequence. (a) Example input images. (b) Unaligned Colored

Surface Points from all frames. (c) Aligned Colored Surface Points from all

frames. (d) SFS model at t1 (6 images used). (e) SFS refined shape at t6 (36

images used). (f) SFS refined shape at t15 (90 images used). There is signifi-

cant shape improvement from (d) to (f). See Dinosaur-Banana.mpg for a movie

illustrating these results. 81

6.1 A two-part articulated object at two time instants t1 and t2. 86

6.2 Spatial Coherency Rule removes spurious segmentation errors. 89

6.3 Temporal consistency ensures segmentation agrees between successive frames. . . 89

6.4 Input images and results for the right elbow and right hip joints of the synthetic

virtual human. For each joint, the unaligned CSPs from different frames are drawn

with different colors. The aligned and segmented CSPs are shown with two dif-

ferent colors to show the segmentation. The estimated articulation point (joint

location) is indicated by the black sphere. 94

6.5 Some of the input images of camera 3 and camera 6 of the Pooh-Dinosaur sequence. 95

6.6 Segmentation/Alignment/Refinement results of the Pooh-Dinosaur sequence. (a)

The unaligned CSPs from all frames. (b) The aligned and segmented CSPs. (c)

SFS refined voxel models at t1 (8 silhouette images are used). (d) SFS refined

voxel models at t5 (40 silhouette images are used). (e). SFS refined voxel models

at t13 (104 silhouettes are used for the toy Pooh and 72 silhouette images are used

for the dinosaur). 96

xiv LIST OF FIGURES

6.7 Input images and results for the left elbow and left hip joints of SubjectE. For each

joint, the unaligned CSPs from different frames are drawn with different colors.

The aligned and segmented CSPs are shown with two different colors to show the

segmentation. The estimated articulation point (joint location) is indicated by the

black sphere. The aligned CSPs with the original colors are also shown at the

bottom of the figure. 98

6.8 Input images and results for the left shoulder and left knee joints of SubjectG. For

each joint, the unaligned CSPs from different frames are drawn with different col-

ors. The aligned and segmented CSPs are shown with two different colors to show

the segmentation. The estimated articulation point (joint location) is indicated by

the black sphere. The aligned CSPs with the original colors are also shown at the

bottom of the figure. 99

7.1 Input images and results for the right shoulder and right knee joints of SubjectS.

For each joint, the unaligned CSPs from different frames are drawn with differ-

ent colors. The aligned and segmented CSPs are shown with two different colors

to show the segmentation. The estimated articulation point (joint location) is in-

dicated by the black sphere. The aligned CSPs with the original colors are also

shown at the bottom of the figure. 103

7.2 The four steps of the Limb Joints Alignment Procedure. 105

7.3 The left shoulder and elbow data sequences of SubjectG. In (c) the joints regis-

tered in the elbow sequence (without Steps 3 and 4) is bent while in (d) the joints

registered w.r.t. the shoulder sequence with Steps 3 and 4 is straight. 106

7.4 (a) Global joint registration for the four limbs. (b) For each limb, two steps are

required to register the joints globally. 107

7.5 Joint skeleton of SubjectE after the global registration procedure. For display

clarity, the CSPs shown in the figures are down-sampled in a ratio of one in five. . 108

7.6 Results of body shape acquisition for SubjectE. (a) Four input images of camera

4, (b) unaligned and aligned colored surface points from all frames, (c) refined

Visual Hull of the body displayed from several different view points. 110

7.7 Results of body shape acquisition for SubjectG. (a) Four input images of camera

4, (b) unaligned and aligned colored surface points from all frames, (c) refined

Visual Hull of the body displayed from several different view points. 111

LIST OF FIGURES xv

7.8 Results of body shape acquisition for SubjectS. (a) Four input images of camera

4, (b) unaligned and aligned colored surface points from all frames, (c) refined

Visual Hull of the body displayed from several different view points. 112

7.9 Segmenting all of the voxel centers to the appropriate body parts. (a) The arm

cutting planes are found by sweeping a plane circularly around the shoulder joints.

The plane which cuts the least number of voxels is chosen. (b) The leg cutting

planes are formed by two planes passing through the hips joints at a 45 degree

angle with the horizontal, and a vertical plane which separate the legs from each

other. (c) The joints, the cutting planes and the segmented voxels of the model. . . 113

7.10 Articulated model of (a) synthetic virtual person, (b) SubjectE, (c) SubjectG and

(d) SubjectS. In (a) and (b), the CSPs are shown with their original colors. In

(c) and (d), the CSPs of different body parts are shown with different colors. For

display clarity, the CSPs drawn are down-sampled at a ratio of one in two. 114

7.11 Flow chart illustrating the three tasks in our human kinematic modeling system. . . 115

8.1 (a) The articulated CSP model of an articulated object with three rigid parts A, B

and C. (b) The object itself at run-time t j. The articulated CSP model in (a) is

used to estimate the motion parameters of the object at t j. 119

8.2 Determining visibility at time t j using an articulated voxel model and the estimated

motion parameters at t j. 125

8.3 Segmenting the 3D CSPs at t j using approximated ellipsoidal shells at t j−1. 127

8.4 Segmenting the 3D CSPs by segmenting the 2D boundary of the silhouette image

S k
j at t j. 127

8.5 Three situations where our tracking algorithm is particularly vulnerable to local

minima. (a) The arm is very close to the body. (b) The legs are crossing each

other. (c) The arm is straight and of homogeneous color. 129

8.6 Graphs comparing ground-truth and estimated joint angles of the left arm and right

leg of the synthetic sequence KICK. The estimated joint angles closely follow the

ground-truth values throughout the whole sequence. The tracking results of the

KICK sequence can be seen in the movie Synthetic-track.mpg. 131

8.7 Tracking results of the AEROBICS sequence with 12 selected frames. The tracked

body parts and joint skeleton (rendered color) are overlaid on one of the input

camera images (which are converted from color to gray-scale for clarity). The

whole sequence can be seen in the movie SubjectG-track.mpg. 133

xvi LIST OF FIGURES

8.8 Tracking results of the KUNGFU sequence with 24 selected frames. The whole

sequence can be seen in the movie SubjectG-track.mpg. 135

8.9 Tracking results of the THROW sequence with 24 selected frames. The whole

sequence can also be seen in the movie SubjectS-track.mpg. 136

8.10 Tracking results for the SLOWDANCE sequence with 24 selected frames. The

whole sequence can also be seen in the movie SubjectE-track.mpg. 137

8.11 Tracking results for the STEP-FLEX sequence with 12 selected frames. The whole

sequence can also be seen in the movie SubjectE-track.mpg. 138

9.1 The pixel rendering part of our Image-Based Articulated Model Rendering Algo-

rithm. Four steps are used to determine the color of a target pixel. 144

9.2 Pre-rendering processing: motion weights for a vertex V are calculated using the

segmentations of the vertices around V . 147

9.3 Step 2 of the pixel rendering process: mesh face is stretched because of the differ-

ent motion weights of the vertices. This stretching has to be compensated when

calculating P1 from P. 148

9.4 Step 4 of the pixel rendering process: computing the viewing angle between the

virtual camera, the kth source camera at the jth frame and the target model point P. 150

9.5 Images obtained by (a) direct rendering of the colored voxel model, (b) direct ren-

dering of the texture-mapped mesh model, (c) using the Image-Based Articulated

Model Rendering Algorithm with each target pixel color averaged from 1 source

pixel, (d) 5 source pixels and (e) 9 source pixels. The top row shows results with

the virtual camera set to coincide with camera 3 of the source sequence. The mid-

dle row shows results with the virtual camera placed at a new position. The bottom

row redisplays the portion (the face of the person) of the images in the top row at

a higher resolution for better visual comparison. 152

9.6 Selected frames of the SubjectE performing the PUNCH motion rendered using

IBAMRA with the ESTILL sequence as the source sequence. One averaging pixel

is used to generate these pictures. Background with soft shadows are added to

increase the photo-realism of the images. In (a) the viewpoint is set as the same

as camera 3 of the source sequence while a completely new viewpoint is used to

generate pictures in (b). The rendered sequence from both viewpoints can be seen

in the video clip SubjectE-rendered-PUNCH.mpg. 153

LIST OF FIGURES xvii

9.7 Comparison between rendered images and real images of SubjectS performing the

THROW motion: (a) rendered images of the THROW motion using the SSTILL

sequence as the source sequence, (b) corresponding images from the THROW

sequence. It can be seen that the quality of the rendered images are comparable to

the real images. 154
9.8 Motion Transfer between two people. 156
9.9 The THROW motion is transferred from (b) SubjectS to (a) SubjectE. The whole

sequence can be found in the video clip SubjectE-transfer-THROW.mpg. 157
9.10 The KUNGFU motion is transferred from (b) SubjectG to (a) SubjectS. The whole

sequence can be found in the video clip SubjectS-transfer-KUNGFU.mpg. . . . 157
9.11 The STEP-FLEX motion is transferred from (b) SubjectE to (a) SubjectG. The

whole sequence can be found in the video clip SubjectG-transfer-STEP-FLEX.mpg.158

B.1 Cases of intersecting an existing Visual Hull with a bounding wedge formed
by a new camera and its silhouette. The number (i, ii, iii) at the end of each
edges indicate the cases presented in the proof. 190

B.2 Examples of reconstructing object O and locations of d L
2 e cameras to form

the convex polygonal Visual Hull H. (a) L is even, (b) L is even. 191

List of Tables

3.1 The approximate processing time for each step in our system. 29

4.1 Table comparing the surface patch, discrete voxel and Bounding Edge representa-

tions of Visual Hulls. 40

5.1 The approximate time for each step in the alignment experiments. Bounding Edge

is about the same as SFS and faster than SFS+SC. 74

6.1 The ground-truth and estimated positions of the eight body joints of the synthetic

sequences. The absolute distance errors (averaged about 26mm) is small compared

to the actual size of the human model (≈ 500mm x 200mm x 1750mm). 94

8.1 The approximate time required for each step in our tracking algorithm. It takes

longer time to align the torso base and the legs than the arms because the former

have much more CSPs than the latter. The time needed to segment the run-time

CSPs and detect body parts collision is negligible compare to that required for

alignment. 134

9.1 The approximate time required for each processing step of the Image-Based Ar-

ticulated Object Rendering Algorithm. 155

xix

List of Video Clips

Clips from Chapter 3 (http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter3)

• Realtime-SFS-reconstruction-fitting.mpg: reconstruction/fitting results of the real-

time 3D human voxel reconstruction and fitting system.
• Realtime-SFS-system.mpg: footage of the real-time 3D human voxel reconstruction

and fitting system, the user-interface and the results captured during an experiment.

Clips from Chapter 5 (http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter5)

• Torso.mpg: input images from one of the cameras and alignment/refinement results

of the Torso sequence.
• Pooh.mpg: input images from one of the cameras and alignment/refinement results

of the Pooh sequence.
• Dinosaur-Banana.mpg: input images from one of the cameras and alignment/refinement

results of the Dinosaur-Banana sequence.

Clips from Chapter 6 (http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter6)

• Synthetic-joints-leftleg.mpg: input images from one of the cameras and segmen-

tation/alignment/joint estimation results for the left hip and left knee joints of the

synthetic data set.
• Pooh-Dinosaur.mpg: input images from one of the cameras, alignment/segmentation/

temporal refinement results of the Pooh-Dinosaur sequence (two separate and inde-

pendently moving rigid objects).
• SubjectE-joints-rightarm.mpg: input images from one of the cameras and segmen-

tation/alignment/joint estimation results for the right shoulder and right elbow joints

of SubjectE.

xxi

xxii LIST OF VIDEO CLIPS

• SubjectG-joints-rightleg.mpg: input images from one of the cameras and segmen-

tation/alignment/joint estimation results for the right hip and right knee joints of Sub-

jectG.

Clips from Chapter 7 (http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter7)

• SubjectS-joints-leftarm.mpg: input images from one of the cameras and segmen-

tation/alignment/joint estimation results for the left shoulder and left elbow joints of

SubjectS.
• Subject-EGS-kinematicmodels.mpg: 3D fly-around views of the kinematic models

of SubjectE, SubjectG and SubjectS.

Clips from Chapter 8 (http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter8)

• Synthetic-track.mpg: motion tracking results of the PUNCH and KICK sequences

from the synthetic data set.
• SubjectG-track.mpg: motion tracking results of the STILLMARCH, AEROBICS

and KUNGFU sequences of SubjectG.
• SubjectS-track.mpg: motion tracking results of the THROW sequence of SubjectS.

• SubjectE-track.mpg: motion tracking results of the SLOWDANCE and STEP-

FLEX sequences of SubjectE.

Clips from Chapter 9 (http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter9)

• SubjectE-rendered-PUNCH.mpg: results of using IBAMRA to render SubjectE

performing the PUNCH motion.
• SubjectS-rendered-THROW.mpg: comparing images rendered using IBAMRA with

real images of SubjectS performing the THROW motion.
• SubjectE-transfer-THROW.mpg: transferring the THROW motion (originally per-

formed by SubjectS) to SubjectE.
• SubjectS-transfer-KUNGFU.mpg: transferring the KUNGFU motion (originally

performed by SubjectG) to SubjectS.
• SubjectG-transfer-STEP-FLEX.mpg: transferring the STEP-FLEX motion (origi-

nally performed by SubjectE) to SubjectG.

Chapter 1

Introduction

Human kinematic modeling, motion tracking and rendering are difficult problems because

of the complexity of the human body. Despite the difficulties, these problems have received

a great deal of attention recently due to the large number of applications. Having a precise

3D kinematic (shape and joint) model of an individual human is very useful in a variety

of different situations. For example, they can be used in the garment/furniture manufactur-

ing industry to make clothes/furniture that are tailored to body shape and motion range of

the individual. A collection of such models can be used to generate valuable statistics of

kinematic information (such as arm length, shape, etc.) of people from different races for

anthropological studies. Likewise, accurate human motion tracking is essential in a wide

variety of applications. For example, in intelligent environments such as smart offices or

households [SKB+98, Coe98, LZG98], tracking motion and recognizing gestures is a nat-

ural way for the computer to understand the action and intention of humans. In the field

of machine surveillance and security, it is important for computers to be able to observe

suspicious people and track their actions over time. For sports science and medicine, the

ability to track the body parts of athletes is critical for improving their performance during

competition or for injury rehabilitation. Last but not the least, the entertainment industry

is another area where there is an increasing need for better human modeling, motion track-

1

2 Chapter 1. Introduction

ing and rendering algorithms. Accurate human kinematic models, precise motion capture

data and photo-realistic motion rendering are all essential components for making animated

virtual characters more human-like in both games development and motion picture produc-

tion.

Although there are laser-scanning systems for high precision human body shape ac-

quisition, most of these systems are expensive and they do not estimate the important

joint information of the body. Similarly, commercial marker-based motion capture sys-

tems are invasive and difficult to use. In applications such as security/surveillance and

human-computer interaction, these systems are not applicable because placing markers on

the person is either impossible or undesirable. In view of this, the study of non-invasive,

vision-based human modeling/tracking systems is vital. There are many advantages of us-

ing a vision-based approach. For example, cameras are low-cost, easily reconfigurable and

non-invasive. Moreover, camera images contain both shape and color (texture) information

of the person. Also instead of using two separate systems for human modeling and motion

tracking, one multi-cameras system can be used for both tasks.

Over the past few years researchers have proposed a variety of vision-based systems to

capture the 2D and 3D shapes of human body parts [FHPB00, FGDP02] or track simple

human motion (such as walking, running or simple arm motions) using single or multiple

camera systems [MG01]. While some of these systems work well, there is much room for

improvement, especially in the areas of automatic human joint information acquisition and

precise tracking of complex human motion such as dancing, fighting, or moves made by

athletes.

Among existing systems, silhouette information has been used extensively together

with other cues such as edges, feature points and color textures to locate and track hu-

mans [CA96, WADP97, CA98, BK99]. Silhouette images are used because they are easily

obtainable in most situations and contain valuable body shape information. In particular,

many human shape modeling/motion tracking systems (such as [MTG97, KM98] and more

1.1. Thesis Outline 3

recently [CKBH00, Mat01, MHTC01]) use the silhouette-based shape estimation method

called Shape-From-Silhouette (SFS) to construct 3D estimates of body shape. Shape-From-

Silhouette is also known as as Visual Hull (VH) construction [Lau91, Lau94].

Shape-From-Silhouette has been a popular shape estimation algorithm for years. Though

easy to implement, SFS has its own limitations. Existing SFS methods involve time-

consuming testing steps which hinder their use in real-time applications. Moreover, shape

estimation by SFS is coarse if there are only a few silhouette images. This means that

it is difficult to obtain very detailed human body shapes using traditional SFS unless we

use a large number of cameras or we can combine silhouettes captured across time. The

traditional SFS formulation assumes that all of the silhouette images are captured either at

the same time or while the object is static. This assumption is violated when the object

moves or changes shape. Hence in previous SFS-based human modeling/tracking systems,

SFS has been applied to each time instant sequentially and independently and little work

has been done in extending SFS across time. In order to use SFS more effectively for hu-

man applications, the traditional SFS algorithms have to be improved to overcome these

limitations.

With the above motivation, the goal of this thesis is to investigate the shortcomings

of existing Shape-From-Silhouette algorithms and develop improved algorithms to apply

better to the problems of human articulated body modeling, motion tracking and rendering.

1.1 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2 we give a background

review of Shape-From-Silhouette. The review includes the definitions of Visual Hulls,

common methods to represent them, and a discussion of the use of Visual Hulls in human

related applications. In Chapter 3 we quantitatively analyze the effect of silhouette noise on

the accuracy of SFS and propose a fast voxel-based SFS algorithm called SPOT using the

4 Chapter 1. Introduction

results of the analysis. A practical real-time system is built based on SPOT to reconstruct

3D human voxel models. Different body parts modeled by simple ellipsoidal shells are then

used to fit the reconstructed voxels.

In Chapter 4 we introduce a new Visual Hull representation called Bounding Edge.

The relation of Bounding Edges with the Second Fundamental Property of Visual Hulls

is discussed together with a comparison of the other Visual Hull representations. In the

next two chapters, we propose algorithms to perform Shape-From-Silhouette across time.

Chapter 5 focuses on rigid objects. We first study the ambiguity problem of aligning two

Visual Hulls and show how colors can be used to break the ambiguity. Then we propose

a temporal SFS algorithm which extracts points (Colored Surface Points) on the surface

of the object and combines shape information and color stereo to align and refine Visual

Hulls. In Chapter 6 the rigid object temporal SFS algorithm is extended to articulated

objects by iteratively segmenting the Colored Surface Points and estimating the motion of

the rigid parts of the articulated object. Both chapters include extensive synthetic and real

experimental results.

Chapters 7, 8 and 9 focus on applying the temporal SFS algorithms to human-related

problems. In Chapter 7 a step-by-step system is proposed to acquire a full kinematic model

of a person (including 3D shape of body parts and joint locations). In Chapter 8 the kine-

matic model is used to perform motion capture of the same person in new video sequences

using an image-based articulated object tracking algorithm very similar to the temporal SFS

algorithms. We include experimental results and demonstrate that the tracking algorithm

works well for both simple and complex motions. Chapter 9 investigates the problem of

rendering the acquired human articulated model based on image-based techniques, together

with potential use of the rendering algorithm in applications such as motion transfer and

editing. Finally, in Chapter 10 we enumerate the contributions of this thesis and discuss

several possible future directions.

Chapter 2

Shape-From-Silhouette and Visual Hulls

As its name implies, Shape-From-Silhouette (SFS) is a method of estimating the shape of

an object from its silhouette images. The concept of using silhouettes for 3D shape re-

construction was first introduced by Baumgart in 1974. In his PhD thesis [Bau74], Baum-

gart estimated the 3D shapes of a baby doll and a toy horse from four silhouette images.

Since then, various different variations of the Shape-From-Silhouette methods have been

proposed. For example, Aggarwal et al. [MA83, KA86] used volumetric descriptions to

represent the reconstructed shape. Potmesil [Pot87], Noborio et al. [NFA88] and Ahuja

et al. [AV89] all suggested using octree data structure to speed up SFS. Pujari derived the

optimal positions and directions to take silhouette images for 3D shape reconstruction in

[SP91]. Szeliski built a non-invasive 3D digitizer using a turntable and a single camera

with Shape-From-Silhouette as the reconstruction method [Sze93]. In summary, SFS has

become a popular 3D reconstruction method for static objects.

2.1 Basic Principle

The concept of reconstructing the shape of an object from its silhouette images is explained

in Figure 2.1. In Figure 2.1(a) a head-shaped object casts silhouettes on the image planes

5

6 Chapter 2. Shape-From-Silhouette and Visual Hulls

3D Object

Camera 1

Camera 2

Camera 1

Visual cone formed by
the silhouette and center
of camera 1

(a) (b)

3D Object

Camera 1

Camera 2

3D Object

Camera 1

Camera 2

Camera 1

Visual cone formed by
the silhouette and center
of camera 1

(a) (b)

Camera 1

Camera 2

(c)

Shape of the object can be
estimated by intersecting

the visual cones

Camera 1

Camera 2

(c)

Shape of the object can be
estimated by intersecting

the visual cones

Figure 2.1: (a) A head-shaped object casts silhouettes on two cameras. (b) The visual cone formed
by the silhouette image and the center of camera 1. (c) The shape of the object is estimated by
intersecting all of the visual cones. The Visual Hull of a general 3D object contains curved surface
patches making it difficult to represent and visualize.

of two cameras. For each camera and its silhouette image, there is a bounding volume

that contains the object. This bounding volume, which is also called the visual cone, is

constructed by projecting the silhouette into 3D space through the center of the camera as

shown in Figure 2.1(b). Since each visual cone provides an upper bound on the object, the

position and approximate shape of the object can be estimated by intersecting the visual

cones from all the cameras as shown in Figure 2.1(c).

2.2. Visual Hulls 7

2.2 Visual Hulls

The term Visual Hull (VH) has been used in a general sense by researchers for over a decade

to denote the shape estimated from the Shape-From-Silhouette principle: the intersection

of the visual cones formed by the silhouettes and camera centers (Figure 2.1(c)). The term

was first coined in 1991 by Laurentini [Lau91] who also published a series of subsequent

papers studying the theoretical aspects of Visual Hulls of 3D polyhedral [Lau94, Lau95]

and curved objects [Lau99]. Before discussing the different ways of representing and con-

structing Visual Hulls, we first define the problem scenario as follows.

2.2.1 Problem Scenario and Notation

Suppose there are K cameras positioned around a 3D object O. Let {S k
j; k = 1; · · · · · · ,K}

be the set of silhouette images of the object O obtained from the K cameras at time t j. An

example scenario is depicted in Figure 2.2 with a head-shaped object surrounded by four

cameras at time t1. It is assumed that the cameras are calibrated with Πk() : IR3 → IR2

and Ck being the perspective projection function and the center of camera k respectively.

In other words p = Πk(P) are the 2D image coordinates of a 3D point P in the kth image.

As an extension of this notation, Πk(A) represents the projection of a volume A onto the

image plane of camera k. Assume we have a set of K silhouette images {S k
j} and projection

functions {Πk}. A volume A is said to exactly explain {S k
j} if and only if its projection onto

the kth image plane coincides exactly with the silhouette image S k
j for all k ∈ {1, · · · · · · ,K},

i.e. Πk(A) = S k
j. If there exists at least one non-empty volume which explains the silhouette

images exactly, we say the set of silhouette images is consistent, otherwise we call it incon-

sistent. Normally a set of silhouette images obtained from an object is consistent, unless

there are camera calibration errors or silhouette image noise.

8 Chapter 2. Shape-From-Silhouette and Visual Hulls

O

Object O forms silhouette
image S on camera k at time tk

1 1

C2

S1

3

C3

C1

S1

2

S1

1

S1

4

C4O

Object O forms silhouette
image S on camera k at time tk

1 1

C2C2

S1

3
S1

3

C3C3

C1C1

S1

2
S1

2

S1

1

S1

1

S1

4

S1

4

C4C4

Figure 2.2: An example Shape-From-Silhouette problem scenario: a head-shaped object O is
surrounded by four cameras at time t1. The silhouette images and camera centers are represented
by S k

j and Ck respectively.

2.2.2 Definitions of Visual Hull

In this section we present two different ways (each of which has its pros and cons) to

define Visual Hulls. Although these two definitions are seemingly different, they are in fact

equivalent to each other. The proof of equivalence is given in Appendix A.

Visual Hull Definition I: Intersecting Visual Cones

The Visual Hull H j with respect to a set of consistent silhouette images {S k
j} is defined to be

the intersection of the K visual cones, each formed by projecting the silhouette image S k
j

into the 3D space through the camera center Ck.

This first definition, which is the most commonly used one in the SFS literature, defines

the Visual Hull as the intersection of the visual cones formed by the camera centers and

the silhouettes. Though this definition provides a direct way of computing the Visual Hull

2.2. Visual Hulls 9

from the silhouettes (see Section 2.3.1), it lacks information and intuition about the object

(which forms the silhouettes). We therefore also use a second definition:

Visual Hull Definition II: Maximally Exactly Explains

The Visual Hull H j with respect to a set of consistent silhouette images {S k
j} is defined to be

the largest possible volume which exactly explains {S k
j} for all k = 1, · · · · · · ,K.

Generally for a consistent set of silhouette images {S k
j}, there are an infinite number of

volumes (including the object O itself) that exactly explain the silhouettes. Definition II

defines the Visual Hull H j as the largest one among these volumes. Though abstract, this

definition implicitly expresses one of the useful properties of Visual Hull: the Visual Hull

provides an upper bound on the object which forms the silhouettes. To emphasize the

importance of this property, we state it as the first fundamental property of Visual Hulls.

2.2.3 First Fundamental Property of Visual Hulls

First Fundamental Property of Visual Hulls (1st FPVH):

The object O that formed the silhouette set S k
j lies completely inside the Visual Hull H j

constructed from S k
j .

The 1st FPVH is very important as it gives us useful information on the object O, es-

pecially in applications such as robotic navigation or obstacle avoidance. The upper bound

given by the Visual Hull gets tighter if we increase the number of distinct silhouette images.

Asymptotically if we have every possible silhouette images of a convex object, the Visual

Hull is exactly equal to the object. If the object is not convex, the Visual Hull may or may

not be equal to the object.

10 Chapter 2. Shape-From-Silhouette and Visual Hulls

2.3 Representation and Construction

2.3.1 Two-Dimensional Surface Based Representation

For a consistent set of silhouette images, its Visual Hull can be (according to Definition I)

constructed by intersecting the visual cones directly. By doing so, the Visual Hull is rep-

resented by 2D surface patches obtained from intersecting the surfaces of the visual cones.

For illustration purpose, an example in two-dimensions is given in Figure 2.3(a) in which

the Visual Hull is constructed by intersecting the 2D visual wedges. Although simple in

2D and there exists fast algorithms for computing cones intersection for 3D polyhedral

objects [BMM01], direct cone intersection representation is difficult to use for general 3D

objects. The Visual Hull of a general 3D object consists of curved and irregular surface

patches which are difficult to represent using simple geometric primitives. The computa-

tional complexity and numerical instability of intersecting surfaces with lines and planes in

3D are also reasons why researchers approximate general 3D objects to polyhedral shape

when intersecting visual cones [BMM01].

The example in Figure 2.1(c) illustrates that it is difficult to express, represent or even

visualize the surface patches of the Visual Hull of a general 3D object. Recently Buehler et

al. [BMM01] proposed an approximate way to compute Visual Hull directly using the vi-

sual cone intersection method by approximating all 3D objects as having polyhedral shapes.

Since polyhedral objects produce polygonal silhouette images, their Visual Hulls consist of

only planar surface patches which can be more readily computed and represented than

curved surface patches.

2.3.2 Three-Dimensional Volume Based Representation

Since it is difficult to intersect visual cones of general 3D objects, other more effective

ways have been proposed to construct 3D Visual Hulls from the silhouette images. The

approach which is used by most researchers [Pot87, NFA88, AV89, Sze93] is volume based

2.3. Representation and Construction 11

(a)

O

C3

C2

C4

C1

S1

1

S1

4S1

2

S1

3

H1

(a)

O

C3C3

C2C2

C4C4

C1C1

S1

1S1

1

S1

4S1

4S1

2S1

2

S1

3S1

3

H1

(b)

O

C3

C2

C4

C1

S1

1

S1

4S1

2

S1

3

Approximate Visual Hull

Actual Visual Hull

(b)

O

C3C3

C2C2

C4C4

C1C1

S1

1S1

1

S1

4S1

4S1

2S1

2

S1

3S1

3

Approximate Visual Hull

Actual Visual Hull

Figure 2.3: A two dimensional example of constructing the Visual Hull H1 from the silhouettes
{S k

1} and camera centers {Ck}: (a) by direct intersection of visual wedges, (b) by voxel-based ap-
proximation. The orange-shaded region (bounded by thick black lines) represents the approximate
Visual Hull while the polygon (outlined in green) denotes the true one. The former is significantly
larger than the latter.

construction. One version of this approach, also known as voxel-based SFS is given as

follows:

Standard Voxel-based Shape-From-Silhouette Algorithm

1. Divide the space of interest into N × N × N discrete voxels vn, n = 1, · · · · · ·N3.

2. Initialize all the N3 voxels as inside voxels.

3. For n = 1 to N3 {

For k = 1 to K {

(a) Project vn into the kth image plane by the projection function Πk();

(b) If the projected area Πk(vn) lies completely outside S k
j ,

then classify vn as outside voxel;

}

}

4. The Visual Hull H j is approximated by the union of all the inside voxels.

12 Chapter 2. Shape-From-Silhouette and Visual Hulls

Voxel-based SFS uses the same principle of visual cone intersection. However, the Vi-

sual Hull is represented by 3D volume elements (“voxels”) rather than 2D surface patches.

The space of interest is divided into discrete voxels which are then classified into two cat-

egories: inside and outside. The union of all the inside voxels is an approximation of the

Visual Hull. For a voxel to be classified as inside, its projection (step 3(a)) on each and

every one of the K image planes has to be inside or partially overlap with the correspond-

ing silhouette images. If the projection of the voxel is totally outside any of the silhouette

images, it is classified as outside. Figure 2.3(b) gives a 2D example of this voxel-based

method. The area of interest is divided into 16 by 16 squares. The convex polygon rep-

resents the true Visual Hull while the shaded region denotes the approximate Visual Hull

obtained using the 2D version of the standard voxel-based SFS algorithm. The approximate

2D VH is significantly larger than the true one. This is one of the disadvantages of using

discrete voxels to represent Visual Hulls.

2.4 Silhouette Extraction

As crucial as it is to represent and construct Visual Hulls effectively, accurate silhou-

ette extraction is also of great importance to the process of Shape-From-Silhouette. In

this section, we describe a simple background subtraction algorithm which serves as the

core component of extracting silhouettes for all of the real data sequences in this the-

sis. Naturally there are other silhouette extraction algorithms in the literature, such as

[SB96, HHD99, EHD99, IBL00, RT00], which can also be used.

One difficult problem of background subtraction is to remove shadows. In our algo-

rithm, two techniques are used to tackle this problem: (1) use color information to distin-

guish shadow and non-shadow pixels and (2) use different thresholds based on the type of

the pixels. The algorithm is summarized as follows with IBG(u, v) and IRT (u, v) representing

the color vector of the (u, v)th pixel of the background and runtime images respectively:

2.4. Silhouette Extraction 13

Real-time Background Subtraction Algorithm

1. Calculate the intensity difference

IDIFF(u, v) = ‖IRT (u, v) − IBG(u, v)‖.

2. If IDIFF(u, v) > T U ,

then set the (u, v)th pixel as a silhouette pixel, stop.

3. If IDIFF(u, v) < T L,

then set the (u, v)th pixel as a non-silhouette pixel, stop.

4. Calculate the color difference

θ(u, v) = cos−1[IRT (u,v)·IBG(u,v)
‖IRT (u,v)‖‖IBG(u,v)‖

].

If θ(u, v) > T C ,

then set the (u, v)th pixel as a silhouette pixel,

else set the (u, v)th pixel as a non-silhouette pixel.

Here, ‖I(u, v)‖ represents the norm of a vector I(u, v) and · is the dot product operator.

The algorithm basically consists of three tests. Steps 2 and 3 test the intensity difference

between the run-time and background pixels. If the intensity difference is very large (com-

pared to an up threshold constant T U), then the pixel is treated as a silhouette pixel. If the

intensity difference is very small (compared to a low threshold constant T L), then the pixel

is classified as a background pixel. For pixels with intensity differences between T L and

T U , a third test (Step 4) is performed to determine if it is a shadow pixel. The value θ is the

angle between the vectors IRT and IBG in the RGB color domain and hence is a measure of

the color difference between the run-time and background pixels. For a shadow pixel, the

color difference between run-time and background should be small because the difference

lies mainly in the intensity values. Hence by comparing θ with a color threshold constant

TC , most of the shadow pixels can be removed.

The second technique we employed in our background subtraction process is to use

different threshold constants for different regions of the image. The background image

14 Chapter 2. Shape-From-Silhouette and Visual Hulls

(a) (b)

(c) (d)

Figure 2.4: Example images of the background subtraction algorithm : (a) Run-Time image, (b)
Background image, (c) Segmented background image, (d) Extracted foreground silhouette.

is automatically segmented into different regions using color information. For example,

Figure 2.4(c) shows the segmentation of the background image in Figure 2.4(b) into two

regions: floor and non-floor. The rationale behind this is that different types of regions

have different color statistics and shadow probabilities. For example, the floor region has

a higher probability of having shadows than the non-floor region and therefore different

thresholds are used. This region-based approach is more flexible than the simplest method

of using only one set of thresholds for the whole image. Moreover, compared to the method

of having thresholds for each pixel, our approach is more practical and accurate. The num-

ber of thresholds in our approach is not high and hence we can determine each of them

manually. On the other hand, in the pixel-based method, the large number of thresholds

are usually determined using pixel color variances and cannot be fine tuned individually.

Figure 2.4(d) shows the foreground silhouette image extracted from the images in Fig-

ures 2.4(a) and (b). Note that the shadows cast by the legs are removed completely.

2.5. Advantages and Disadvantages 15

The above real-time background subtraction algorithm was first introduced and used in

[CKBH00] for the voxel-based real-time SFS system to be discussed in Chapter 3. It is easy

to implement and fast enough for extracting silhouettes at 30 frames per second. However,

as with all other background subtraction methods, our algorithm is not perfect and the

extracted silhouette contain errors and noise (see Section 3.1 for the study of the effect

of noisy silhouette on voxel-based SFS). For the real data sequences used in Chapter 4

through Chapter 8, since real-timeness is not a requirement, the silhouettes are cleaned

up using connected component analysis and morphological operations [Jai89] after being

extracted by our real-time background subtraction algorithm. Manual inspection is then

used to make sure no significant part of the foreground silhouette is missing. Alternatively,

other non real-time background subtraction methods [SB96, RT00] can be used.

2.5 Advantages and Disadvantages

Estimating shape using SFS has many advantages. First of all, silhouettes are readily and

easily obtainable, especially in indoor environment where the cameras are static and there

are few moving shadows. The implementation of most Visual Hull construction methods is

also relatively straightforward, especially when compared to other shape estimation meth-

ods such as multi-baseline stereo [OK93] or space carving [KS00]. Moreover, from the

First Fundamental Property of Visual Hull, SFS gives us an upper bound on the shape of

the object. This inherently conservative property is particularly useful in applications such

as obstacle avoidance in robot manipulation and visibility analysis in navigation where an

upper bound on the shape of the object is preferred to a lower bound. All these advan-

tages have prompted a large number of researchers to apply SFS to solve other computer

vision and graphics problems beyond 3D reconstruction. Examples include human related

applications such as virtual human digitization [MTG97], body shape estimation [KM98],

motion tracking/capture [DF99, BL00] and image-based rendering [BMMG99].

16 Chapter 2. Shape-From-Silhouette and Visual Hulls

On the other hand, SFS suffers from a number of limitations and inadequacies. Exist-

ing SFS methods involve time-consuming testing steps which hinder their use in real-time

applications. SFS is also sensitive to errors in silhouette extraction and camera calibration,

making it less desirable to use when the silhouette images are very noisy. Moreover, the

Visual Hull obtained from SFS is only an approximation of the actual object shape. The

approximation can be very coarse when there are only a few cameras, posing a disadvan-

tage for SFS in applications such as detailed shape acquisition and realistic re-rendering of

objects. In this thesis, we show how to overcome some of these limitations and apply SFS

to construct detailed human body models for motion capture and rendering.

Chapter 3

Real-time Shape-From-Silhouette

In order to use SFS in real-time applications, the computational bottleneck of existing meth-

ods has to be identified and replaced by faster alternatives. The behavior of the alternatives

under noisy silhouette images has to be studied in order to maintain reasonable shape esti-

mates. In this chapter, we develop a fast voxel-based SFS algorithm called SPOT (Sparse

Pixel Occupancy Test) which takes into account the effect of noisy silhouette images. A

real-time system for reconstructing 3D volumetric models of people performing arbitrary

motion is built based on this fast algorithm. Note that some of the material presented in

this chapter first appeared in the paper [CKBH00].

3.1 Analysis of Voxel-based SFS with Noisy Silhouettes

Visual hull construction using the voxel representation is by far the most popular SFS

method used by researchers because it is easily implementable and gives reasonable re-

sults in applications where approximate but complete shape information of the object is

required. The speed of the standard voxel-based SFS algorithm described in Section 2.3.2

depends heavily on two procedures : (1) voxel projection (step 3(a) of the algorithm) and

(2) silhouette overlap testing (step 3(b) of the algorithm). These two procedures, together

17

18 Chapter 3. Real-time Shape-From-Silhouette

with the quality of the silhouette images, also determine the accuracy of the estimated Vi-

sual Hull. Silhouette images generated in real-time are always noisy. Figure 3.1 shows a

foreground image and its noisy silhouette image obtained using the real-time background

subtraction method described in Section 2.4. Although post-processing steps, such as mor-

phological operations and connected component analysis [Jai89] can be applied to clean up

the silhouette, they are time consuming computations. The same real-time limitation also

prohibits us from using probabilistic approaches such as those proposed for voxel coloring

in [DV99, BDC01], or the graph cuts approach (which does not require hard labeling of

the voxels) proposed by Snow et al. in [SVZ00]. Thus the aim of this section is to propose

fast implementations of procedures (1) voxel projection and (2) silhouette overlap testing,

while understanding the effect of silhouette noise on the implementations. To characterize

the quality of the silhouette images, hereafter let ξ be the probability that during silhou-

ette extraction, a non-silhouette pixel is wrongly marked as a silhouette pixel. Likewise,

let η represent the probability that a silhouette pixel is wrongly marked as a non-silhouette

pixel. The noise is assumed to be independent between pixels. There are two ways of deter-

mining ξ and η : theoretically by assuming certain error probability distribution functions

or experimentally by checking wrongly marked pixels in a large set of noisy silhouettes.

For example, after tunning the threshold constants in our real-time background subtrac-

tion method (see Section 2.4), ξ and η are found experimentally to be 0.021 and 0.043

respectively.

One way of finding the projected voxel Πk(vn) is to project the eight vertexes of vn

onto the kth image plane and compute the convex hull of the projected points. Suppose on

average, there are Z pixels inside the convex hull. A straightforward way to implement sil-

houette overlapping is to check all Z pixels and if at least Zε of them lie inside the silhouette

image S k
j, the voxel is said to be inside S k

j. Due to silhouette noise, this implementation

causes voxel misclassification. There are two types of voxel misclassification: False Ac-

ceptance (FA) which means an outside voxel is misclassified as inside and False Rejection

3.1. Analysis of Voxel-based SFS with Noisy Silhouettes 19

Foreground�Image Silhouette�Image

Wrongly�marked�
Silhouette�pixels

Foreground�Image Silhouette�Image

Wrongly�marked�
Silhouette�pixels

Figure 3.1: An example of a foreground image and its silhouette extracted by real-time background
subtraction method described in Section 2.4. There are wrongly marked pixels in the silhouette
image due to noisy original and background images.

(FR) which means an inside voxel is misclassified as outside. The probabilities P(FR) and

P(FA) depend on ξ, η, Z and Zε. For voxels that are either totally outside or totally inside

the silhouette (i.e. non-boundary voxels), P(FR) and P(FA) are found to be

I. False Acceptance :

P(FA) =





















Z
∑

i=Zε





















Z

i





















ξi(1 − ξ)Z−i





















K

. (3.1)

II. False Rejection :

P(FR) = p
K−1
∑

j=0

(1 − p) j ; p =
Z
∑

i=Z−Zε+1





















Z

i





















ηi(1 − η)Z−i . (3.2)

The exponential of K (which represents the total number of cameras used) in Equation

(3.1) is due to the fact that an outside voxel has to be misclassified as inside in all the K

images for a FA to happen. In Equation (3.2), p is the probability that an inside voxel

is classified as outside in one image. The summation over j comes from the fact that an

20 Chapter 3. Real-time Shape-From-Silhouette

inside voxel is misclassified as outside once it is misclassified in one image and the rest

of the images are not tested. Note that these equations are applicable only to totally inside

or totally outside voxels. With slight modifications, similar analysis can be applied to

boundary voxels although they are not considered here as the number of them are relatively

fewer than the number of totally inside or totally outside voxels.

For fixed Z, ξ and η, the False Rejection probability P(FR) increases with Zε while

the False Acceptance probability P(FA) decreases when Zε increases. Using the values

ξ = 0.021 and η = 0.043 (the values determined experimentally), graphs of log(P(FR))

and log(P(FA)) versus Zε for different values of Z are shown in Figure 3.2(a) and (b)

respectively. The optimal Zε for a particular Z is chosen by considering the total error

probability P(FA) + P(FR). The graph of log(P(FA) + P(FR)) against Zε for different Z is

plot in Figure 3.3(a). Clearly, different values of Z have different optimal Zε. For example

the optimal Zε is 1 for Z = 2 while the optimal Zε is 7 when Z is 30. The graphs of optimal

Zε and optimal log(P(FA) + P(FR)) against Z are plot in Figure 3.3(b)(c). These graphs

are useful in determining the optimal silhouette testing rule and the corresponding error

probabilities.

Besides serving as guidelines for choosing the optimal Zε, the graphs in Figure 3.3(b)(c)

also give us insight into deciding the voxel size of the system. Intuitively the smaller the

voxel size, the better the shape approximation (see Figure 2.3(b) as an example) because the

discretization error is smaller. Niem verified this conjecture in [Nie97] by analyzing effect

of voxel size on shape reconstruction error without considering noisy silhouettes. However,

the graph in Figure 3.3(c) shows that when there is noise in the silhouettes, the smaller

the voxel size, the smaller the number of projected pixels Z which implies the larger the

misclassification probabilities. Therefore to pick an optimal voxel size for a voxel-based

SFS system, there is a trade-off between lowering discretization errors (favoring smaller

voxels) and minimizing misclassification probabilities (favoring larger voxels).

3.1. Analysis of Voxel-based SFS with Noisy Silhouettes 21

1 1.5 2

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Z
ε

log
(P(

FR
))

Z = 2

1 2 3 4 5
−14

−12

−10

−8

−6

−4

−2

Z
ε

log
(P(

FR
))

Z = 5

2 4 6 8 10

−25

−20

−15

−10

−5

Z
ε

log
(P(

FR
))

Z = 10

5 10 15 20
−60

−50

−40

−30

−20

−10

Z
ε

log
(P(

FR
))

Z = 20

5 10 15 20 25 30

−90

−80

−70

−60

−50

−40

−30

−20

−10

Z
ε

log
(P(

FR
))

Z = 30

10 20 30 40 50

−140

−120

−100

−80

−60

−40

−20

Z
ε

log
(P(

FR
))

Z = 50

(a) Graph of log(P(FR)) against Zε for different Z

1 1.5 2

−35

−30

−25

−20

Z
ε

log
(P(

FA
))

Z = 2

1 2 3 4 5

−90

−80

−70

−60

−50

−40

−30

−20

Z
ε

log
(P(

FA
))

Z = 5

2 4 6 8 10

−180

−160

−140

−120

−100

−80

−60

−40

−20

Z
ε

log
(P(

FA
))

Z = 10

5 10 15 20

−350

−300

−250

−200

−150

−100

−50

Z
ε

log
(P(

FA
))

Z = 20

5 10 15 20 25 30

−550

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

Z
ε

log
(P(

FA
))

Z = 30

0 20 40 60
−800

−700

−600

−500

−400

−300

−200

−100

0

Z
ε

log
(P(

FA
))

Z = 50

(b) Graph of log(P(FA)) against Zε for different Z

Figure 3.2: (a) Graphs of log(P(FR)) vs. Zε for different Z, (b) Graphs of log(P(FA)) vs. Zε for
different Z.

22 Chapter 3. Real-time Shape-From-Silhouette

1 1.5 2

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Z
ε

log
(P(

FR
) +

P(F
A))

Z = 2

1 2 3 4 5

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

Z
ε

log
(P(

FR
) +

P(F
A))

Z = 5

2 4 6 8 10
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

Z
ε

log
(P(

FR
) +

P(F
A))

Z = 10

5 10 15 20
−40

−35

−30

−25

−20

−15

−10

−5

Z
ε

log
(P(

FR
) +

P(F
A))

Z = 20

5 10 15 20 25 30
−60

−50

−40

−30

−20

−10

Z
ε

log
(P(

FR
) +

P(F
A))

Z = 30

10 20 30 40 50

−90

−80

−70

−60

−50

−40

−30

−20

−10

Z
ε

log
(P(

FR
) +

P(F
A))

Z = 50

(a) Graph of log(P(FR) + P(FA)) against Zε for different Z

5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

9

10

11

12

Z

Op
tim

al Z
ε

0 5 10 15 20 25 30 35 40 45 50
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Z

Op
tim

al l
og(

P(F
A)

+ P
(FR

))

(b) Graph of Optimal Zε against Z

(c) Graph of Optima log(P(FA)+P(FR)) against Z

Figure 3.3: (a) Graphs of log(P(FA) + P(FR)) vs. Zε for different Z, (b) Graph of optimal Zε vs.
Z, (c) Graph of optimal log(P(FA) + P(FR)) vs. Z.

3.2. A Fast Voxel-based SFS Algorithm: SPOT 23

C
1

S1

1

N x N x N voxels

Space of interest

Π (vn)

Π (vn)
Randomly chosen
testing pixels

Voxel vn

1

4

S1

4

C4

C
1

C
1

S1

1S1

1

N x N x N voxels

Space of interest

Π (vn)

Π (vn)
Randomly chosen
testing pixels

Voxel vn

1

4

S1

4
S1

4

C4C4

Figure 3.4: The SPOT-modified voxel-based Shape-From-Silhouette.

3.2 A Fast Voxel-based SFS Algorithm: SPOT

To increase the speed of the algorithm, assume that we pre-compute the convex hull of each

projected voxel and store the pixel locations in a lookup table. To apply the straightforward

implementations of procedures (1) voxel projection and (2) silhouette overlap testing, we

need O(N3Z) memory and O(N3Z) testing operations for a volume of N × N × N voxels.

This high memory requirement and number of tests make this straightforward approach too

slow for real time applications. Here we propose faster and more efficient implementation.

For each image and each voxel, instead of testing all Z pixels, Q random pixels are chosen

within the Z-pixel convex hull. If at least Qε of these chosen pixels lie inside the silhouette

image S k
j, the voxel is said to be inside S k

j. We name this approach Sparse Pixel Occu-

pancy Test (SPOT) and is stated formally as below. The SPOT-modified voxel-based SFS

algorithm is also illustrated in Figure 3.4.

24 Chapter 3. Real-time Shape-From-Silhouette

Sparse Pixel Occupancy Test (SPOT) Algorithm

1. For voxel vn and camera k, randomly choose Q points inside the projection of Πk(vn),

represented by q(l) where l = 1, · · · · · · ,Q.

2. Initialize incount to 0.

3. For l = 1 to Q {

If q(l) is a silhouette pixel

then increments incount.

}

4. If incount < Qε

then classify vn as outside voxel,

SPOT can be incorporated into the standard voxel-based SFS easily by replacing the

projection and testing steps (Steps 3(a) and (b) in the standard voxel-based SFS algorithm)

by SPOT. There are two advantages of using SPOT. It is Z
Q times faster and the memory

requirement is Z
Q times less than the straightforward approach. The downside is the mis-

classification probabilities also increase when we reduce the number of testing pixels.

One question that remains is how do we choose Q and Qε accordingly? Since we have

assumed the pixels are independent of each other and the Q points are chosen randomly, the

notion of testing Q out of Z pixels is theoretically equivalent to testing a projected area with

Q pixels. In other words, Equations (3.1) and (3.2) and the graphs in Figures 3.2 and 3.3 are

valid for analyzing SPOT if we replace Z by Q. The choice of Q is a compromise between

speed, memory and accuracy. In real-time applications where speed is more important than

quality, a low value of Q is used to trade accuracy for speed. For example, if we use Q = 5

for a 10-pixel projected voxel (i.e. Z = 10), we gain a factor of 2 in both speed and memory

but the total misclassification probability P(FA)+P(FR) also increases from 1.7e-9 to 1.1e-

5 (see Figure 3.3(c)). Once Q is fixed, Qε is chosen according to Figure 3.3(b).

3.3. Real-time 3D Voxel Reconstruction of Human Motions 25

3.3 Real-time 3D Voxel Reconstruction of Human Motions

To show how SPOT is used in practical situations, a real-time system [CKBH00] is built

to reconstruct and track human motions over time. The system consists of two parts: 3D

voxel reconstruction and ellipsoid fitting.

3.3.1 Surface Voxel Reconstruction

The first part of the system consists of synchronized cameras placed evenly around the

moving human subject. Each camera is connected to an individual local computer. The

camera captures images continuously and the real-time background subtraction algorithm

described in Section 2.4 is applied by each camera’s local computer to extract the silhou-

ettes. The synchronized silhouette images are then transferred, via network, from the local

computers to a main host computer where SPOT-modified SFS is used to build the 3D voxel

model of the person. Once the model is reconstructed, the surface voxels are extracted and

used for ellipsoid fitting in the second part of the system.

3.3.2 Ellipsoid Fitting

After obtaining the 3D surface voxel data of the humans, ellipsoids are fit to the data in real-

time. Six ellipsoidal shells (to model the head, the body, the two arms and the two legs of a

human body) F f where f = 1, · · · · · · , 6 are used. Each ellipsoidal shell F is represented by

nine parameters: the center, the orientation and the sizes (lengths of the axes) denoted by

(xF f , yF f , zF f), RF f and (αF f , βF f , γF f) respectively. The whole fitting process has to be fast

enough for real-time processing. To achieve this goal, we use a two-step approach based

on the Expectation-Maximization (EM) paradigm [DLR77].

The first step of the fitting process is to segment the voxel data by using a proximity

criterion. A surface voxel v is assigned to belong to the ellipsoidal shell F f (i.e. v ∈ F f) if

the voxel is closest to F f (as compared to other ellipsoidal shells). In order to calculate the

26 Chapter 3. Real-time Shape-From-Silhouette

distance between the voxel and the shells, the shell parameters estimated from the previous

frame are used. Note that this proximity criterion is fast and easy to compute.

After the segmentation process, moment analysis is used to estimate the ellipsoidal shell

parameters from the centers (xv, yv, zv) of the surface voxels v which are belong to F f . For

example, the zeroth, first and second moments of xv are defined as

M0 =
∑

v∈F f

1; Mx =
1

M0

∑

v∈F f

xv; Mxx =
1

M0

∑

v∈F f

xvxv. (3.3)

Similarly, moments of yv and zv (such as My,Mxy,Myz,Mzz etc.) can also be calculated

using Equations (3.3). The ellipsoidal shell parameters are now estimated as

(xF f yF f zF f) = (Mx My Mz) , (3.4)

M = 4



































Mxx Mxy Mxz

Myx Myy Myz

Mzx Mzy Mzz



































= RF f



































α2
F f

0 0

0 β2
F f

0

0 0 γ2
F f



































RT
F f
, (3.5)

with M being the moment matrix. RF f and (αF f , βF f , γF f) can be obtained easily by per-

forming an eigen-decomposition on the (3 by 3) matrix M.

To perform the segmentation for the current frame, we need the estimated ellipsoidal

shell parameters from the previous frame. To initialize the shells when the system is first

started, we used an activation procedure. When the system is first started, only one ellip-

soidal shell F1 is activated for the fitting. All the voxel data is used to estimate the parame-

ters of the first ellipsoid F1 and the error of fitting is calculated. If this error is larger than a

threshold this means that one ellipsoid shell is not enough to model the voxel data. In this

case, the second ellipsoidal shell F2 is activated so that two shells are used to fit the data.

As the human moves his arms and legs around, the shells are activated sequentially to fit

different parts of the body until all six of them are activated.

3.3. Real-time 3D Voxel Reconstruction of Human Motions 27

Network�
Transfer

Cameras

Cameras

Main�computer�for�voxel�
reconstruction�by�SPOT,
ellipsoids�fitting�and
display

Human
subject

Individual�local�computer�
for�each�camera

Network�
Transfer

Cameras

Cameras

Main�computer�for�voxel�
reconstruction�by�SPOT,
ellipsoids�fitting�and
display

Human
subject

Individual�local�computer�
for�each�camera

(a) (b)

Figure 3.5: (a) The system architecture of the real-time human motion model reconstruction sys-
tem. (b) A screen shot of the user interface.

One problem of our two-step fitting approach is that the joint and size constraints of

the human body are not incorporated. Hence fitting fails when the body parts are too close

together which causes problems for the segmentation. For the same reason this algorithm

cannot handle appearing and disappearing body parts very well.

3.3.3 System Architecture and Performance

The architecture of our system is illustrated in Figure 3.5(a). Using a simple user interface,

the user can display and observe, in real time and from any view-point, the 3D models and

the fit ellipsoidal shells. Figure 3.5(b) is a snapshot of the interface with the voxel models

being shown on the left and the fit ellipsoidal shells on the right.

The following summarizes various aspects and parameters of the system.

1. Five cameras are used and each of them is connected to a 266 MHz PC. They are cali-

brated by planar calibration patterns with the method described in [Zha99]. The main

28 Chapter 3. Real-time Shape-From-Silhouette

computer is equipped with dual Pentium II 400 MHz processors. The computers are

connected together by a 100Mb/s hub.

2. The space of interest is a cube of size 2m × 2m × 2m divided into 64 × 64 × 64 (i.e.

N = 64) voxels with a resolution of about 3cm for each voxel.

3. The images are captured at a resolution of 320x240 pixels. The silhouette extraction

method in Section 2.4 gives silhouette error probabilities of η = 0.043 (the prob-

ability that a silhouette pixel is wrongly marked as a non-silhouette pixel) and ξ =

0.021 (the probability that a non-silhouette pixel is wrongly marked as a silhouette

pixel).

4. The average number of pixels in a projected voxel is 10 (i.e. Z ≈ 10). To obtain the

desired speed, only two pixels (i.e. Q = 2) are chosen for each voxel in the silhouette

overlap test. The optimal Qε is 1 according to Figure 3.3(b). This corresponds to a

total misclassification probability P(FA) + P(FR) of 0.0092, compared to a value of

1.78e-9 if we set Q = 10.

5. Table 3.1 summaries the approximate time required for each step. With the display

function turned off, the system outputs results of higher than 15 frames per second.

Figure 3.6 shows frames selected from a movie clip Realtime-SFS-reconstruction-

fitting.mpg∗ illustrating the reconstruction/fitting results of our system. Within each frame,

the upper left picture is the run-time image captured by one of the five cameras and the

lower left picture depicts its silhouette generated by the background subtraction method.

The upper right picture shows the reconstructed voxels of the person using SPOT while the

lower right picture represents the fit ellipsoids. There are two frames delay between the

run-time image/silhouette computation and the reconstructed voxels/ellipsoids due to the

pipeline processing of the system. Another movie clip Realtime-SFS-system.mpg shows
∗All movie clips of this chapter can be found at

http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter3/

3.4. Related Work 29

Step Approximate
Time Required

Sending/Receiving
Silhouette Images 15 ms
Image Acquisition 10 ms

Voxel Reconstruction without
Surface extraction 35 ms

Voxel Reconstruction with
Surface extraction 40 ms

Silhouette Generation 15 ms
Ellipsoid Fitting 10 ms
Model Display 100 ms

Table 3.1: The approximate processing time for each step in our system.

real-time footage of the actual system, the user-interface and the results captured during an

experiment.

3.4 Related Work

Our real-time system for 3D Voxel reconstruction of human motion is partially inspired by

the arts project TRACE of Penny et al. [PSB99]. While they use only one computer and

focus on the artistic form of the resulting voxels (without fitting any model to the voxels),

our system studies the accuracy of the reconstruction and fits simple ellipsoidal models

to the reconstructed voxels. The application-based papers [BL00, BL01] by Laurentini

following his series of theoretical papers [Lau94, Lau95, Lau97, Lau99] have a similar

goal as our real time human motion reconstruction system. However, they concentrate

on the motion capture/fitting aspects from the reconstructed voxels, thus are not real-time

and there is no silhouette noise analysis. Niem performed error analysis of voxel-based

reconstruction methods in [Nie97]. He focused on local shape error caused by the discrete

resolution of the silhouettes, the voxels, the finite number of views, and to some extent

camera calibration parameters. His analysis does not include silhouette image noises but

30 Chapter 3. Real-time Shape-From-Silhouette

provide guidelines for choosing the number of viewpoints and the voxel size to obtain

a given shape accuracy. Moreover, Prock and Dyer proposed a real-time voxel coloring

algorithm using an octree data structure and a nearest neighbor search approach to maintain

the details of the reconstructed voxels [PD98].

Since we introduced the SPOT algorithm [CKBH00], Buehler et al. have derived an-

other fast algorithm for building and rendering Visual Hulls of 3D polyhedral objects us-

ing the visual cones intersection method [MBR+00, BMM01]. Their algorithm produces

surface-based (mesh) Visual Hulls and is particularly suited for rendering. On the other

hand, Mikic et al. built a system similar to ours (Section 3.3) to perform human posture

estimation [MHTC01]. They extended our system by introducing a better articulated body

model and voxel fitting strategy. They use fixed-size ellipsoids to model the human body

and enforce joint constraints using the Extended Kalman Filter framework. Although they

have not achieved real-time performance for their fitting procedure (20s per frame), their

strategy is more systematic than our naive way of fitting ellipsoidal shells to the voxels.

3.5 Discussion

Although we have demonstrated that voxel-based SFS can be used to reconstruct 3D human

motions in real time, it is difficult to achieve very accurate human motion tracking from the

reconstructed voxels. There are two major reasons behind this difficulty. First, since only a

small number of cameras (4-6) are used, the reconstructed voxel model is very coarse and

lacks enough information for precise voxel fitting and motion tracking. Secondly the shape

(ellipsoids) and joint information (for the system in [MHTC01]) of the human model used is

not tailored to the particular human subject to be tracked. The inaccuracy in the kinematic

information increases the errors in tracking for the high degree-of-freedom human body.

To solve these two problems, in the next few chapters we first extend the traditional SFS

so that silhouette images over time can be combined to build a detailed human model. We

then extend this approach to acquire kinematic information of the human subject.

3.5. Discussion 31

Frame 003 Frame 059 Frame 079Frame 072

Frame 088 Frame 099 Frame 111Frame 109

Frame 003 Frame 059 Frame 079Frame 072Frame 003 Frame 059 Frame 079Frame 072

Frame 088 Frame 099 Frame 111Frame 109Frame 088 Frame 099 Frame 111Frame 109

Frame 119 Frame 129 Frame 153Frame 149

Frame 155 Frame 157 Frame 159Frame 158

Frame 161 Frame 229 Frame 247Frame 231

Frame 280 Frame 286 Frame 299Frame 288

Frame 119 Frame 129 Frame 153Frame 149Frame 119 Frame 129 Frame 153Frame 149

Frame 155 Frame 157 Frame 159Frame 158Frame 155 Frame 157 Frame 159Frame 158

Frame 161 Frame 229 Frame 247Frame 231Frame 161 Frame 229 Frame 247Frame 231

Frame 280 Frame 286 Frame 299Frame 288Frame 280 Frame 286 Frame 299Frame 288

Figure 3.6: Twenty four selected frames from the movie clip Realtime-SFS-reconstruction-
fitting.mpg illustrating our real-time human motion reconstruction system [CKBH00].

Chapter 4

A New Visual Hull Representation:

Bounding Edge

In Chapter Two we presented two common ways to represent Visual Hulls: two-dimensional

surface patches and three-dimensional discrete voxels. In this chapter, we propose a new

representation for Visual Hulls using a one-dimensional entity called a Bounding Edge

(BE). We first give the definition of Bounding Edges and explain how they can be con-

structed from the silhouette images. We then discuss the Second Fundamental Property of

Visual Hulls which is closely related to the definition of a Bounding Edge. Finally we com-

pare the advantages and disadvantages of the three Visual Hulls representations (discrete

voxels, surface patches and Bounding Edges).

4.1 Definition of Bounding Edge

Consider a set of K silhouette images {S k
j} at a given time instant t j. Let ui

j be a point on the

boundary of the silhouette image S k
j. By projecting ui

j into 3D space through the camera

center Ck, we get a ray ri
j. A Bounding Edge E i

j is defined to be the part of ri
j such that

the projection of E i
j onto the lth image plane lies completely inside the silhouette S l

j for all

33

34 Chapter 4. A New Visual Hull Representation: Bounding Edge

Π ()
2

E1

i

C2

S1

3

C3

C1

S1

2

S1

1

S1

4

C4

Π ()
3

E1

i

Π ()
4

E1

i

u1

i

r1

i

E1

i

SV1(1)
i

FV1(1)
i

Π ()
2

E1

i

C2

S1

3

C3

C1

S1

2

S1

1

S1

4

C4

Π ()
3

E1

i

Π ()
4

E1

i

u1

i

r1

i

E1

i

SV1(1)
i

FV1(1)
i

Π ()
2

E1

iΠ ()
2

E1

i

C2C2

S1

3
S1

3

C3C3

C1C1

S1

2
S1

2

S1

1

S1

1

S1

4

S1

4

C4C4

Π ()
3

E1

iΠ ()
3

E1

i

Π ()
4

E1

iΠ ()
4

E1

i

u1

i

u1

i

r1

i
r1

i

E1

i

E1

i

SV1(1)
i

SV1(1)
i

FV1(1)
i

FV1(1)
i

Figure 4.1: The Bounding Edge E i
1 is obtained by first projecting the ray ri

1 onto S 2
1, S 3

1, S 4
1 and

then re-projecting the segments overlapped with the silhouettes back into the 3D space. E i
1 is the

intersection of the reprojected segments.

l ∈ {1, · · · · · · ,K}. Mathematically the condition can be expressed as

Ei
j ⊂ ri

j and Πl(Ei
j) ⊂ S l

j ∀ l ∈ {1, · · · · · · ,K} . (4.1)

Figure 4.1 illustrates the definition of a Bounding Edge at t1. A Bounding Edge can be

computed easily by first projecting the ray ri
j onto the K − 1 silhouette images S l

j, l =

1, · · · · · · ,K; l , k, and then re-projecting the segments which overlap with S l
j back into

3D space. The Bounding Edge is the intersection of the reprojected segments. Note that the

Bounding Edge E i
j is not necessarily a continuous line. It may consist of several segments

if any of the silhouette images are not convex. An example is shown in Figure 4.2 where

the Bounding Edge contains two segments. Hereafter, a Bounding Edge E i
j is denoted by a

set of ordered 3D vertex pairs as follows:

4.1. Definition of Bounding Edge 35

Π ()
2

E1

i

C2

S1

3

C3

C1

S1

2

S1

1

S1

4

C4

Π ()
3

E1

i

Π ()
4

E1

i

u1

i

r1

i

E1

i
SV1(1)

i

FV1(1)
i

SV1(2)
i

FV1(2)
i

Π ()
2

E1

iΠ ()
2

E1

i

C2C2

S1

3
S1

3

C3C3

C1C1

S1

2
S1

2

S1

1

S1

1

S1

4

S1

4

C4C4

Π ()
3

E1

iΠ ()
3

E1

i

Π ()
4

E1

iΠ ()
4

E1

i

u1

i

u1

i

r1

i
r1

i

E1

i
E1

i
SV1(1)

i
SV1(1)

i

FV1(1)
i

FV1(1)
i

SV1(2)
i

SV1(2)
i

FV1(2)
i

FV1(2)
i

Figure 4.2: A situation where the Bounding Edge E i
1 consists of more than one segment when one

or more of the silhouettes are not convex. In this case E i
1 contains two segments

(

S V i
1(1), FV i

1(1)
)

and
(

S V i
1(2), FV i

1(2)
)

.

Ei
j =
{ (

S V i
j(m), FV i

j(m)
)

; m = 1, . . . ,Mi
j

}

, (4.2)

where S V i
j(m) and FV i

j(m) represent the start vertex and finish vertex of the mth segment of

the Bounding Edge respectively and M i
j is the number of segments that E i

j is comprised of.

By sampling points on the boundaries of all the silhouette images {S k
j; k = 1, · · · · · · ,K},

we can construct a list of L j Bounding Edges that represents the Visual Hull H j.

An example of using a set of Bounding Edges to represent the Visual Hull of a real

object is shown in Figure 4.3. Figure 4.3(b) shows six silhouette images of a toy dinosaur

placed on a bunch of bananas (Figure 4.3(a)). Bounding Edges are extracted from the

silhouette images and are shown from three different viewpoints in Figure 4.3(c). As a

comparison, a voxel-based model is also built using the six silhouettes and is shown from

different viewpoints in Figure 4.3(d).

36 Chapter 4. A New Visual Hull Representation: Bounding Edge

(a) (b)

(c)

(d)

(a) (b)

(c)

(d)

Figure 4.3: (a) A toy dinosaur placed on a bunch of bananas. (b) Six silhouette images of the
dinosaur and the bananas captured from six different cameras. (c) Three different views of the
Bounding Edges extracted from sampled boundary points of the six silhouette images. (d) Three
different views of a voxel model reconstructed using the the standard voxel-based SFS algorithm as
discussed in Section 2.3.2. Each side of the voxel is about 1.5cm long and the dimensions of the toy
dinosaur are about 30cm by 14cm by 15cm.

4.2. Second Fundamental Property of Visual Hull 37

4.2 Second Fundamental Property of Visual Hull

The most important property of the Bounding Edge representation is that its definition

captures one aspect of Shape-From-Silhouette very naturally. To be precise, we state this

property as the Second Fundamental Property of Visual Hulls as follows:

Second Fundamental Properties of Visual Hulls (2nd FPVH)

Each Bounding Edge of the Visual Hull touches the object (that formed the silhouette im-

ages) at at least one point.

We have to emphasize that the Bounding Edges touches the object (tangentially) rather

than intersects objects. Notice that segment originating from an interior point of the sil-

houette intersects (rather than touches) the object at at least one point. The advantage of

the Bounding Edges touching the object rather than intersecting it is that the visibility of

the points on the Bounding Edges can be easily determined using only the silhouette im-

ages. The details of determining visibility of points on Bounding Edges are discussed in

Section 5.4.

The 2nd FPVH allows us to use Bounding Edges to store and represent the one aspect

of the shape information of the object that can be extracted from a set of silhouette images.

Despite being an important property, the 2nd FPVH is often overlooked by researchers who

usually focus on the 1st FPVH (Section 2.2.3) when using SFS for shape estimation. In the

next chapter, we will see how the 2nd FPVH can be combined with stereo to locate points

on the surface of the object.

4.3 Related Work

In their image-based Visual Hull rendering work [BMMG99, MBR+00, Mat01], Matusik et

al. proposed a ray-casting algorithm to render objects using silhouette images. Their way

of intersecting the casting rays with the silhouette images is similar to the way our Bound-

38 Chapter 4. A New Visual Hull Representation: Bounding Edge

ing Edges are constructed. However, there are two fundamental differences between their

approach and the definition of Bounding Edge. First, our Bounding Edges are originated

only from points on the boundary of the silhouette image while their casting rays can origi-

nate from anywhere, including any point inside the silhouette. Second, their casting rays do

not embed the important 2nd FPVH as Bounding Edges do. In a separate paper [BMM01],

Matusik et al. also proposed a fast way to build polyhedral Visual Hulls. They based

their idea on visual cone intersection but simplified the representation and computation

by approximating the actual silhouette as polygons (i.e. any curved part of the silhouette

is approximated by straight lines) which is equivalent to approximating the 3D object as

polyhedral shape. Due to this approximation, their results are not the exact surface-based

representation discussed in Section 2.3.1 except for true polyhedral objects. Nevertheless

their idea of calculating silhouette edge bins can be applied to speed up the construction

of Bounding Edges. Lazebnik et al. [LBP01] independently proposed a new way of rep-

resenting Visual Hulls. The edge of the “Visual Hull mesh” in their work is theoretically

equivalent to the definition of a Bounding Edge. However, they compute their edges after

locating frontier and triple points whereas we compute Bounding Edges directly from the

silhouette images.

4.4 Discussion

To compare the merits of using the three Visual Hull representations, we define two im-

portant attributes: exactness and completeness. A VH representation is said to be exact if

the geometric entities of the representation actually lie on the exact boundary of the Vi-

sual Hull. The representation is said to be complete if the geometric entities give us a

completely closed boundary of the Visual Hull. An exact representation is not necessarily

complete and vice versa.

Inherently the surface representation is an exact and complete representation because

4.4. Discussion 39

the surface patches form an exact and closed boundary of the Visual Hull. On the other

hand, the voxel representation is inexact but complete as the collection of all surface voxels

forms a closed boundary to the Visual Hull, although they are not guaranteed to lie on the

exact boundary of the Visual Hull. By the way they are constructed, Bounding Edges all

lie on the exact boundary of the Visual Hull and therefore they are exact. However, since

the boundary of the silhouette is only sampled at a finite collection of points, the Bounding

Edge representation does not form a completely closed boundary. In other words, Bounding

Edges are exact but incomplete representation of a 3D Visual Hull. Asymptotically if

we sample the silhouette boundary infinitely, the Bounding Edge representation will be

complete and equivalent to the surface representation. Similarly the voxel representation

will be exact and equal to the volume bounded by the surface representation if the voxel

size is infinitely small.

There are pros and cons of using each Visual Hull representation under different situ-

ations. In terms of low complexity, the exact surface representation is the least desirable

representation as it is computationally the most expensive. For real-time Visual Hull con-

struction, the voxel representation outperforms the other two representations due to the fast

voxel-based VH construction methods. In applications such as Visual Hull alignment (to

be discussed in the next chapter) where accurate shape information of the object is needed

(i.e. exactness is more important than completeness), the Bounding Edge representation is

preferred because it is exact, computationally less expensive than the surface representa-

tion and its definition embeds the 2nd FPVH naturally. For applications such as obstacle

avoidance or object re-rendering from a different viewpoint (see the image-based motion

rendering application in Chapter 9 as an example), the Bounding Edge representation is not

suitable as it is not complete. As a summary, Table 4.1 lists some of the properties of the

three Visual Hull representations : surface patch, discrete voxel and Bounding Edge.

40 Chapter 4. A New Visual Hull Representation: Bounding Edge

Properties Surface Patches Discrete Voxel Bounding Edge
Basic Geometric Entities 2D Surface 3D Volume 1D Line Segment

Completeness complete complete incomplete
Exactness exact inexact exact

Computational high (intersect low (test overlap moderate (intersect
3D planes of 2D points with 2D lines with

Complexity and surfaces) 2D silhouettes) 2D silhouettes)
natural relationship
with the 1st FPVH yes yes no
natural relationship
with the 2nd FPVH yes no yes

Real-time Visual Hull
Applications shape estimation Alignment

[CKBH00] and Refinement
[CBK03]

Table 4.1: Table comparing the surface patch, discrete voxel and Bounding Edge representations
of Visual Hulls.

Chapter 5

Visual Hulls Across Time: Rigid Objects

Shape estimation by SFS can be very coarse when there are only a few silhouette images,

especially for complex-shaped objects such as the dinosaur and bananas example in Fig-

ure 4.3. To illustrate the coarseness of the voxel model (which was built using only six

silhouette images) in Figure 4.3(d), we colored the voxels by re-projecting their centers

onto the color images. The model is re-displayed in Figure 5.1(b) with colors. Although

this model approximates the shape of the objects well, a lot of the details, such as the legs

and the horns of the dinosaur are missing.

Better shape estimates can be obtained using SFS if the number of distinct silhouette

images is increased. For example, the model shown in Figure 5.1(c) is constructed using

36 silhouette images and that in Figure 5.1(d) is constructed using 66 silhouette images. It

can be seen that the models built using 36 and 66 silhouette images are much better than

the one built using only 6 silhouettes in Figure 5.1(b).

The number of distinct silhouettes can be increased in one of two ways: across space

or across time. By across space, we mean increasing the number of cameras used. The

across space approach, though simple and straightforward, may not be feasible in many

practical situations due to financial (buying more cameras) or physical (system setup and

camera calibration) limitations. In this chapter we propose another way of increasing the

41

42 Chapter 5. Visual Hulls Across Time: Rigid Objects

(a) (b)

(c) (d)

(a) (b)

(c) (d)
Figure 5.1: (a) An image of the toy dinosaur and bananas. (b) The 3D colored Visual Hull voxel
model reconstructed using six silhouette images of the dinosaur/bananas. Some shape details such
as the legs and the horns of the dinosaur are missing in this model. (c) Voxel model reconstructed
using 36 silhouette images. Much better shape estimation is obtained. (d) Voxel model reconstructed
using 66 silhouette images. An even better shape estimate is obtained.

number of silhouette images by capturing a number of silhouettes from each camera as the

object moves across time and then using all the silhouette images (after compensating for

the motion of the object) for reconstruction. For example, for a system with K cameras

and J frames of images, the effective number of cameras would be increased to JK. This

is equivalent to adding an additional (J − 1)K physical cameras to the system.

There are two tasks to constructing Visual Hulls across time: (1) estimating the motion

of the object between successive time instants and (2) combining the silhouette images at

different time instants to get a refined shape of the object. In this chapter, we assume the

object of interest is rigid, but the motion of the object between frames is totally arbitrary

and unknown. We refer to the task of computing the rigid transformation as Visual Hull

5.1. Visual Hull Alignment 43

Alignment and the task of combining the silhouette images at different times as Visual Hull

Refinement. Both tasks will be discussed in details in the rest of this chapter. While we

focus on rigid objects here, in the next chapter we will extend the same alignment and

refinement idea to articulated objects.

5.1 Visual Hull Alignment

To combine silhouette images across time, the motion of the object between frames is

required. For static objects, the problem may be simplified by putting the object on a

precisely calibrated turn-table so that the motion is known in advance [Sze93]. However

for dynamic objects whose movement we do not have control or knowledge of, we have to

estimate the unknown motion before we can combine the silhouette images across time. To

be more precise, we state the Visual Hull Alignment Problem as follows:

Visual Hull Alignment by Silhouette Images:

Suppose we are given two sets of consistent silhouette images {S k
j; k = 1; · · · · · · ,K; j =

1, 2} of a rigid object O from K cameras at two different time instants t1andt2. Denote the

Visual Hulls for these silhouette sets by H j, j = 1, 2. Without loss of generality, assume

the first set of images {S k
1} are taken when the object is at position and orientation of (I, 0

¯
)

while the second image set {S k
2} is taken when the object is at (R, t). The problem of Visual

Hull alignment is to find (R, t) such that there exists an object O which exactly explains the

silhouettes at both times t j and the relative position and orientation of O is related by (R, t)

from t1 to t2. Moreover, we say that the two Visual Hulls H1 and H2 are aligned consistently

with transformation (R, t) if and only if we can find an object O such that H1 is the Visual

Hull of O at orientation and position (I, 0
¯
) and H2 is the Visual Hull of O at orientation and

position (R, t).

44 Chapter 5. Visual Hulls Across Time: Rigid Objects

Pure translation

Visual hull
at time t2

Visual hull
at time t1

object at t1

Object at t2

(a)

C2

C1

S1

2

S2

2

S1

1S2

1

Pure translation

Visual hull
at time t2

Visual hull
at time t1

object at t1

Object at t2

(a)

C2C2

C1C1

S1

2S1

2

S2

2S2

2

S1

1S1

1S2

1S2

1

Visual hull
at time t2

Visual hull
at time t1

object at t1

Object at t2

(b)

C2

C1

S1

2

S2

2

S1

1S2

1

200 degrees rotation,
followed by translationVisual hull

at time t2

Visual hull
at time t1

object at t1

Object at t2

(b)

C2C2

C1C1

S1

2S1

2

S2

2S2

2

S1

1S1

1S2

1S2

1

200 degrees rotation,
followed by translation

Figure 5.2: A 2D example showing the ambiguity issue of aligning Visual Hulls. Both cases in (a)
and (b) have the same silhouette image sets at times t1 and t2 but they are formed from two different
objects with different motion.

Since it is assumed that the two sets of silhouette images are consistent and come from

the same object, there always exists at least one set (the true solution) of object O and

motion (R, t) that exactly explains both sets of silhouette images. Now we study whether

aligning two Visual Hulls can be solved uniquely or not.

5.2 VH Alignment Ambiguity And Geometrical Constraints

Aligning two Visual Hulls using silhouette images alone is inherently ambiguous. This

means that in general the solution is not unique and there exists more than one set of (R, t)

which satisfies the alignment criterion. A 2D example is shown in Figure 5.2. In the figure,

both (a) and (b) have the same silhouette image sets (and hence the same Visual Hulls) at

times t1 and t2. However, in (a), the silhouettes are formed by a curved object with a pure

translation between t1 and t2, while in (b), the silhouettes are created by a polygonal object

with both a rotation (200 degrees) and a translation between t1 and t2.

The motion ambiguity in Visual Hull alignment is a direct result of the indeterminacy in

the shape of the object. Although the alignment solution is not unique, there are constraints

5.2. VH Alignment Ambiguity And Geometrical Constraints 45

on the motion and the shape of the object for a consistent alignment. We first discuss the

geometrical constraints for aligning two 2D Visual Hulls and later extend them to 3D.

5.2.1 Geometric Constraints for Aligning 2D Visual Hulls

To establish the constraints for aligning two 2D Visual Hulls, we begin with the following

two lemmas which express some fundamental properties of 2D Visual Hulls.

Lemma 5.1:

For a closed and connected 2D object, its Visual Hull from K silhouette images is a convex

polygon with at most 2K Bounding Edges. Conversely, any convex polygon with M ≥ 4

edges can be thought of as a Visual Hull formed from K silhouettes of some closed and

connected 2D object where K = dM
2 e.

Proof: See Appendix B.1

Lemma 5.2:

Each edge of the 2D polygonal Visual Hull H of an object O has to touch the object O at at

least one point. Conversely any closed and connected 2D object O which satisfies the two

conditions: (1) O ⊆ H, and (2) O touches each edge of H at at least one point, is an object

which forms the silhouettes of H.

Proof: See Appendix B.2

Lemma 5.1 establishes the fact that the Visual Hull of any closed and connected 2D

object must be a convex polygon. Lemma 5.2 is essentially the 2D version of the 2nd FPVH.

Now if we let E i
j be the edges of H j, T(R,t)(A) be the entity after applying transformation

of (R, t) to A and T −1
(R,t)() denotes the inverse transformation, the geometric constraints for

aligning two 2D Visual Hulls are expressed in Lemma 5.3 as follows:

Lemma 5.3:

Given two 2D Visual Hulls H1 and H2, the necessary and sufficient condition for them to be

46 Chapter 5. Visual Hulls Across Time: Rigid Objects

Refined Visual Hull

consistently aligned Inconsistently aligned

O

(a) (b)

(c) (d)

E1

4

E1

1
E1

2

E1

3

E1

6

E1

5

E1

7

E1

8
H1

E2

4

E2

5 E2

6

E2

7

E2

8

E2

1

E2

2

E2

3

T(R’,t’)(E2)
7-1

T(R’,t’)(E2)
1-1

T(R’,t’)(E2)
2-1

E1

1

E1

4

E1

5

H2

Refined Visual Hull

consistently aligned Inconsistently aligned

O

(a) (b)

(c) (d)

E1

4
E1

4

E1

1
E1

1
E1

2
E1

2

E1

3
E1

3

E1

6
E1

6

E1

5
E1

5

E1

7
E1

7

E1

8
E1

8
H1

E2

4
E2

4

E2

5
E2

5 E2

6
E2

6

E2

7
E2

7

E2

8
E2

8

E2

1
E2

1

E2

2
E2

2

E2

3
E2

3

T(R’,t’)(E2)
7-1T(R’,t’)(E2)
7-1

T(R’,t’)(E2)
1-1T(R’,t’)(E2)
1-1

T(R’,t’)(E2)
2-1T(R’,t’)(E2)
2-1

E1

1
E1

1

E1

4
E1

4

E1

5
E1

5

H2

Figure 5.3: (a)(b) Two Visual Hulls of the same object at different positions and orientations.
(c) All edges satisfy Lemma 5.3 when the alignment (R, t) is consistent, (d) edges E 1

1 , E4
1 , E5

1,
T−1

(R′,t′)(E
1
2), T−1

(R′,t′)(E
2
2), T−1

(R′,t′)(E
7
2) all violate Lemma 5.3 when the Visual Hulls are not aligned

consistently.

aligned consistently with transformation (R, t) is given as follows : No edge of T (R,t)(H1)

lies completely outside H2 and no edge of H2 lies completely outside T(R,t)(H1).

Proof: See Appendix B.3

Figure 5.3(a)(b) shows examples of two 2D Visual Hulls of the same object. In (c), the

alignment is consistent and all edges from both Visual Hulls satisfy Lemma 5.3. In (d), the

alignment is inconsistent and the edges E1
1, E4

1, E5
1, T−1

(R′,t′)(E
1
2), T−1

(R′,t′)(E
2
2), T−1

(R′,t′)(E
7
2) all

violate Lemma 5.3. Lemma 5.3 provides a good way to test if an alignment is consistent or

not, at least in 2D.

5.2. VH Alignment Ambiguity And Geometrical Constraints 47

0 100 200 300 400 500
0

50

100

150

200

250

300

350
Visual Hull VH1

0 100 200 300 400 500
0

50

100

150

200

250

300

350
Visual Hull VH2

0 100 200 300 400 500
0

50

100

150

200

250

300

350
One consistent alignment between VH1 and VH2

Transformed VH2

0 100 200 300 400 500
0

50

100

150

200

250

300

350
Another consistent alignment between VH1 and VH2

Transformed VH2

100 200 300 400 500 600
50

100

150

200

250

300

350

400

450
Visual Hull VH1

100 200 300 400 500 600
50

100

150

200

250

300

350

400

450
Visual Hull VH2

100 200 300 400 500 600
50

100

150

200

250

300

350

400

450
One consistent alignment between VH1 and VH2

Transformed VH2

100 200 300 400 500 600
50

100

150

200

250

300

350

400

450
Another consistent alignment between VH1 and VH2

Transformed VH2

θ

x

y

Solution Space

(a)

(b)

θ

x

y

Solution Space

θ

x

y

Solution Space

θ

x

y

Solution Space

(a)

(b)

θ

x

y

Solution Space

Figure 5.4: (a) An example of two synthetic 2D Visual Hulls (each with four edges) and the space
of consistent alignments. (b) An example of two synthetic 2D Visual Hulls (each with six edges)
and the solution space of consistent alignments.

To illustrate how these constraints can be used in practice, two synthetic 2D Visual

Hulls (polygons) each with four edges were generated and Lemma 5.3 was used to search

for the space of all consistent alignments. In 2D there are only three degrees of freedom

(two in translation and one in rotation). The space of consistent alignments are shown in

Figure 5.4(a). As can be seen, there are two unconnected subsets of the solution space,

clustered around different rotation angles. Another set of synthetic 2D Visual Hulls with 6

edges are also shown in Figure 5.4(b). In this example, there is only one connected subset

of solutions.

48 Chapter 5. Visual Hulls Across Time: Rigid Objects

Now consider a variant of Lemma 5.3 which we called Lemma 5.4 as follows:

Lemma 5.4:

(R, t) is a consistent alignment of two 2D Visual Hulls H1 and H2, constructed from sil-

houette sets {S k
j}; j = 1, 2 if and only if the following condition is satisfied : for each edge

Ei
1 of T(R,t)(H1), there exists at least one point P on E i

1 such that the projection of P onto

the kth image lies inside or on the boundary of the silhouette S k
2 for all k = 1, · · · · · · ,K.

Proof: See Appendix B.4

Lemma 5.4 expresses the constraints in terms of the silhouette images rather than the

Visual Hull. For 2D objects, there is no significant difference between using Lemma 5.3

or Lemma 5.4 to specify the alignment constraints because all 2D Visual Hulls can be

represented easily by a polygon with finite number of edges. For 3D objects, however,

the 3D version of Lemma 5.3 is not very practical because it is difficult to represent a 3D

Visual Hull exactly and completely. By expressing the geometrical constraints in terms of

the silhouette images (Lemma 5.4) instead of the Visual Hull itself (Lemma 5.3), the need

for an exact and complete Visual Hull representation can be avoided. In the next section,

we extend Lemma 5.4 to 3D and establish the constraints for aligning two 3D Visual Hulls

using only the silhouette images.

5.2.2 Geometric Constraints for Aligning 3D Visual Hulls

The geometric constraints for aligning two 3D Visual Hulls are expressed in terms of

Lemma 5.5 below:

Lemma 5.5:

For two convex 3D Visual Hulls H1 and H2 constructed from silhouette sets {S k
j}; j =

1, 2, the necessary and sufficient condition for a transformation (R, t) to be a consistent

alignment between H1 and H2 is as follows: for any Bounding Edge E i
1 (defined by (4.2)

in Chapter 4) constructed from the silhouette image set {S k
1}, there exists at least one point

5.2. VH Alignment Ambiguity And Geometrical Constraints 49

Solid cube with a through
hole in the x-direction

Silhouette
image

Three orthogonal
cameras

Silhouette
image

Silhouette
image

x

y

z

Solid cube with a through
hole in the x-direction

Silhouette
image

Three orthogonal
cameras

Silhouette
image

Silhouette
image

x

y

z

x

y

z

Figure 5.5: An example scenario of a solid cube with a through hole in the x-direction. The
sufficient part of Lemma 5.5 is not valid in this example.

P on Ei
1 such that the projection of the point T(R,t)(P) onto the kth image lies inside or on

the silhouette S k
2 for all k = 1, · · · · · · ,K. Similarly, for any Bounding Edge E i

2 constructed

from {S k
2}, there exists at least one point P on E i

2 such that the projection of the point

T−1
(R,t)(P) on the kth image lies inside or on the silhouette S k

1.

Proof: See Appendix B.5

Note that the condition in Lemma 5.5 is still necessary but not sufficient if either one or

both of the two Visual Hulls are non-convex. Figure 5.5 shows a counter example of a cube

with a hole through the middle of the cube in the x-direction and three cameras placed in an

orthogonal setup around the cube. Consider two sets of silhouettes which are captured at t1

and t2 with the cube at exactly the same position and orientation. The transformation (I, 0
¯
)

is obviously a consistent alignment between t1 and t2 because it is the true solution and

hence the conditions in Lemma 5.5 are satisfied for the identity transformation (the neces-

sary part of the Lemma). Now consider the transformation of rotating the cube around the

z-axis for 90 degrees without any translation. This is not a consistent alignment because the

50 Chapter 5. Visual Hulls Across Time: Rigid Objects

silhouettes at t1 and t2 from the y-direction camera do not match under this transformation.

However, the conditions in Lemma 5.5 are still satisfied with this 90 degree rotation about

z-axis transformation. Note that this transformation will be a consistent alignment if there

is no hole in the cube.

For general 3D objects, Lemma 5.5 is useful to reject inconsistent alignments between

two Visual Hulls but cannot be used to prove if an alignment is consistent. Theoretically

we can prove if an alignment is consistent as follows. First transform the Visual Hulls

using the alignment transformation and compute the intersection of the two Visual Hulls.

The resultant Visual Hull is then rendered with respect to all the cameras at both times and

compared with the two original sets of silhouette images. If the new Visual Hull exactly

explains all the original silhouette images, then the alignment is consistent. In practice,

however, this idea is computationally very expensive and is inappropriate as an algorithm

to compute the correct alignment between two 3D Visual Hulls. In Section 5.3.3, we will

show how the hard geometric constraints stated in Lemma 5.5 can be approximated by soft

constraints and combined with photometric consistency to align 3D Visual Hulls.

5.3 Resolving the Alignment Ambiguity

Since aligning Visual Hulls using silhouette images alone is ambiguous, additional infor-

mation is required in order to find the correct alignment. In this section we show how to

resolve the alignment ambiguity using color information. First we combine the 2nd FPVH

(introduced in Chapter 4) with stereo to extract a set of 3D points (which we call Colored

Surface Points) on the surface of the object at each time instant. Then the two sets of 3D

Colored Surface Points are used to align the Visual Hulls through the 2D color images. The

idea is discussed in details subsequently. We assume that besides the set of silhouette im-

ages {S k
j}, the set of original color images (which the silhouette images were derived from)

are also given and represented by {Ik
j }.

5.3. Resolving the Alignment Ambiguity 51

5.3.1 Colored Surface Points (CSPs)

Although the Second Fundamental Property of Visual Hull tells us that each Bounding

Edge touches the object at at least one point, it does not provide a way to find this touching

point. Here we propose a simple (one-dimensional) search based on the stereo principle to

locate this touching point as follows.

If we assume the object is Lambertian and all the cameras are color balanced, then

any point on the surface of the object should have the same projected color in all of the

color images. In other words, for any point on the surface of the object, its projected color

variance across the visible cameras should be zero. Hence on a Bounding Edge, the point

which touches the object should have zero projected color variance. This property provides

a good criterion for locating the touching points. Hereafter we call these touching points

the Colored Surface Points (CSP) of the object.

To express the idea mathematically, consider a Bounding Edge E i
j from the jth Vi-

sual Hull. Since we denoted the Bounding Edge E i
j by a set of ordered 3D vertex pairs

{ (

S V i
j(m), FV i

j(m)
)}

(Equation (4.2)), we can parameterize a point W i
j(m,w) on E i

j by two

parameters m and w, where m ∈ {1, · · · · · · ,M i
j} and 0 ≤ w ≤ 1 with

W i
j(m,w) = S V i

j(m) + w ∗
(

FV i
j(m) − S V i

j(m)
)

. (5.1)

Let ck
j(P) be the function which returns the projected color of a 3D point P on the k th color

image at time t j. The projected color mean µi
j(m,w) and variance σi

j(m,w) of the point

W i
j(m,w) are given as

µi
j(m,w) =

1
ni

j

∑

k

ck
j(W

i
j(m,w));

σi
j(m,w) =

1
ni

j

∑

k

[ck
j(W

i
j(m,w)) − µi

j(m,w)]2 . (5.2)

The projected color ck
j(W

i
j(m,w)) from camera k is used in calculating the mean and vari-

ance only if W i
j(m,w) is visible in that camera and ni

j denotes the number of the visible

52 Chapter 5. Visual Hulls Across Time: Rigid Objects

C3

C2

C4

C1

O

Occluded

Non-touching�point:�high�
projected�color�variance

Occluded

Touching�point�:�minimum�
projected�color�variance

Color�image�
of�camera�4

Color�image�
of�camera�1

Color�image
of�camera�2

Color�image�
of�camera�3

E1

i

r1

i

u1

i

C3C3

C2C2

C4C4

C1C1

O

Occluded

Non-touching�point:�high�
projected�color�variance

Occluded

Touching�point�:�minimum�
projected�color�variance

Color�image�
of�camera�4

Color�image�
of�camera�1

Color�image
of�camera�2

Color�image�
of�camera�3

E1

iE1

i

r1

ir1

i

u1

iu1

i

Figure 5.6: Locating the touching point (Colored Surface Point) by searching along the Bounding
Edge for the point with the minimum projected color variance.

cameras for point W i
j. The question of how to conservatively determine the visibility of

a 3D point with respect to a camera using only the silhouette images will be addressed

shortly. Figure 5.6 illustrates the idea of locating the touching point by searching along the

Bounding Edge.

In practice, due to noise and inaccuracies in color balancing, instead of searching for the

point which has zero projected color variance, we locate the point with the minimum vari-

ance. In other words, we set the Colored Surface Point of the object on E i
j to be W i

j(m̃, w̃)

where m̃ and w̃ minimizes σi
j(m,w) for 0 ≤ w ≤ 1; m ∈ {1, · · · , · · · ,M i

j}. Note that

by choosing the point with the minimum variance, the problem of tweaking parameters

or thresholds of any kind is avoided. The need to adjust parameters or thresholds is al-

ways a problem in other shape reconstruction methods such as space carving [KS00] or

multi-baseline stereo [OK93]. Space carving relies heavily on a color variance threshold to

5.3. Resolving the Alignment Ambiguity 53

Figure 5.7: Two sets of CSPs of the dinosaur/bananas dataset (see Figure 5.1) obtained at two
time instants with different positions and orientations (the points are drawn as small cubes for better
display). Note that the CSPs are sparsely sampled and there is no point-to-point correspondence
between the two sets of CSPs.

remove non-object voxels and stereo matching results are sensitive to the search window

size. In our case, knowing that each Bounding Edge touches the object at at least one point

(2nd FPVH) is the key piece of information that allows us to avoid any thresholds. In fact

locating CSPs is a special case of the problem of matching points on pairs of epipolar lines

as discussed in [SG98, IHA02]. In [SG98] and [IHA02], points are matched on “general”

epipolar lines on which there may or may not be a matching point so a threshold and an

independent decision is needed for each point. To locate CSPs, points are matched on “spe-

cial” epipolar lines which guarantee to have at least one matching point so no threshold is

required. Hereafter, for simplicity we drop the notation dependence of m, w, ˜ and denote

(with a slight abuse of notation) the CSPs W i
j(m̃, w̃) by W i

j and its color µi
j(m̃, w̃) by µi

j.

5.3.2 Alignment by Color Consistency

Suppose we have located two sets of Colored Surface Points at two different time instants

t1 and t2. For example, Figure 5.7 shows two sets of CSPs for the dinosaur/bananas (see

Figure 5.1) obtained at two time instants at two different positions and orientations. Since

54 Chapter 5. Visual Hulls Across Time: Rigid Objects

the sets of CSPs lie on their corresponding (rigid) Visual Hulls H1 and H2, the problem of

aligning H1 and H2 is equivalent to aligning the two sets of CSPs. The question now is how

can we align the two sets of CSPs. Before answering this question, we have to point out

two very important facts about CSPs. First of all, the CSPs at each time instant are points

on the occluding contours. This means that CSPs are only sparsely sampled points on the

surface of the object (as opposed to the 3D data points acquired from laser range devices

[CYB, CTI, TTI] which produce densely sampled surface points on the object). The point

sparsity prohibits us from using well established 3D point alignment methods such as the

Iterative Closet Point (ICP) method [BM92, Zha94, RL01]. Secondly the only property

common of the two sets of CSPs is that they all lie on the surface of the object. There is

no point-to-point correspondence between any two sets of CSPs obtained at different time

instant. Because of this, alignment methods which are used in the structure-from-motion

literature [TK92, PK92, QK96] cannot be used to align the CSPs.

To solve the CSP alignment problem, we use an idea similar to that used to solve the 2D

image registration problem in [Sze94]. In our case, instead of registering a 2D image with

another 2D image, we align 2D images ({Ik
2}) at time t2 with a “3D image” (the Colored

Surface Points {W i
1}) at time t1 through the projection functions {Πk}. The error measure

used is the sum of color differences between the Colored Surface Points at time t1 and

their projected colors from the color images at time t2 and vice versa. Mathematically, let

{Ik
j , S

k
j,W

i
j, µ

i
j; i = 1, · · · · · · , L j; k = 1, · · · · · · ,K; j = 1, 2} be the two sets of data. To

find the most color consistent alignment (R, t), consider the color error function

e =
L2
∑

i=1

ei
1,2 +

L1
∑

i=1

ei
2,1 , (5.3)

ei
1,2 =

∑

k

ei,k
1,2 =

∑

k

[ck
1(RT W i

2 − RT t) − µi
2]2 , (5.4)

ei
2,1 =

∑

k

ei,k
2,1 =

∑

k

[ck
2(RW i

1 + t) − µi
1]2 , (5.5)

5.3. Resolving the Alignment Ambiguity 55

where ei,k
2,1 represents the difference between the mean color µi

1 of the Colored Surface Point

W i
1 at time t1 and its projected color ck

2(RW i
1 + t) in camera k at time t2. Note that at time

t2, the new position of W i
1 due to the motion of the object is RW i

1 + t. Likewise, ei,k
1,2 is

the difference between the mean color µi
2 of W i

2 and its projected color ck
1(RT W i

2 − RT t)

in camera k at time t1. From now on, we refer to the error of aligning 3D points with the

2D images forward in time (e.g. 3D points at t1 and 2D images at t2) as the forward error.

Similarly the error of aligning 3D points with the 2D images backward in time (e.g. 3D

points at t2 and 2D images at t1) is referred to as the backward error. In the current example,

ei
2,1 is the forward error while ei

1,2 is the backward error. Just as when locating the CSPs on

the Bounding Edge in Equation (5.2), the summations in equations (5.4) and (5.5) include

the projected color of camera k only if the point of interest is visible in that camera. The

process of Visual Hull alignment by color consistency is illustrated in Figure 5.8.

If we parameterize R and t as

Φ = [Φ1,Φ2,Φ3,Φ4,Φ5,Φ6]T (5.6)

where Φ1,Φ2,Φ3 are the Euler’s angles of R and Φ4,Φ5,Φ6 are the x, y, z components of

t, the minimization of (5.4) can be solved by an iterative method similar to the Levenberg-

Marquardt algorithm [DS83, PTVF93]:

1. With an initial estimate Φ̂, calculate the Hessian matrix H = {hmn} and the difference

vector d = {dm} with m, n = 1, · · · · · · , 6 as

hmn =

L2
∑

i=1

∑

k

∂ei,k
1,2

∂[Φ]m

∂ei,k
1,2

∂[Φ]n
+

L1
∑

i=1

∑

k

∂ei,k
2,1

∂[Φ]m

∂ei,k
2,1

∂[Φ]n
, (5.7)

dm = −2[
L2
∑

i=1

∑

k

ei,k
1,2

∂ei,k
1,2

∂[Φ]m
+

L1
∑

i=1

∑

k

ei,k
2,1

∂ei,k
2,1

∂[Φ]m
] . (5.8)

56 Chapter 5. Visual Hulls Across Time: Rigid Objects

(RT, - RT t)2D Color Images

Initial motion estimate (R, t)
t1

t2Time

Colored Surface
Touching Points
(“3D Images”)

W2
iRT - RT t

Error between the
projected colors on
2D images at t1 and µ 2

i

Error between the
projected colors on
2D images at t2 and µ 1

i

(R, t)

R + tW1
i

µ 2
iwith colorW2

iµ 1
iwith colorW1

i

(RT, - RT t)2D Color Images

Initial motion estimate (R, t)
t1

t2Time

Colored Surface
Touching Points
(“3D Images”)

W2
iRT - RT tW2
iW2
iRT - RT t

Error between the
projected colors on
2D images at t1 and µ 2

i

Error between the
projected colors on
2D images at t1 and µ 2

i

Error between the
projected colors on
2D images at t2 and µ 1

i

Error between the
projected colors on
2D images at t2 and µ 1

i

(R, t)

R + tW1
iR + tW1
iW1
i

µ 2
iwith colorW2

i µ 2
iµ 2
iwith colorW2

iW2
iW2
iµ 1

iwith colorW1
i µ 1

iµ 1
iwith colorW1

iW1
iW1
i

Figure 5.8: Visual Hull Alignment using color consistency. The error between the colors of the 3D
surface points and their projected image colors is minimized.

2. Update the parameter Φ̂ by an amount δΦ = (H + λI)−1d, where λ is a time-varying

stabilization parameter.

3. Go back to 1. until the estimate of Φ̂ converges.

To initialize the optimization parameters, we approximate the two sets of CSPs at t1

and t2 each by an ellipsoidal shell (using Equations (3.3), (3.4) and (3.5) in Section 3.3.2).

The initial estimate of the translation vector t is then set as the relative positions of the

centers of the two ellipsoids. Similarly the initial guess for the rotation matrix R is set as

the relative orientation of the two ellipsoids. This simple initialization method works well

5.3. Resolving the Alignment Ambiguity 57

for most objects when the rotation of the object between the two time instants is less than

90 degrees.

5.3.3 Alignment by Color Consistency and Geometrical Constraints

Since the above formulation for aligning two sets of CSPs is inspired by the 2D image

registration problem [Sze94], the error measure (Equation (5.3)) is based solely on color

consistency (stereo). Though simple, this formulation does not take into account an im-

portant fact: the CSPs lie on the surface of Visual Hulls whose alignment is governed by

the geometric constraints stated in Lemma 5.5. Here we show how the hard constraints of

Lemma 5.5 can be converted into soft constraints and combined with color consistency to

align the CSPs.

Recall Lemma 5.5 states that if (R, t) is a consistent alignment, then for any Bounding

Edge Ei
1, there exists at least one point P on E i

1 such that the projection of the transformed

point RP + t lies inside or on the boundary of all the silhouette images {S k
2} at time t2 and

vice versa. In fact P is the point where the object touches the Bounding Edge, which we

have extracted as a CSP. Hence the constraint is equivalent to saying that all transformed

CSP points at time t1 must lie inside or on the boundary of the silhouette images {S k
2} and

vice versa. In practice, due to noises and calibration errors, instead of applying this hard

constraint directly to the optimization procedures (Equations (5.6) to (5.8)), we incorpo-

rate it as a soft constraint by minimizing the distance between the projected CSP and the

silhouettes as explained below.

Assume we have the same sets of data {Ik
j , S

k
j,W

i
j, µ

i
j; i = 1, · · · · · · , L j; k =

1, · · · · · · ,K; j = 1, 2} as before. Let (R, t) be an estimate of the rigid transformation.

Consider first the calculation of the forward error. For a CSP W i
1 (with color µi

1) at time t1,

its 3D position at time t2 would be RW i
1 + t. Consider two different cases of the projection

of RW i
1 + t into the kth camera:

58 Chapter 5. Visual Hulls Across Time: Rigid Objects

1. The projection lies inside the silhouette S k
2. In this case, we use the color difference

[ck
2(RW i

1 + t) − µi
1]2 as the error measure, where as defined before, ck

2(P) is the pro-

jected color of a 3D point P into the color image Ik
2. Here we set the color error to

zero if the projection of P lies outside S k
2. We call this error the forward photometric

error.

2. The projection lies outside S k
2. In this case, we use the distance of the projection

from S k
2, represented by dk

2(RW i
1 + t) as an error measure. The distance is zero if the

projection lies inside S k
2. We call this error the forward geometric error.

Summing over all cameras in which W i
1 is visible, the forward error measure of W i

1 with

respect to (R, t) is given by

ei
2,1 =

∑

k

{τ ∗ dk
2(RW i

1 + t) + [ck
2(RW i

1 + t) − µi
1]2} , (5.9)

where τ is a weighing constant. Equation (5.9) combines the color consistency constraint

(stereo) with the geometric constraint (Shape-From-Silhouette). Similarly, the backward

error measure of a CSP W i
2 at time t2 is written as the sum of the backward photometric and

geometric errors:

ei
1,2 =

∑

k

{τ ∗ dk
1(RT (W i

2 − t)) + [ck
1(RT (W i

2 − t)) − µi
2]2} . (5.10)

The problem of estimating (R, t) is now turned into the problem of minimizing the sum of

the forward and backward error

min
R,t

e = min
R,t

L2
∑

i=1

ei
1,2 +

L1
∑

i=1

ei
2,1 , (5.11)

which can be solved using the same Iterative LM algorithm described in Section 5.3.2.

Hereafter, we refer to this Visual Hull across time algorithm as the temporal SFS algorithm

(for rigid objects) and summarize the steps as follows:

5.4. Visibility Issues 59

Temporal SFS Algorithm for Rigid Objects

1. Construct a list of Bounding Edges {E i
j} from the silhouette images {S k

j} at t j where

j = 1, 2.

2. Extract a set of Colored Surface Points {W i
j, µ

i
j} at t j from the list of Bounding Edges

{Ei
j} and the color images {I i

j}.

3. Initialize the translation and rotation parameters by ellipsoid fitting.

4. Apply the Iterative LM algorithm (Section 5.3.2) to minimize the sum of the forward

and backward errors in Equation (5.11) with respect to the (6D) motion parameters

until convergence is attained or for a fixed number of iterations.

5.4 Visibility Issues

5.4.1 Determining Visibility for Locating CSPs

To locate the Colored Surface Points using Equation (5.2), the visibility of the 3D point

W i
j(m,w) with respect to all K cameras is required. Here, we present a way to determine

the visibilities conservatively using only the silhouette images. Suppose we are given a

3D point P and a set of silhouette images {S k
j} with camera centers {Ck} and projection

functions {Πk()}. The following lemma then holds:

Lemma 5.6:

Let Πl(P) and Πl(Ck) be the projections of the point P and the kth camera center Ck on the

(infinite) image plane of camera l. If the 2D line segment joining Πl(P) and Πl(Ck) does

not intersect the silhouette image S l
j, then P is visible with respect to camera k at time t j.

Proof: See Appendix C

60 Chapter 5. Visual Hulls Across Time: Rigid Objects

(a)

S1

1

C1

P1

P2

P3

p

p = Π (P1) = Π (P2) 1 1

Π ()1
C

4

C2

C
4

Π ()1
P3

Π ()1
C2

Correct�segment

(b)

Π ()1
C

5

P3

Π ()1
P3

S1

1

C1C5

(c)

Π ()1
C3

Π ()1
C2

Π ()1
C4

S1

1

C1

(a)

S1

1

C1

P1

P2

P3

p

p = Π (P1) = Π (P2) 1 1

Π ()1
C

4

C2

C
4

Π ()1
P3

Π ()1
C2

(a)

S1

1
S1

1

C1C1

P1

P2

P3

p

p = Π (P1) = Π (P2) 1 1
p = Π (P1) = Π (P2) 1 1

Π ()1
C

4Π ()1
C

4
C

4

C2C2

C
4

C
4

Π ()1
P3Π ()1
P3P3

Π ()1
C2Π ()1
C2C2

Correct�segment

(b)

Π ()1
C

5

P3

Π ()1
P3

S1

1

C1C5

Correct�segment

(b)

Π ()1
C

5Π ()1
C

5
C

5

P3

Π ()1
P3Π ()1
P3P3

S1

1
S1

1

C1C1C5C5

(c)

Π ()1
C3

Π ()1
C2

Π ()1
C4

S1

1

C1

Π ()1
C3Π ()1
C3C3

Π ()1
C2Π ()1
C2C2

Π ()1
C4Π ()1
C4C4

S1

1
S1

1

C1C1

Figure 5.9: (a) Visibility of points with respect to cameras using Lemma 5.6. (b) An example
where C5 is behind C1. The correct line to be used in Lemma 5.6 is the outer segment which passes
through infinity instead of the direct segment. (c) Boundary points that can be used to construct
Bounding Edges are marked by the thick boundary. These boundary points are the ones which the
resulting Bounding Edges can be seen by at least two other cameras besides camera 1.

Figure 5.9(a) gives examples where the points P1, P2 and P3 are visible with respect

to camera 2. The converse of Lemma 5.6 is not necessarily true: the visibility cannot

be determined if the segment joining Πl(P) and Πl(Ck) intersects the silhouette S l
j. One

counter example is shown in Figure 5.9(a). Both points P1 and P2 project to the same 2D

point p on the image plane of camera 1 and the segment joining p and Π1(C4) intersects

with S 1
1. However, P1 and P2 have different visibilities with respect to camera 4 (P2 is

visible while P1 is not). Note that special attention must be given to situations in which

camera center Ck lies behind camera center Cl. In such cases, the correct line segment to

be used in Lemma 5.6 is the outer line segment (passing through infinity) joiningΠl(P) and

Πl(Ck) rather than the direct segment. An example is given in Figure 5.9(b).

Though conservative, there are three advantages of using Lemma 5.6 to determine vis-

5.4. Visibility Issues 61

ibility for locating CSPs. First of all, Lemma 5.6 uses information directly from the sil-

houette images, avoiding the need to estimate the shape of the object for the visibility test.

Secondly, recall that to construct a Bounding Edge E i
j, we start with the boundary point ui

j

of the kth silhouette. Hence all the points on E i
j project to the same 2D point ui

j on camera k

which implies all points on the Bounding Edge E i
j have the same set of conservative visible

images. This property ensures that the color consistencies of points on the same Bounding

Edge are calculated from the same set of images. Accuracy in searching the optimal point

W i
j is increased because comparisons are made fairly among points on the same Bound-

ing Edge. Finally Lemma 5.6 also provides a guideline to sample the silhouette boundary

points for constructing Bounding Edges. To have meaningful color consistencies, the num-

ber of color images used in Equation (5.2) has to be at least 2 (otherwise the projected color

variance will be 0). By Lemma 5.6, boundary points ui
j are chosen such that the resulting

Ei
j is seen by at least 2 other images (excluding the image S k

j from which the boundary

point is chosen from). An example is shown in Figure 5.9(c). Only points on part of the

boundary of S 1
1 (marked by thicker lines) are used to construct Bounding Edges because

they are the points from which the resulting Bounding Edges can be seen by at least two

other cameras, namely cameras 2 and 3.

5.4.2 Determining Visibility During Alignment

To perform the alignment using Equation (5.11), we have to determine the visibility of the

transformed 3D point RW i
1 + t w.r.t. the cameras at time t2 (and vice versa the visibility for

the transformed point RT (W i
1 − t) w.r.t. the cameras at time t1). Naively, we can just apply

Lemma 5.6 to the transformed point RW i
1 + t directly. In practice, however, this “direct

approach” does not work for the following reason. Since the CSP W i
1 lies on the surface of

the object, the projection of the transformed point RW i
1 + t should lie inside the silhouettes

at time t2, unless it happens to be on the occluding contour of the object again at t2 such that

its projection lies on the boundary of some of the silhouette images. Either way, this means

62 Chapter 5. Visual Hulls Across Time: Rigid Objects

that no matter where the camera centers are, the line joining the projection of RW i
1 + t

and the camera centers almost always intersects the silhouettes as shown in Figure 5.10(a).

Hence, the visibility of the point W i
1 at t2 will almost always be treated as indeterminable

by Lemma 5.6 due to its over-conservative nature.

Here we suggest a “reverse approach” to deal with this problem. Instead of applying

the transformation (R, t) to the point W i
1, we apply the inverse transform (RT ,−RT t) to the

camera centers and project the transformed camera centers into the one silhouette image

(captured at t1) where W i
1 is originated from as shown in Figure 5.10(b). Lemma 5.6 is then

applied to the boundary point ui
1 (which generates the Bounding Edge E i

1 that W i
1 lies on)

and the projections of the transformed camera centers to determine the visibility. Since the

object is rigid, the reverse approach generates the correct visibility of RW i
1 + t w.r.t. the

cameras at t2 at least in the limit that the alignment (R, t) tends to the correct values.

5.4. Visibility Issues 63

time t1 time t2

C2

S2

1

(R, t)

S2

2

S2

3

S2

4

E1

i

W1

i

S1

1 C
4

C3

C1

C1

r1

i

u1

i

R W1 + t i

(a)

Projections of
always lies inside the
silhouette images

R W1 + t
i

All lines intersect
the silhouette

time t1 time t2

C2C2

S2

1S2

1

(R, t)

S2

2S2

2

S2

3
S2

3

S2

4S2

4

E1

i
E1

i

W1

i
W1

i

S1

1S1

1 C
4

C
4

C3C3

C1C1

C1C1

r1

ir1

i

u1

i
u1

i

R W1 + t iR W1 + t i

(a)

Projections of
always lies inside the
silhouette images

R W1 + t
i

Projections of
always lies inside the
silhouette images

R W1 + t
i

R W1 + t
i

All lines intersect
the silhouette

time t1 time t2

C2

S2

2

W1

i

S1

1

C
1

C1

u1

i

(b)

R (C - t) T 2

R (C - t) T 1

(RT, - RT t)

(RT, - RT t)

S2

1

time t1 time t2

C2C2

S2

2
S2

2

W1

i
W1

i

S1

1
S1

1

C
1

C
1

C1C1

u1

i
u1

i

(b)

R (C - t) T 2R (C - t) T 2

R (C - t) T 1R (C - t) T 1

(RT, - RT t)

(RT, - RT t)

S2

1
S2

1

Figure 5.10: (a) The “Direct approach” of applying Lemma 5.6 to determine the visibility of
RW i

1+ t w.r.t. {S k
2}. The projection of RW i

1+ t almost always lies inside {S k
2}. The over-conservative

nature of Lemma 5.6 prohibits us for determining the visibility of RW i
1 + t. (b) The “Reverse

approach” of applying Lemma 5.6 to determine visibility of RW i
1+ t w.r.t. {S k

2}. The camera centers
are inversely transformed by (RT ,−RT t) and then projected onto {S k

1}. The visibility can then be
determined by checking if the lines joining ui

1 and the projections of the transformed camera centers
intersect with S 1

1 exactly as in Lemma 5.6.

64 Chapter 5. Visual Hulls Across Time: Rigid Objects

(a) (b)

Silhouette

Projections of transformed
camera centers

Expanded
silhouette Safe zone

Silhouette
point

visible
visible

invisibleinvisible

(a) (b)

Silhouette

Projections of transformed
camera centers

Expanded
silhouette Safe zone

Silhouette
point

visible
visible

invisibleinvisible

Figure 5.11: Two measures to increase the conservativeness of the visibility test at the beginning
of the optimization process. (a) “Expand the silhouette away” from the point under consideration.
(b) Create a “safe zone” around the local normal at the silhouette image point.

Although the over-conservative nature of Lemma 5.6 is avoided using the reverse ap-

proach, there is one downside. Some of the visibility tests may not be correct in the first

few iterations of the alignment optimization when the estimated transformation (R, t) is

far from the correct solution, thus causing optimization instability. To compensate for this

initial jitter, we increase the conservativeness of the visibility test (at the beginning of the

optimization process) using one or both of the two measures shown in Figure 5.11. The first

measure (Figure 5.11(a)) works by “expanding the silhouette” away from the point under

consideration to deal with self-occlusion by points far away. The second measure (Fig-

ure 5.11(b)) creates a “safe zone” by estimating the local normal of the silhouette image

point and only considering the cameras whose centers are projected inside a pre-defined

wedge (around the normal) as visible. When the estimated motion parameters converge

toward the correct solutions, the above measures are relaxed as the visibility tests using the

reverse approach become more and more accurate and the minimization framework is able

to handle small errors in the visibility tests.

5.5. Visual Hull Refinement 65

C2

(R, t)

2 � 1C
2

C
4

C
3

C1

(R, t)

(R, t)

(R, t)

2 � 1C3

2 � 1C
1

2 � 1C4

1S
1

2S
1

1S
2

2S 2

1S
3

2S 3

1S
4

2S 4

C2C2

(R, t)

2 � 1C
2

2 � 1C
2

C
2

C
4

C
4

C
3

C
3

C1C1

(R, t)

(R, t)

(R, t)

2 � 1C3

2 � 1C3C3

2 � 1C
1

2 � 1C
1

C
1

2 � 1C4

2 � 1C4C4

1S
1

1SS
1

2S
1

2SS
1

1S
2

1SS
2

2S 2

2SS 2

1S
3

1SS
3

2S 3

2SS 3

1S
4

1SS
4

2S 4

2SS 4

Figure 5.12: Visual Hull Refinement: the silhouette images at time t2 are incorporated into time t1
by transforming the camera centers according to the recovered rigid motion (R, t).

5.5 Visual Hull Refinement

After estimating the alignment across time, the rigid motion {(R j, t j)} is used to combine

the J sets of silhouette images {S k
j; k = 1, · · · · · · ,K; j = 1, · · · · · · , J} to get a tighter upper

bound of the shape of the object. By fixing t1 as the reference time, we combine {S k
j}; j =

2, · · · · · · J with {S k
1} by considering the former as “new” silhouette images captured by

additional cameras placed at positions and orientations transformed by (R j, t j). In other

words, for the silhouette image S k
j captured by camera k at time j, we use a new perspective

projection function Πk
j→1 derived from Πk through the rigid transformation (R j, t j). As a

result, the effective number of cameras is increased from K to K × J. The idea of warping

the cameras from time t2 to time t1 is depicted in Figure 5.12.

66 Chapter 5. Visual Hulls Across Time: Rigid Objects

5.6 Experimental Results

Two types of sequences are used to demonstrate the validity of our alignment and refine-

ment algorithm. Firstly, a synthetic sequence is used to obtain a quantitative comparison

of several aspects of the the algorithm. Two sets of experiments are run on the synthetic

sequence. The first set of experiments (Algorithms I, II and III in Section 5.6.1.1) studies

how the alignment accuracy is affected by each component (color consistency and geo-

metrical constraints) of the error measure in Equations (5.9) and (5.10). The second set

of experiments (Algorithms II, IV and V in Section 5.6.1.2) compares the effectiveness of

using Colored Surface Points to align Visual Hulls with (1) voxel models created by Shape-

From-Silhouette and (2) Space Carving [KS00]. After our alignment algorithm is tested on

synthetic data, several sequences of real objects are used in Sections 5.6.2 for qualitative

evaluation on data with real noise, calibration errors and imperfectly color balanced cam-

eras.

5.6.1 Synthetic Data Set (Torso Sequence)

A synthetic data set is created using a textured wire-frame computer model resembling

the human torso. The model was moved under a known trajectory for twenty two frames.

At each time instant, images of six cameras (K = 6) with known camera parameters are

rendered using OpenGL. A total of 22 sets of color and silhouette images are generated.

Some input images for cameras 1 and 6 at a variety of frames are shown in Figure 5.13.

5.6.1.1 Experiment Set 1: Effect of Error Measure on Alignment Accuracy

A. Alignment

In the first set of experiments, Bounding Edges and Colored Surface Points are first ex-

tracted. Then three alignment algorithms were implemented to investigate the effect of

each component (color consistency and geometric constraints) of the error measure on the

alignment accuracy. In Algorithm I, only the error from the geometrical constraints is used

5.6. Experimental Results 67

time t1 time t11time t6 time t16 time t21

Input images of the Torso sequence from Camera 1

time t1 time t11time t6 time t16 time t21

Input images of the Torso sequence from Camera 6

time t1 time t11time t6 time t16 time t21

Input images of the Torso sequence from Camera 1

time t1 time t11time t6 time t16 time t21

Input images of the Torso sequence from Camera 6

Figure 5.13: Some of the input images of cameras 1 and cameras 6 of the synthetic torso sequence.

(i.e. the first term dk
2(RW i

1 + t) in Equation (5.9)). In Algorithm II, only the error caused by

the color inconsistency is used (i.e. the second term [ck
2(RW i

1 + t)− µi
1]2 in Equation (5.9)).

In Algorithm III, both errors are used. The results for the 6 motion parameters estimated

over time from this experiment set are shown in Figures 5.14, 5.15 and 5.16. In the figures,

the ground-truth values are drawn with solid black lines, the results obtained from using

both geometric constraints and color consistency (Algorithm III) are drawn with magenta

dotted lines with an inverted triangle, the results with only the geometric constraints (Al-

gorithm I) are drawn with blue dashed-dotted lines with circle, and the results with only

color consistency (Algorithm II) are drawn with red dashed lines with asterisks. As ex-

pected the results of using both error components at the same time are the best, followed by

the results using only the color consistency. The results obtained using only the geometric

constraints are the worst of the three. As discussed in Section 5.2, aligning Visual Hulls

using only geometric (silhouette) information is inherently ambiguous. This means that if

color consistency (the second term of Equation (5.9)) is not used, there exists more than

68 Chapter 5. Visual Hulls Across Time: Rigid Objects

one global minimum to Equation (5.11) (see the 2D examples in Figure 5.4). Under such

situations, optimizing Equation (5.11) may converge to any global minimum other than the

actual motion of the object. This explains why the results of Algorithm I are not as good as

Algorithms II and III.

B. Refinement

To study the effect of alignment on refinement, the estimated parameters in the alignment

experiments are used to refine the shape of the torso model using the voxel-based SFS

method [Sze93]. The Visual Hull at time t j is constructed using the silhouettes at t j and

all those from the previous frames {t1, · · · · · · , t j−1}, transformed by the estimated motion

parameters as described in Section 5.5. To quantify the refinement results, the ground-truth

wire-frame model (see Figure 5.21(a)) used to render the input images is converted into a

ground-truth voxel model (see Figure 5.21(b)) and compared to the refined voxel models.

The results are plot in Figure 5.17 with graphs (a) and (b) showing the number of extra and

missing voxels between the refined shapes and the ground-truth voxel models against the

number of frames used. Figure 5.17(c) illustrates the ratio of total incorrect (missing plus

extra) to total voxels.

In all of the results obtained from Algorithm I, II and III, the number of extra voxels

decreases as the number of frames used increases because a tighter Visual Hull is obtained

with an increase in the number of distinct silhouette images. However, the number of miss-

ing voxels also increases as the number of frames used increases. This is due to alignment

errors which remove correct voxels during construction. The refinement results are the best

with the motion parameters estimated using both the color consistency and the geomet-

ric constraints (the magenta dotted lines with inverted triangle) from Algorithm III. Again

Algorithm II (just color consistency) is better than Algorithm I (just geometric constraints).

5.6. Experimental Results 69

5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Frame

X
−a

xi
s

R
ot

at
io

n
an

gl
e

(r
ad

ia
ns

)

5 10 15 20

−50

0

50

100

150

200

250

300

Frame

X
−c

om
po

ne
nt

 o
f T

ra
ns

la
tio

n
(in

 m
m

)

Ground−truth
Geometric constraints only
Color consistency only
Color consistency and geometric constraints

Figure 5.14: Results of X-axis rotation angle and X-component of translation estimated over
time from Experiment Set 1 with different error measure: only geometric constraints is used (blue
dashed-dotted lines with circle), only color consistency is used (red dashed lines with asterisks),
both geometric constraints and color consistency are used (magenta dotted lines with inverted tri-
angle). The solid black lines represents the ground-truth values. Results obtained using both error
components are the best followed by results using only color consistency. Due to the alignment
ambiguity, results using only geometrical constraints are the worst among the three.

70 Chapter 5. Visual Hulls Across Time: Rigid Objects

5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

Frame

Y
−a

xi
s

R
ot

at
io

n
an

gl
e

(r
ad

ia
ns

)

5 10 15 20
−1000

−900

−800

−700

−600

−500

−400

−300

−200

−100

0

Frame

Y
−c

om
po

ne
nt

 o
f T

ra
ns

la
tio

n
(in

 m
m

)

Ground−truth
Geometric constraints only
Color consistency only
Color consistency and geometric constraints

Figure 5.15: Results of Y-axis rotation angle and Y-component of translation estimated over time
from Experiment Set 1 with different error measure. See caption of Figure 5.14 for further details.

5.6. Experimental Results 71

5 10 15 20
0

0.5

1

1.5

2

Frame

Z−
ax

is
 R

ot
at

io
n

an
gl

e
(r

ad
ia

ns
)

5 10 15 20

−150

−100

−50

0

50

100

150

200

250

300

350

Frame

Z−
co

m
po

ne
nt

 o
f T

ra
ns

la
tio

n
(in

 m
m

)

Ground−truth
Geometric constraints only
Color consistency only
Color consistency and geometric constraints

Figure 5.16: Results of Z-axis rotation angle and Z-component of translation estimated over time
from Experiment Set 1 with different error measure. See caption of Figure 5.14 for further details.

72 Chapter 5. Visual Hulls Across Time: Rigid Objects

2 4 6 8 10 12 14 16 18 20 22

103

Frame

(a) extra voxels

2 4 6 8 10 12 14 16 18 20 22

102

Frame

(b) missing voxels

2 4 6 8 10 12 14 16 18 20 22

10−1

Frame

(c) ratio of error (missing + extra) to total voxels

Ground−truth
Geometric constraints only
Color consistency only
Color consistency and geometric constraints

Figure 5.17: Graphs of refinement errors (missing and extra voxels) across time (frames). Using
both color consistency and geometric constraints has lower error ratio than just using either one of
them.

5.6.1.2 Experiment Set 2: BE/CSP versus SFS and SC

A. Alignment

In the second set of experiments, two more alignment algorithms (Algorithms IV and V)

were implemented to show the effectiveness of using Bounding Edges/Colored Surface

Points (Algorithm II) to align Visual Hulls compared to using voxel models created by

Shape-From-Silhouette (SFS) and Space Carving (SC) [KS00]. In Algorithm IV, a voxel

model is built from the silhouette images using voxel-based Shape-From-Silhouette (SFS).

Surface voxels are extracted and colored by back-projecting onto the color images. The

centers of the colored surface voxels are then treated as input data points to the same

alignment algorithm used in Algorithm II (i.e. only color consistency but not geometric

5.6. Experimental Results 73

constraints are used in the error measure). In Algorithm V, a voxel model is first built using

SFS (as in Algorithm IV) and further refined by Space Carving (SC). The centers of the

surface voxels (which are already colored by SC) are used for alignment using only the

color consistency error measure. To investigate the effect of the space carving threshold on

alignment, different values of the threshold are used and the estimated motion parameters

are compared with the ground truth values. Graphs of the average RMS errors in the rota-

tion and translation parameters against the threshold used are shown as blue dotted-dashed

lines in Figure 5.18. When the threshold is too small, many correct voxels are carved away,

resulting in a voxel model much smaller than the actual object. When the threshold is too

big, extra incorrect voxels are not carved away, leaving a voxel model bigger than the actual

object. In both cases, the wrong data points extracted from the incorrect voxel models cause

errors in the alignment process. The optimal threshold value is found to be around 0.108

and the graph is amplified in the vicinity of this value in the bottom part of Figure 5.18. As

a comparison, the average RMS errors for the rotation and translation parameters obtained

from Algorithm II (using BE and CSPs) is drawn as the horizontal red dashed line. With

the optimal SC threshold, the performance of using SFS+SC voxel models is comparable

but less accurate than that of using Bounding Edges and Colored Surface Points.

The results of the Y-axis rotation angle and the X-component of translation by Algo-

rithm V with the optimal threshold are plotted as thick blue dotted lines in Figure 5.19 while

the results by Algorithm IV are plotted as magenta dotted-dashed lines. For comparison,

the estimated parameters of Algorithm II (red dashed lines with asterisks) from Experiment

Set 1 and the ground-truth values (solid black lines) are drawn again in the same figures.

As can be seen, alignment using the SFS voxel model is much less accurate than using

Bounding Edges and Colored Surface Points. Space Carving with the optimal threshold

performs well but is also not quite as good as using Bounding Edges. Table 5.6.1 gives a

rough comparison of the computational time needed for each step of all of the experiments.

The timing is obtained on a 500MHz Pentium III CPU.

74 Chapter 5. Visual Hulls Across Time: Rigid Objects

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

SC Threshold

Average RMS error in Rotation Angles vs Threshold
R

M
S

Er
ro

r (
ra

di
an

s)

0 1 2 3 4
20

40

60

80

100

SC Threshold

Average RMS error in Translation vs Threshold

R
M

S
Er

ro
r (

m
m

)

0.104 0.106 0.108 0.11
0.02

0.025

0.03

0.035

SC Threshold

R
M

S
Er

ro
r (

ra
di

an
s)

0.104 0.106 0.108 0.11
20

25

30

35

40

45

SC Threshold

R
M

S
Er

ro
r (

m
m

)

Algorithm V : SFS+SC with varying threshold
Algorithm II : Bounding Edge/Colored Surface Point

Amplified Amplified

Figure 5.18: Graphs of the average RMS errors in rotation and translation against the threshold
used in SC in algorithm V. The bottom half of the figure illustrates the amplified part of the graph
near the optimal threshold value (0.108). Using Bounding Edges (the red dashed line) is always
more accurate than using SC in alignment, even if the optimal threshold is used for SC.

Approximate
Step Time required

per frame
Extracting Bounding Edge (BE) 0.92s
Locating Colored Surface Points
(100 points searched on each BE) 0.16s

SFS with 1283 voxels 1.08s
SFS + SC with 1283 voxels

and optimal threshold 4.74s
Alignment 16.2s

Table 5.1: The approximate time for each step in the alignment experiments. Bounding Edge is
about the same as SFS and faster than SFS+SC.

5.6. Experimental Results 75

5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

Frame

Y
−a

xi
s

R
ot

at
io

n
an

gl
e

(r
ad

ia
ns

)

5 10 15 20
−150

−100

−50

0

50

100

150

200

250

300

Frame

X
−c

om
po

ne
nt

 o
f T

ra
ns

la
tio

n
(m

m
)

Ground truth
Bounding Edge/Colored Surface Point
SFS
SFS+SC with otpimal threshold

Figure 5.19: Results of Y-axis rotation angle and X-component of translation estimated over
time from Experiment Set 2 with different input data: Bounding Edges/Colored Surface Points
(red dashed lines with asterisks), SFS voxel models (magenta dotted-dashed lines), SFS+SC voxel
models with optimal threshold (blue thick dotted lines) and ground-truth values (solid black lines).
Using Bounding Edges/Colored Surface Points are better than using either SFS or SFS+SC.

76 Chapter 5. Visual Hulls Across Time: Rigid Objects

2 4 6 8 10 12 14 16 18 20 22

103

(a) extra voxels

2 4 6 8 10 12 14 16 18 20 22

102

103

(b) missing voxels

2 4 6 8 10 12 14 16 18 20 22

10−1

(c) ratio of error (missing + extra) to total voxels

Ground−truth
Bounding Edge/Colored Surface Point
SFS
SFS+SC with optimal treshold
SFS+SC with threshold 30% lower than the optimal value

Frame

Frame

Frame

Figure 5.20: Graphs of refinement errors (missing and extra voxels) across time (frames). Using
Bounding Edges has lower error ratio than using either SFS or SFS+SC.

B. Refinement

The estimated parameters in Experiment Set 2 are used to refine the shape of the torso

model exactly as in Section 5.6.1.1. The results are plot in Figure 5.20 with graphs (a) and

(b) showing respectively the number of extra and missing voxels between the refined shapes

and the ground-truth voxel models against the number of frames used. Figure 5.20(c)

illustrates the ratio of total incorrect (missing plus extra) to total voxels.

From the figure it can be seen that the number of missing voxels is very large if the

alignments are way off (e.g. the magenta dotted-dashed curve of results from Algorithm IV

or the blue dotted curves with ’+’ markers of results from Algorithm V with threshold 30%

5.6. Experimental Results 77

(e) SFS refined
voxel model at t21

(126 images used)

(c) SFS Voxel
model at t1

(6 images used)

(b) Ground-truth voxel model

(d) SFS refined
voxel model at t11

(66 images used)

(a) Original mesh model

(e) SFS refined
voxel model at t21

(126 images used)

(c) SFS Voxel
model at t1

(6 images used)

(b) Ground-truth voxel model

(d) SFS refined
voxel model at t11

(66 images used)

(a) Original mesh model

Figure 5.21: (a) Voxel model constructed at t1 using only 6 silhouette images. (b) Refined SFS
voxel model at t11 using 66 silhouette images. (c) Refined SFS voxel model at t21 using 126 silhou-
ette images. There is significant improvement in shape from (a) to (c).

lower than the optimal value). The refinement result is the best using the motion parameters

estimated using Bounding Edges (the red dashed lines with asterisks in Figure 5.20). The

SFS refined models (using estimated motions from Algorithm III) at time t1, t11 and t21 are

shown in Figure 5.21(b)(c)(d) respectively. A video clip Torso.mpg∗ shows one of the six

input image sequences (camera 4), the unaligned and aligned Colored Surface Points and

the temporal refinement/alignment results using Algorithm III.

5.6.2 Real Data Sets: Toy Pooh and Toy Dinosaur

5.6.2.1 Pooh Sequence:

The first test object is a toy (Pooh). Six calibrated cameras (K = 6) are used. The toy is

placed on a table and moved to new but unknown positions and orientations manually in

each frame. A total of fifteen frames are captured. The input images of cameras 1 and

∗All movie clips of this chapter can be found at
http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter5/

78 Chapter 5. Visual Hulls Across Time: Rigid Objects

time t1 time t7time t4 time t10 time t15

Input images of the Pooh sequence from Camera 1

time t1 time t7time t4 time t10 time t15

Input images of the Pooh sequence from Camera 4

time t1 time t7time t4 time t10 time t15

Input images of the Pooh sequence from Camera 1

time t1 time t7time t4 time t10 time t15

Input images of the Pooh sequence from Camera 4

Figure 5.22: Some of the input images of camera 1 and camera 4 of the Pooh sequence.

4 at several times are shown in Figure 5.22. The CSPs extracted at time t1 are shown in

Figure 5.23(a). Figures 5.23(b) and (c) show respectively the unaligned and aligned Col-

ored Surface Points from all fifteen frames. Refinement is done using the voxel-based SFS

method. Figures 5.23(d),(e) and (f) illustrate the refinement results at three time instants t1

(6 images), t6 (36 images) and t15 (90 images). The improvement in shape is very signifi-

cant from t1 when 6 silhouette images are used to t15 when 90 silhouette images are used.

Note that for shape refinement, Space Carving (SC) can also be used. Figures 5.23(g), (h)

and (i) show the refinement results using SFS + SC at t1, t6 and t15 respectively. Generally

with a good threshold, refinement using SFS + SC is better than SFS for the same number

of images. The video clip Pooh.mpg shows one of the six input image sequences (camera

4), the unaligned/aligned Colored Surface Points and the temporal refinement/alignment

results.

5.6. Experimental Results 79

(a) (b) (c)

(d) (f)

(h)(g)

(e)

(i)

(a) (b) (c)

(d) (f)

(h)(g)

(e)

(i)

Figure 5.23: Pooh Data Set. (a) Colored surface points at t1. (b) Unaligned Colored Surface Points
from all frames. (c) Aligned Colored Surface Points of all frames. (d) SFS model at t1 (6 images
used). (e) SFS refined shape at t6 (36 images used). (f) SFS refined shape at t15 (90 images used).
(g) SFS + SC model at t1. (h) SFS + SC refined model at t6. (i) SFS + SC refined model at t15. See
Pooh.mpg for a movie illustrating these results.

80 Chapter 5. Visual Hulls Across Time: Rigid Objects

5.6.2.2 Dinosaur-Banana Sequence:

The objects used in the second real data set are the toy dinosaur/bananas shown in Fig-

ure 4.3. Six cameras are used and the dinosaur/bananas are placed on a turn-table with

unknown rotation axis and rotation speed. Fifteen frames are captured and the alignment

and refinement results are shown in Figure 5.24. The video clip Dinosaur-Banana.mpg

shows one of the six input image sequences (camera 4), the unaligned/aligned Colored

Surface Points and the temporal refinement/alignment results.

Note that we also apply the temporal SFS algorithm to real sequences of a person rigidly

standing on a turn-table. The results will be presented in Chapter 7 (Section 7.2) when we

describe a system for building kinematic models of humans.

5.7 Related Work

Despite the popularity of SFS as a shape reconstruction method at single time instant, lit-

tle work has been done in extending it across time. The work most related to ours is by

Cipolla, Wong and Mendonca [MWC00, WC01b, WC01a] who study the problem of esti-

mating structure and motion of smooth object undergoing circular motion from silhouette

profiles (also see [JBJ01]). They assume a single camera which is weakly calibrated (i.e.

with known intrinsic but unknown extrinsic parameters). Either the camera (on a robotic

arm) or the object (on a turntable) performs unknown circular motion while the silhouette

images are taken. In [MWC01] symmetric properties of the surface of revolution swept by

the rotating object are used to recover the revolution axis, leading to the estimation of ho-

mographies and full epipolar geometries between images using one-dimensional search. In

[WC01b], they identity and estimate the frontier points (see [JAP94] for detailed definition)

on the silhouette boundary and use them to estimate the circular motion between images.

Once the motion is estimated, the object shape can be reconstructed using the classic SFS

method.

5.7. Related Work 81

time t1 time t7time t4 time t10 time t15

Input images of the Dinosaur-Bananas sequence from Camera 1

time t1 time t7time t4 time t10 time t15

Input images of the Dinosaur-Bananas sequence from Camera 4

(a)

time t1 time t7time t4 time t10 time t15

Input images of the Dinosaur-Bananas sequence from Camera 1

time t1 time t7time t4 time t10 time t15

Input images of the Dinosaur-Bananas sequence from Camera 4

(a)

(b)

(b) (c)

(d) (f)(e)

(b)

(b) (c)

(d) (f)(e)
Figure 5.24: Dinosaur-Banana Sequence. (a) Example input images. (b) Unaligned Colored Sur-
face Points from all frames. (c) Aligned Colored Surface Points from all frames. (d) SFS model at
t1 (6 images used). (e) SFS refined shape at t6 (36 images used). (f) SFS refined shape at t15 (90
images used). There is significant shape improvement from (d) to (f). See Dinosaur-Banana.mpg
for a movie illustrating these results.

82 Chapter 5. Visual Hulls Across Time: Rigid Objects

Another group of researchers, lead by Ponce [JAP94, JAP95, VKP96] have also stud-

ied the problem of recovering motion and shape of smooth curved object from silhouette

images. They define a local parabolic structure on the surface of the object and use that,

together with epipolar geometry, to locate corresponding frontier points on three silhouette

images. Motion between the images is then estimated using a two-step nonlinear mini-

mization. In contrast to these algorithms, our approach has two advantages: (1) no shape

assumptions are made about the object and (2) no assumptions are made about the motion

(in our algorithm the motion does not have to be infinitesimal).

5.8 Discussion

In this chapter we have investigated the problem of performing Shape-From-Silhouette

across time for a rigid object undergoing arbitrary and unknown rigid motion. We studied

the ambiguity issue of aligning Visual Hulls and proposed an algorithm using stereo to

break the ambiguity. We first represent each Visual Hull using Bounding Edges. Colored

Surface Points are then located on the Bounding Edges by comparing color consistencies.

The Colored Surface Points are used to estimate the rigid motion of the object across time,

using a 2D images/3D points alignment algorithm. Once the alignment is known, all of

the images are considered as being captured at the same instant. The refined shape of the

object can then be obtained by any reconstruction method such as SFS or Space Carving.

Our algorithm combines the advantages of both SFS and Stereo. A key principle behind

SFS, expressed in the Second Fundamental Property of Visual Hulls, is naturally embedded

in the definition of the Bounding Edges. The Bounding Edges give us, as a representation

for the Visual Hull, a great deal of the accurate shape information that can be obtained

from the set of silhouette images. To locate the touching surface points, multi-image stereo

(color consistency among images) is used. Two major difficulties of doing stereo : visibil-

ity and search size are both handled naturally using the properties of the Bounding Edges.

5.8. Discussion 83

The ability to combine the advantages of both SFS and Stereo is the main reason why us-

ing Bounding Edges/Colored Surface Points gives better results in motion alignment than

using voxel models obtained from SFS or SC, as is evident in the results in Section 5.6.1.2.

Another disadvantage of using voxel models and Space Carving is that each decision (voxel

is carved away or not) is made individually for each voxel according to a criterion involv-

ing thresholds. On the contrary, in locating colored surface points on Bounding Edges, the

decision (which point on the Bounding Edge touches the object) is made cooperatively (by

finding the point with the highest color consistency) along all the points on the Bounding

Edge, without the need of adjusting thresholds. In summary, the information contained in

Bounding Edges/Colored Surface Points is more accurate than that contained in voxel mod-

els from SC/SFS. In parameter estimation, few but more accurate data is always preferred

over abundant but less inaccurate data, especially in applications such as alignment.

Chapter 6

VH Across Time for Articulated Objects

In this chapter we extend the temporal SFS algorithm to articulated objects. An object is

articulated if it consists of a set of rigidly moving parts connecting to each other at certain

articulation points. A good example of an articulated object is the human body (if we

approximate the body parts as rigid). Given CSPs of a moving articulated object, recovering

the shape and motion requires two inter-related steps: (1) correctly segmenting the CSPs

to each part of the object and (2) estimating the shape and motion of the individual parts.

To solve this problem, we employ an idea similar to that used for multiple-layer motion

estimation in [SA96]. The rigid parts of the articulated object are first modeled as separate

and independent of each other. With this assumption, we iteratively (1) assign the extracted

CSPs to different parts of the object based on their motions and (2) apply the rigid object

temporal SFS algorithm to align each part across time. Once the motions of the parts are

recovered, an articulation constraint is applied to estimate the joint positions. Note that

this iterative approach can be categorized as belonging to the Expectation Maximization

framework [DLR77]. The whole algorithm is explained below in detail using a two-part,

one-joint articulated object. It can be generalized to objects with N parts.

85

86 Chapter 6. VH Across Time for Articulated Objects

time t1

Part A

Part B

time t2

Part A

Part B

Y2
B

(R2 , t2)A A

Motion of part B

Motion of part A
Y1

B

W1
1

(R2 , t2)B B

W1
2

R2 + t2

B BW1
1

R2 + t2

A AW1
2

W2
1

time t1

Part A

Part B

time t2

Part A

Part B

Y2
BY2
B

(R2 , t2)A A(R2 , t2)A A

Motion of part B

Motion of part A
Y1

BY1
B

W1
1W1
1

(R2 , t2)B B(R2 , t2)B B

W1
2W1
2

R2 + t2

B BW1
1R2 + t2

B BW1
1W1
1

R2 + t2

A AW1
2R2 + t2

A AW1
2W1
2

W2
1W2
1

Figure 6.1: A two-part articulated object at two time instants t1 and t2.

6.1 Temporal SFS for Unknown Articulated Objects

6.1.1 Problem Scenario

Consider an unknown one-joint articulated object O which consists of two rigid parts A

and B as shown in Figure 6.1 at two time instants t1 and t2. Assume CSPs of the whole

object have been extracted from the color and silhouette images of K cameras, denoted by

{Ik
j , S

k
j,W

i
j, µ

i
j; j = 1, 2}. Furthermore, treating A and B as two independently moving rigid

objects allows us to represent the relative motion of A between t1 and t2 as (RA
2 , tA

2) and that

of B as (RB
2 , tB

2). Now consider the following two complementary cases.

6.1.2 Alignment with known Segmentation

Suppose we have segmented the CSPs at t j into two groups belonging to part A and part

B, represented by GA
j and GB

j respectively for both j = 1, 2. By applying the temporal SFS

algorithm described in Section 5.3.3 (Equation (5.11)) to A and B separately, estimates of

the relative motions (RA
2 , tA

2), (RB
2 , tB

2) can be obtained.

6.1. Temporal SFS for Unknown Articulated Objects 87

6.1.3 Segmentation with known Alignment

Assume we are given the relative motion (RA
2 , tA

2), (RB
2 , tB

2) of A and B from t1 to t2. For a

CSP W i
1 at time t1, consider the following two error measures

ei,A
2,1 =

1
ni,A

1

∑

k

{τ ∗ dk
2(RA

2 W i
1 + tA

2) + [ck
2(RA

2 W i
1 + tA

2) − µi
1]2} , (6.1)

ei,B
2,1 =

1
ni,B

1

∑

k

{τ ∗ dk
2(RB

2 W i
1 + tB

2) + [ck
2(RB

2 W i
1 + tB

2) − µi
1]2} . (6.2)

Here ei,A
2,1 is the error of W i

1 with respect to the color/silhouette images at t2 if it belongs

to part A. Similarly ei,B
2,1 is the error if W i

1 lies on the surface of B. In these expressions

the summations are over those cameras where the transformed point is visible and ni,A
1 and

ni,B
1 represent the number of such visible cameras of the transformed points RA

2 W i
1 + tA

2 and

RB
2 W i

1 + tB
2 respectively. By comparing the two errors in Equations (6.2) and (6.1), a simple

strategy to classify the point W i
1 is devised as follows:

W i
1 ∈



































GA
1 if ei,A

2,1 < κ ∗ ei,B
2,1

GB
1 if ei,B

2,1 < κ ∗ ei,A
2,1

G∅1 otherwise

, (6.3)

where 0 ≤ κ ≤ 1 is a thresholding constant and G∅1 contains all the CSPs which are classified

as neither belonging to part A nor part B. Similarly, the CSPs at time t2 can be classified

using the errors ei,A
1,2 and ei,B

1,2.

In practice, the above decision rule does not work very well because of image/silhouette

noise and camera calibration errors. Here we suggest using spatial coherency and temporal

consistency to improve the segmentation. To use spatial coherency, the notion of a spatial

neighborhood has to be defined. Since it is difficult to define a spatial neighborhood for

the scattered CSPs in 3D space (see for example Figure 5.7), an alternate way is used. Re-

call (in Section 4.1) that each CSP W i
1 lies on a Bounding Edge which in turn corresponds

88 Chapter 6. VH Across Time for Articulated Objects

to a boundary point ui
1 of the silhouette image S k

1. We define two CSPs W i
1 and W i+1

1 as

“neighbors” if their corresponding 2D boundary points ui
1 and ui+1

1 are neighboring pixels

(in 8-connectivity sense) in the same silhouette image. This neighborhood definition allows

us to easily apply spatial coherency to the CSPs. From Figure 6.2 it can be seen that dif-

ferent parts of an articulated object usually project onto the silhouette image as continuous

outlines. Inspired by this property, the following spatial coherency rule (SCR) is proposed:

Spatial Coherency Rule (SCR):

If W i
1 is classified as belonging to part A by Equation (6.3), it stays as belonging to part A

if all of its m left and right immediate “neighbors” are also classified as belonging to part

A by Equation (6.3), otherwise it is reclassified as belonging to G∅1, the group of CSPs that

belongs to neither part A nor part B. The same procedure applies to part B.

Figure 6.2 shows how the spatial coherency rule can be used to remove spurious segmenta-

tion errors. The second constraint we utilize to improve the segmentation results is temporal

consistency as illustrated in Figure 6.3. Consider three successive frames captured at t j−1,

t j and t j+1. For a CSP W i
j, it has two classifications due to the motion from t j−1 to t j and

the motion from t j to t j+1. Since W i
j either belongs to part A or B, the temporal consistency

rule (TCR) simply requires that the two classifications have to agree with each other:

Temporal Consistency Rule (TCR):

If W i
j has the same classification by SCR from t j−1 to t j and from t j to t j+1, the classifica-

tion is maintained, otherwise, it is reclassified as belonging to G∅j , the group of CSPs that

belongs to neither part A nor part B.

Note that SCR and TCR not only remove wrongly segmented points, but they also remove

some of the correctly classified CSPs. Overall though they are effective because less but

more accurate data is preferred to abundant but less accurate data, especially in our case

where the segmentation has a great effect on the motion estimation.

6.1. Temporal SFS for Unknown Articulated Objects 89

u1
i

Boundary Point

Part A

Part B
Object O

Continuous silhouette
boundary of part A

Continuous silhouette
boundary of part B

CSP wrongly classified using Equation (6.3) is
removed by the Spatial Coherency Rule

CSPs correctly classified
by Equation (6.3)

Neighboring
2D pixels

CSP W1

i

S1

1

time t1

u1
iu1
i

Boundary Point

Part A

Part B
Object O

Continuous silhouette
boundary of part A

Continuous silhouette
boundary of part B

CSP wrongly classified using Equation (6.3) is
removed by the Spatial Coherency Rule

CSPs correctly classified
by Equation (6.3)

Neighboring
2D pixels

CSP W1

i
CSP W1

i
W1

i

S1

1
S1

1

time t1

Figure 6.2: Spatial Coherency Rule removes spurious segmentation errors.

Data at tj-1 Data at tj Data at tj+1

Apply Temporal
Consistency Rule

Disagreed pair
Disagreed

pair

Final classification
of CSPs at tj

Initial classification
of CSPs at tj
(from tj to tj+1)

Initial classification
of CSPs at tj
(from tj-1 to tj)

Data at tj-1 Data at tj Data at tj+1

Apply Temporal
Consistency Rule

Disagreed pair
Disagreed

pair

Final classification
of CSPs at tj

Initial classification
of CSPs at tj
(from tj to tj+1)

Initial classification
of CSPs at tj
(from tj-1 to tj)

Figure 6.3: Temporal consistency ensures segmentation agrees between successive frames.

90 Chapter 6. VH Across Time for Articulated Objects

6.1.4 Initialization

As common to all iterative EM algorithms, initialization is always a problem [SA96]. Here

we suggest two different approaches to start our algorithm. Both approaches are commonly

used in the layer estimation literature [SA96, KK01]. The first approach uses the fact that

the 6 DOF motion of each part of the articulated object represents a single point in a six

dimensional space. In other words, if we have a large set of estimated motions of all the

parts of the object, we can apply clustering algorithms on these estimates in the 6D space

to separate the motion of each individual part. To get a set of estimated motions for all the

parts, the following method can be used. The CSPs at each time instant are first divided

into subgroups by cutting the corresponding silhouette boundaries into arbitrary segments.

These subgroups of CSPs are then used to generate the motion estimates using the VH

alignment algorithm, each time with a randomly chosen subgroup from each time instant.

Since this approach requires the clustering of points in a 6D space, it performs best when

the motions between different parts of the articulated object are relatively large so that the

motion clusters are distinct from each other.

The second approach is applicable in situations where one part of the object is much

larger than the other. Assume, say, part A is the dominant part. Since this assumption

means that most of the CSPs of the object belong to A, the dominant motion (RA, tA) of A

can be approximated using all the CSPs. Once an approximation of (RA, tA) is available,

the CSPs are sorted in terms of their errors with respect to this dominant motion. An initial

segmentation is then obtained by thresholding the sorted CSPs errors.

6.1.5 Summary: Iterative Algorithm

Summarizing the above discussion, we propose the following iterative segmentation/alignment

process to estimate the shape and motion of parts A and B over J frames:

6.1. Temporal SFS for Unknown Articulated Objects 91

Iterative Temporal SFS Algorithm for Articulated Objects

1. Initialize the segmentation of the J sets of CSPs.

2. Iterate the following two steps until convergence (or for a fixed number of iterations):

2a. Given the CSP segmentation {GA
j ,G

B
j }, recover the relative motions (RA

j , tA
j) and

(RB
j , tB

j) of A and B over all frames j = 2, . . . J using the rigid object temporal

SFS algorithm described in Section 5.3.3.

2b. Repartition the CSPs according to the estimated motions by applying Equa-

tion (6.3), followed by the intra-frame SCR and inter-frame TCR.

Although we have described this algorithm for an articulated object with two rigid parts,

it can easily be generalized to apply to objects with N parts.

6.1.6 Joint Location Estimation

After recovering the motions of parts A and B separately, the point of articulation between

them is estimated. Suppose we represent the joint position at time t1 as YB
1 . Since YB

1 lies

on both A and B, it must satisfy the motion equation from t1 to t2 as follows

RA
2 YB

1 + tA
2 = RB

2 YB
1 + tB

2 . (6.4)

Putting together similar equations for Y B
1 over J frames, we get

MYB
1 =



































RA
2 − RB

2
...

RA
J − RB

J



































YB
1 =



































tB
2 − tA

2
...

tB
J − tA

J



































. (6.5)

The least squares solution of Equation (6.5) can be computed using Singular Value Decom-

position.

92 Chapter 6. VH Across Time for Articulated Objects

Note that the matrix M in Equation (6.5) is singular if the degree-of-freedom of the

relative motion between A and B over the J frames is less than 3. This happens when

the joint is a 1D revolute joint (or if A and B move with respect to each other as a 1D

revolute joint during the J frames of motion). In this singular case the solution of Equa-

tion (6.5) is an arbitrary point on the axis of the revolute joint. To recover the actual joint

position, we approximate the shape of parts A and B as ellipsoids and enforce the solution

of Equation (6.5) to be closest to the tips of the approximated ellipsoids. It can be seen in

Section 6.2.2 that this remedy works well in practice when we estimate the locations of the

elbow and knee joints which are essentially 1D revolute joints.

6.1.7 Shape Refinement

The shape of the articulated object is refined in the same fashion as discussed in Section 5.5.

The different parts of the articulated object are refined separately. For example for part A,

the silhouette images captured at time t j are considered as captured at time t1 after the

camera centers at t j are transformed by the inverse motion of part A at t j (w.r.t. t1), similar

to that as shown in Figure 5.12. Notice when refining the shape of a particular part, say

part A, there is no need to segment out the part of silhouettes which are casted by part A

(which is difficult to do due to occlusion) as long as the motions of that part is significantly

different from each other over a period of the captured sequence. It is because voxels that

do not belong to part A would be carved away by SFS over time as they do not follow the

motion of part A.

6.2 Experimental Results

To validate our temporal SFS algorithm for articulated objects, both synthetic (for quanti-

tative evaluation) and real data (for qualitative results) is used.

6.2. Experimental Results 93

6.2.1 Synthetic Data Set

We use an articulated mesh model of a virtual computer human body as the synthetic test

subject. To generate a set of test sequences, the computer human model is programmed

to move one particular joint of the whole body and images of the movements are rendered

using OpenGL. Since only one joint (and one body part) is moved each time, we can con-

sider the virtual human body as an one-link two part articulated object. A total of eight

sets of data sequences (each set with 8 cameras) are generated, corresponding to the eight

joints: left/right shoulder/elbow/hip/knee joints of the virtual human model. For each of

these synthetic sequences, we apply the articulated object temporal SFS algorithm to re-

cover the shape, motion and the location of that joint of the virtual human. Since the size of

the whole body is much larger than a single body part, the dominant motion initialization

method is used. Figure 6.4 shows some frames of one of the input camera images and the

segmentation/alignment/joint estimation results of the right elbow and the right hip joints of

the synthetic sequences. As evident from the results, our iterative segmentation/alignment

algorithm performs well and the joint positions are estimated accurately in both cases. Ta-

ble 6.1 compares the ground-truth and the estimated joint positions of all the 8 synthetic

sequences. The absolute distance errors between the ground-truth and the estimated joints

locations are small (averaged about 26mm) as compared to the size of the human model (≈

500mm x 200mm x 1750mm). The input images, CSPs and the results for the left hip/knee

joints of the synthetic data set can be seen in the movie Synthetic-joints-leftleg.mpg∗.

∗All movie clips of this chapter can be found at
http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter6/

94 Chapter 6. VH Across Time for Articulated Objects

estimated joint position

Unaligned CSPs Aligned and
Segmented CSPs

estimated joint position

Unaligned CSPsAligned and
Segmented CSPs

Three of the input images from camera 6

Right Elbow Joint

Three of the input images from camera 1

Right Hip Joint

estimated joint position

Unaligned CSPs Aligned and
Segmented CSPs

estimated joint position

Unaligned CSPsAligned and
Segmented CSPs

Three of the input images from camera 6

Right Elbow Joint

Three of the input images from camera 1

Right Hip Joint

Figure 6.4: Input images and results for the right elbow and right hip joints of the synthetic virtual
human. For each joint, the unaligned CSPs from different frames are drawn with different colors.
The aligned and segmented CSPs are shown with two different colors to show the segmentation.
The estimated articulation point (joint location) is indicated by the black sphere.

Joints Ground-truth (x, y, z) Estimated (x, y, z) Distance
positions (in mm) positions (in mm) error (in mm)

Left Shoulder (199.61, 66.06, 1404.75) (203.40, 54.06, 1403.80) 12.62
Right Shoulder (-200.34, 66.06, 1404.75) (-206.09, 73.87, 1398.53) 11.52

Left Elbow (411.75, -116.60, 1333.54) (412.98, -119.61, 1323.23) 10.81
Right Elbow (-407.00, 146.01, 1258.53) (-398.89, 178.54, 1288.19) 44.76

Left Hip (87.02, 43.32, 974.75) (92.16, 40.46, 976.77) 6.22
Right Hip (-91.65, 42.37, 979.51) (-85.20, -2.13, 965.11) 47.21
Left Knee (251.57, -438.03, 853.29) (285.14, -432.44, 857.50) 34.29

Right Knee (-143.90, -399.59, 723.32) (-102.92, -393.13, 741.42) 45.27

Table 6.1: The ground-truth and estimated positions of the eight body joints of the synthetic se-
quences. The absolute distance errors (averaged about 26mm) is small compared to the actual size
of the human model (≈ 500mm x 200mm x 1750mm).

6.2. Experimental Results 95

time t1 time t7time t4 time t10 time t13

Input images of the Pooh-Dinosaur sequence from Camera 3

time t1 time t7time t4 time t10 time t13

time t1 time t7time t4 time t10 time t13

Input images of the Pooh-Dinosaur sequence from Camera 3

time t1 time t7time t4 time t10 time t13

Figure 6.5: Some of the input images of camera 3 and camera 6 of the Pooh-Dinosaur sequence.

6.2.2 Real Data Sets

Two different data sets with real objects are captured. The first real data set applies the

iterative segmentation/estimation procedure to two separate, independently moving rigid

objects while the second real data set investigates the performance of our articulated object

temporal SFS algorithm on joint estimations of two different humans.

6.2.2.1 Two Separate Moving Rigid Objects: Pooh-Dinosaur Sequence

The toy Pooh and toy dinosaur from Section 5.6.2 are used to test the performance of our it-

erative CSPs segmentation/motion estimation algorithm on two separate and independently

moving rigid objects. Eight calibrated cameras (K = 8) are used in this Pooh-Dinosaur se-

quence. Both toys are placed on the floor and individually moved to new but unknown

positions and orientations manually in each frame. Fourteen frames are captured and Fig-

ure 6.5 shows some of the input images from cameras 3 and 6. The segmentation/alignment

results using our temporal SFS algorithm are illustrated in Figure 6.6. Figures 6.6(a) shows

the unaligned CSPs of all the 14 frames (in the right part of the picture the CSPs are drawn

with colors representing which frame they come from while in the left the CSPs are drawn

with their own colors). Figures 6.6(b) shows the aligned and segmented CSPs. The fig-

96 Chapter 6. VH Across Time for Articulated Objects

(a)

(b)

(c) (d) (e)

(a)

(b)

(c) (d) (e)
Figure 6.6: Segmentation/Alignment/Refinement results of the Pooh-Dinosaur sequence. (a) The
unaligned CSPs from all frames. (b) The aligned and segmented CSPs. (c) SFS refined voxel
models at t1 (8 silhouette images are used). (d) SFS refined voxel models at t5 (40 silhouette images
are used). (e). SFS refined voxel models at t13 (104 silhouettes are used for the toy Pooh and 72
silhouette images are used for the dinosaur).

ures prove that our algorithm correctly segments the CSPs as belonging to each object.

The alignments of both toys are also accurate except those of the dinosaur from frame 6 to

frame 9 when the dinosaur rolled over for 360 degrees. In those frames, our alignment algo-

rithm breaks down as the rotation angles between frames are too large (around 90 degrees).

However, the alignment recovers after frame 9 when the dinosaur is upright again.

The shapes of the two toys are refined by SFS using the estimated motions in the same

fashion as discussed in Section 5.5 (see Figure 5.12). Note that to refine the objects, there

is no need to segment (which is difficult to do due to occlusion) the silhouettes as belonging

6.2. Experimental Results 97

to which object as long as the motions of the objects are significantly different from each

other for at least one frame. It is because voxels that do not belong to say the dinosaur

would be carved away by SFS over time as they do not follow the motion of the dinosaur.

Figures 6.6(c),(d) and (e) illustrate the SFS refined voxel models of both objects at t1, t5 and

t13 respectively. Since the alignment data for the dinosaur from frame 6 to frame 9 are inac-

curate, those frames are not used to refine the shape of the dinosaur. It can be seen that sig-

nificant shape improvement is obtained from t1 to t13. The video clip Pooh-Dinosaur.mpg

shows the input images from one of the eight cameras, the unaligned/aligned/segmented

CSPs and the temporal refinement results.

6.2.2.2 Joints of Real Human

In the second set of real data, we use videos of two people (SubjectE and SubjectG) to

qualitatively test the performance of our articulated object temporal SFS algorithm on joint

location estimation. Eight sequences (each with 8 cameras) corresponding to the move-

ment of the left/right shoulder/elbow/hip/knee joints of each person are captured. In each

sequence, the person only moves one of their joints so that in that sequence their body can

be considered as an one-joint, two parts articulated object, exactly as the synthetic data

set. Again, the dominant motion initialization method is used. Some of the input images

and the results of segmentation/alignment/position estimation of two selected joints (left

elbow and left hip) of SubjectE are shown in Figure 6.7. It can be seen that the motion, the

segmentation of the body parts and the joint locations are all estimated correctly in both

sequences. Similarly the results of the left shoulder and left knee joints for SubjectG are

shown in Figure 6.8. Some of the input images, the CSPs and the segmentation/estimation

results of the right arm joints of SubjectE and right leg joints of SubjectG can be found in

the movie clips SubjectE-joints-rightarm.mpg and SubjectG-joints-rightleg.mpg. Note

that the joint estimation results of another person SubjectS can be found in the next chapter

when we discuss human body kinematic modeling.

98 Chapter 6. VH Across Time for Articulated Objects

estimated joint position

Unaligned CSPs Aligned and
Segmented CSPs

estimated joint position

Unaligned CSPsAligned and
Segmented CSPs

Three of the input images from camera 2

Left Elbow Joint

Three of the input images from camera 4

Left Hip Joint

Aligned CSPs with original colors Aligned CSPs with original colors

estimated joint position

Unaligned CSPs Aligned and
Segmented CSPs

estimated joint position

Unaligned CSPsAligned and
Segmented CSPs

Three of the input images from camera 2

Left Elbow Joint

Three of the input images from camera 4

Left Hip Joint

Aligned CSPs with original colors Aligned CSPs with original colors

Figure 6.7: Input images and results for the left elbow and left hip joints of SubjectE. For each
joint, the unaligned CSPs from different frames are drawn with different colors. The aligned and
segmented CSPs are shown with two different colors to show the segmentation. The estimated ar-
ticulation point (joint location) is indicated by the black sphere. The aligned CSPs with the original
colors are also shown at the bottom of the figure.

6.2. Experimental Results 99

estimated joint position

Unaligned CSPs Aligned and
Segmented CSPs

estimated joint position

Unaligned CSPsAligned and
Segmented CSPs

Three of the input images from camera 8

Left Shoulder Joint

Three of the input images from camera 7

Left Knee Joint

Aligned CSPs with original colors Aligned CSPs with original colors

estimated joint position

Unaligned CSPs Aligned and
Segmented CSPs

estimated joint position

Unaligned CSPsAligned and
Segmented CSPs

Three of the input images from camera 8

Left Shoulder Joint

Three of the input images from camera 7

Left Knee Joint

Aligned CSPs with original colors Aligned CSPs with original colors

Figure 6.8: Input images and results for the left shoulder and left knee joints of SubjectG. For each
joint, the unaligned CSPs from different frames are drawn with different colors. The aligned and
segmented CSPs are shown with two different colors to show the segmentation. The estimated ar-
ticulation point (joint location) is indicated by the black sphere. The aligned CSPs with the original
colors are also shown at the bottom of the figure.

100 Chapter 6. VH Across Time for Articulated Objects

6.3 Related Work

Though the work by Krahnstoever in [KYS01, KYS03] uses only monocular images, their

idea is very similar to ours in the sense that it is also based on the the layered motion

segmentation/estimation formulation [SA96]. They first perform an EM-like segmenta-

tion/motion estimation of 2D regions on monocular images of the articulated object and

then model the articulated parts by 2D cardboard models. As common to other monocu-

lar methods, their approach does not handle occlusion and has difficulties estimating the

motion of objects which do not contain rotation around an axis perpendicular to the image

plane.

6.4 Discussion

We have extended the SFS across time algorithm to (piecewise rigid) articulated objects

and successfully applied it to solve the problem of human body joint position estimation.

The advantage of our algorithm is that it solves the difficult problem of shape/motion/joint

estimation of a moving articulated object by a two-step approach: first iteratively recover

the shape (in terms of CSP) and the motion of the individual parts of the articulated object

and then locate the joint through a simple motion constraint. The separation of the joint

estimation and the motion estimation greatly reduces the complexity of the problem. Since

our algorithm uses motion to segment the CSPs, it fails when the relative motion between

the parts of the articulated objects is too small. Moreover, due to the EM formulation of the

algorithm, the convergence of the algorithm depends on the initial estimates of the motion

parameters. When the initial motion estimates are far from the correct values, the algorithm

may fall into a local minimum.

Chapter 7

Human Kinematic Modeling

In this chapter we apply our temporal SFS algorithms (both rigid and articulated objects)

to build a vision-based 3D human kinematic modeling system. Modeling human kinematic

is an important application because precise 3D kinematic models are essential for solving

a variety of difficult problems such as pose estimation, motion tracking/capture, gesture

recognition, behavior understanding and motion rendering (see Chapter 9). Although there

are a variety of complete systems [CYB, TTI] and algorithms [ACP03] for human body

shape acquisition using laser-scanning devices, most of these systems are expensive and

do not estimate the important joint information. Various vision-based human modeling

systems have been proposed [LY95, KMB94, JBY96, KM98, PFD99, BK00, OBBH00,

CKBH00, KYS01] in recent years. Among these systems, most of them use monocular im-

ages and reconstruct view-dependent 2D shape and joint models [KMB94, BK00, KYS01].

For those systems which uses multiple cameras, either imprecise shape [CKBH00] or in-

complete joint information [KM98, PFD99] are recovered. Moreover, none of these sys-

tems have derived algorithms for building a complete 3D skeleton of humans. In view of

this, the multi-camera modeling system described in this chapter aims at both acquiring

precise 3D shapes of the body parts and constructing a full skeletal structure of the person.

There are three tasks to our vision-based human kinematic modeling: (1) constructing

101

102 Chapter 7. Human Kinematic Modeling

a joint skeleton of the person, (2) acquiring detailed shape information and (3) merging the

shape/joint information to build a kinematic model. Each task in our system is described

in details below, together with the results of applying the system to three people: SubjectE,

SubjectG and SubjectS.

7.1 Joint Skeleton Acquisition

The first task in our kinematic modeling system is to locate the joint positions of the person

using the articulated object temporal SFS algorithm proposed in Chapter 6. Once the joint

locations are recovered, they are aligned and registered with each other to form a complete

joint skeleton of the person.

7.1.1 Estimating Individual Joint Positions

Although we can estimate all the joint positions of a person at the same time, in practice

this approach suffers from the problem of falling into local minimum due to the high di-

mensionality. Instead we take a sequential approach and model the joints one at a time, just

as what we have done in Sections 6.2.1 with the synthetic human and 6.2.2 with SubjectE

and SubjectG. Again eight joint locations: left/right shoulder/elbow/hip/knee are recovered

for each person. Some of the input images and the estimation results of the right shoulder

and knee joints of SubjectS are shown in Figure 7.1 (the results for SubjectE and SubjectG

have already been shown in Figures 6.7 and 6.8 in Chapter 6). The movie clip SubjectS-

joints-leftarm.mpg∗ shows some of the input images, CSPs and the estimation of the left

arm joints of SubjectS.

∗All movie clips of this chapter can be found at
http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter7/

7.1. Joint Skeleton Acquisition 103

estimated joint position

Unaligned CSPs Aligned and
Segmented CSPs

estimated joint position

Unaligned CSPsAligned and
Segmented CSPs

Three of the input images from camera 6

Right Shoulder Joint

Three of the input images from camera 1

Right Knee Joint

Aligned CSPs with original colors Aligned CSPs with original colors

estimated joint position

Unaligned CSPs Aligned and
Segmented CSPs

estimated joint position

Unaligned CSPsAligned and
Segmented CSPs

Three of the input images from camera 6

Right Shoulder Joint

Three of the input images from camera 1

Right Knee Joint

Aligned CSPs with original colors Aligned CSPs with original colors

Figure 7.1: Input images and results for the right shoulder and right knee joints of SubjectS.
For each joint, the unaligned CSPs from different frames are drawn with different colors. The
aligned and segmented CSPs are shown with two different colors to show the segmentation. The
estimated articulation point (joint location) is indicated by the black sphere. The aligned CSPs with
the original colors are also shown at the bottom of the figure.

104 Chapter 7. Human Kinematic Modeling

Generally, the estimation of the (shoulder and elbow) joints of the arms are more accu-

rate than the (hip and knee) joints of the legs because it is more difficult to keep the rest of

the body still when moving the leg than moving the arm. Moreover the shoulder and hip

joints have better results than the elbow and knee joints as more CSPs are extracted from

the whole arm (or leg) than just the lower arm (or lower leg).

7.1.2 Joint Registration

After the joints and the associated body parts (described by CSPs) are recovered individu-

ally, they are registered with respect to a reference frame (of images) to form an articulated

model of the body. The registration process consists of two procedures. The first procedure

involves aligning joints within each separate limb while the second procedure performs a

global registration of all the joints and body parts with respect to the reference frame. Both

procedures are explained below.

7.1.2.1 Limb Joints Alignment

Before registering all the joints to the reference frame, the two joints of each separate limb

(i.e. the shoulder and elbow joints of the arm, the hip and knee joints of the leg) are first

aligned with each other. The limb joints alignment procedure consists of four steps and

is summarized below. The procedure is also illustrated graphically using the right arm of

SubjectE as example in Figure 7.2. Though the procedure is described in terms of the arm,

it applies to the legs by replacing the shoulder and elbow joints by the hip and knee joints.

The Limb Joints Alignment Procedure

1. The body CSPs from the shoulder joint sequence (Figure 7.2(a)) are aligned with

respect to the first frame of the elbow sequence (Figure 7.2(b)) by the rigid body

temporal SFS alignment algorithm.

2. Using the alignment result in Step 1, the shoulder joint location is transformed to the

coordinate frame of the elbow joint sequence (Figure 7.2(c)(d)).

7.1. Joint Skeleton Acquisition 105

Step 1 Step 2 Step 3

Elbow
sequence

Shoulder
sequence

Align Transfer
shoulder

joint

Align CSPs of the
body of the shoulder
joint data to the image
of the elbow joint.

Use the alignment
from Step 1 to
transfer the shoulder
joint location to the
3D data points of the
elbow joint.

Transfer
distance
between

joints

Calculate the
distance between the
Shoulder and elbow
joints. Transfer the
distance to the
shoulder joint data.

Step 4
Segment the CSPs
of the arm using
the locations of
the registered
shoulder and
elbow joints.

Body
CSPs

Alignment
results

(a)

(b)

(c)

(d)

Arm
CSPs

(e)

(f)

(g)
elbow
joint

shoulder
joint

shoulder
joint

elbow
joint

Step 1 Step 2 Step 3

Elbow
sequence

Shoulder
sequence

Align Transfer
shoulder

joint

Align CSPs of the
body of the shoulder
joint data to the image
of the elbow joint.

Use the alignment
from Step 1 to
transfer the shoulder
joint location to the
3D data points of the
elbow joint.

Transfer
distance
between

joints

Calculate the
distance between the
Shoulder and elbow
joints. Transfer the
distance to the
shoulder joint data.

Step 4
Segment the CSPs
of the arm using
the locations of
the registered
shoulder and
elbow joints.

Body
CSPs

Alignment
results

(a)

(b)

(c)

(d)

Arm
CSPs

(e)

(f)

(g)
elbow
joint

shoulder
joint

shoulder
joint

elbow
joint

Figure 7.2: The four steps of the Limb Joints Alignment Procedure.

3. Calculate the distance between the transformed shoulder joint location and the elbow

joint position. Mark the same distance from the shoulder joint along the arm as

the elbow joint in the shoulder sequence (Figure 7.2(e)(f)). This step is valid as

the distance between the shoulder and elbow joints are constant irrespective of their

positions.

4. The arm CSPs (see Figure 7.2(a)) from the shoulder joint sequence are segmented

according to the positions of the shoulder and elbow joints (the segmentation results

are shown in Figure 7.2(g)).

106 Chapter 7. Human Kinematic Modeling

Shoulder joint Elbow joint

(a). Shoulder
data sequence

(b). Elbow
data sequence

(c). The Limb Joints
Alignment Procedure
without Steps 3 and 4.
Joints are registered in
the elbow sequence
and the arm is bent.

(d). The Limb Joints
Alignment Procedure
with Steps 3 and 4.
Joints are registered in
the shoudler sequence
and the arm is straight.

bent straightShoulder joint Elbow joint

(a). Shoulder
data sequence

(b). Elbow
data sequence

(c). The Limb Joints
Alignment Procedure
without Steps 3 and 4.
Joints are registered in
the elbow sequence
and the arm is bent.

(d). The Limb Joints
Alignment Procedure
with Steps 3 and 4.
Joints are registered in
the shoudler sequence
and the arm is straight.

bent straight

Figure 7.3: The left shoulder and elbow data sequences of SubjectG. In (c) the joints registered
in the elbow sequence (without Steps 3 and 4) is bent while in (d) the joints registered w.r.t. the
shoulder sequence with Steps 3 and 4 is straight.

The basic idea of the procedure is to align the shoulder and elbow joints with respect to

the shoulder sequence with the arm being straight. As will be seen shortly, having the joints

registered with the arm being straight greatly reduces the complexity of the subsequent

global registration procedure. There are a couple of important things to be noted about the

limb joints alignment procedure. Firstly when using Equation (5.11) of the rigid object

temporal algorithm in Step 1, only the forward error term ei
2,1 is present. This is because

we are only using the error of projecting the body 3D CSPs of the shoulder sequence into

the 2D color and silhouette images of (the first frame of) the elbow sequence. Secondly

although judging from Figure 7.2(d) one may argue Steps 3 and 4 can be skipped, these two

steps are necessary to ensure that the limb is straight after registration. Figure 7.3 shows an

example using the left arm sequences of SubjectG. In Figure 7.3(c), the joints are registered

w.r.t. the elbow sequence with the left arm in a bent state without performing Steps 3 and 4.

Figure 7.3(d) shows that Steps 3 and 4 are needed to transform the registration back to the

shoulder sequence with the arm in a straight state.

7.1. Joint Skeleton Acquisition 107

Left leg data

Left arm data

Reference
frame image

Right arm data

Right leg data

Body CSPs

Align

Align around
fixed point

Arm CSPs
Fixed
point

Step 1: Align body Step 2: Align arm around
the fixed shoulder joint

(a)

(b)

Registration

Registration

Registration

Registration

Left leg data

Left arm data

Reference
frame image

Right arm data

Right leg data

Body CSPs

Align

Align around
fixed point

Arm CSPs
Fixed
point

Step 1: Align body Step 2: Align arm around
the fixed shoulder joint

(a)

(b)

Registration

Registration

Registration

Registration

Figure 7.4: (a) Global joint registration for the four limbs. (b) For each limb, two steps are required
to register the joints globally.

7.1.2.2 Global Registration

Once the joints within each limb are aligned, global registration is performed to build a

joint skeleton model. The global registration for all four limbs is illustrated in Figure 7.4(a)

and the procedure is explained using the right arm of SubjectE in Figure 7.4(b).

For each limb, the global registration procedure consists of two steps. The first step

aligns the body CSPs against a reference frame. Once the 6D motion of the body is re-

covered, the position of the first limb joint (shoulder/hip) is calculated. The second step

108 Chapter 7. Human Kinematic Modeling

Joint skeleton Joint skeleton and CSPs
displayed in colors of

different body parts

Joint skeleton and
CSPs in their
original colors

Joint skeleton Joint skeleton and CSPs
displayed in colors of

different body parts

Joint skeleton and
CSPs in their
original colors

Figure 7.5: Joint skeleton of SubjectE after the global registration procedure. For display clarity,
the CSPs shown in the figures are down-sampled in a ratio of one in five.

involves the alignment of the limb itself. To simplify this step, we assume that the ref-

erence frame is chosen such that the images at the reference frame are captured with all

of the person’s limbs being straight (the choice of a good reference frame will become

obvious in Section 7.2). Since the joints within each limb are already registered with the

limb being straight (in the limb joint alignment procedure), the straight limb assumption

of the reference frame images enables us to treat the whole limb as one rigid object rather

than an articulated object with two parts. In other words, we can ignore the second limb

joint (elbow/knee) and the problem becomes alignment of a rigid object around a fixed

point with only 3 DOF (the rotation around the joint). For the sake of presentation, we

defer discussion of the algorithm to solve this problem to Chapter 8 (see the last paragraph

of Section 8.1.3). Meanwhile, Figure 7.5 illustrates the joint skeleton (formed by joining

the joint locations together) of SubjectE and the registered CSPs obtained after the global

registration procedure.

7.2 Body Shape Acquisition

The next task of the kinematic modeling system is to acquire the shape of the body. One di-

rect choice is to use the CSPs extracted from the sequences used to estimate the individual

7.2. Body Shape Acquisition 109

joints in 7.1.1 and registered in the global registration procedure 7.1.2 as shown in Fig-

ure 7.5. Though simple, there are two reasons why we do not use these CSPs to represent

the body shape of the person. First of all, due to errors in all the alignment and registration

procedures, some of these CSPs deviate considerably from the actual shape of the body

parts. Secondly, these CSPs are not uniformly distributed over different body part of the

person (most of these points come from the torso part of the body) which poses an disad-

vantage when applying the model to applications such as motion tracking and rendering.

Instead of using these erroneous and non-uniformly distributed CSPs obtained from

joint estimation, an alternative approach is used. First a detailed voxel model of the person

is built using the Visual Hull alignment and refinement algorithms proposed in Chapter 5.

The centers of the surface voxels of the voxel model are then extracted and used to represent

the shape of the person. There are two advantages of using this approach. Since the voxel

model is reconstructed by SFS using more than 100 silhouettes, the model is very accurate

and the surface voxel centers are close approximations to points on the surface of the actual

person. Also since the voxel centers lie on a 3D grid, the distribution of the points is

uniform.

To build voxel models of each person, video sequences of the person standing on a

turn table were captured by eight cameras with thirty frames (roughly equal to a whole

revolution of the turntable) per camera. Note that there is no need to calibrate the rotation

axis and speed of the turn table beforehand as our rigid body temporal SFS algorithm is

able to recover the motion automatically. The person is asked to remain still throughout the

capture process to satisfy the rigidity assumption. Moreover, the person is also told to keep

their limbs straight so that the first frame of the sequence can be chosen as the reference

frame for the global body joints registration discussed in Section 7.1.2. After applying the

rigid object temporal SFS algorithm to recover the motions, a refined voxel model of the

person is built using the Visual Hull refinement technique as described in Section 5.5. The

centers of the surface voxels of the model are extracted and colored by back-projecting

110 Chapter 7. Human Kinematic Modeling

(a) (b)

Frame 0 Frame 6

Frame 18 Frame 24

Unaligned CSPs Aligned CSPs

(c)

(a) (b)

Frame 0 Frame 6

Frame 18 Frame 24

Unaligned CSPs Aligned CSPs

(c)
Figure 7.6: Results of body shape acquisition for SubjectE. (a) Four input images of camera 4, (b)
unaligned and aligned colored surface points from all frames, (c) refined Visual Hull of the body
displayed from several different view points.

them into the color images. The results on SubjectE, SubjectG and SubjectS are presented

in Figures 7.6, 7.7 and 7.8 respectively. It can be seen that excellent shape estimates (see

for example the Visual Hulls in Figures 7.7(c)) of the human bodies are obtained. Note

that we name the input sequences in Figures 7.6 through 7.8 as the ESTILL, GSTILL

and SSTILL sequences respectively. These STILL sequences will be used in Chapter 9

as source sequences to perform image-based motion rendering on SubjectE, SubjectG and

SubjectS.

7.3. Merging Shape and Joint Information 111

(a) (b)

Frame 6 Frame 12

Frame 18 Frame 24

Unaligned CSPs Aligned CSPs

(c)

(a) (b)

Frame 6 Frame 12

Frame 18 Frame 24

Unaligned CSPs Aligned CSPs

(c)
Figure 7.7: Results of body shape acquisition for SubjectG. (a) Four input images of camera 4, (b)
unaligned and aligned colored surface points from all frames, (c) refined Visual Hull of the body
displayed from several different view points.

7.3 Merging Shape and Joint Information

The last task of our modeling system is to merge the joint and shape information obtained

from Sections 7.1 and 7.2 together. Before the merge, slight modifications are made to the

joint positions to enforce left and right symmetry of the joint skeleton (the asymmetry is

caused by errors in joint estimation and registration). Two rules are applied: (1) The left

and right shoulder joints have the same height above the ground. The same applies to the

two hip joints. (2) The distance between the shoulder and elbow joints on the left arm is

equal to that on the right arm. The same applies to the distances between the hip and knee

112 Chapter 7. Human Kinematic Modeling

(a) (b)

Frame 6 Frame 12

Frame 18 Frame 24

Unaligned CSPs Aligned CSPs

(c)

(a) (b)

Frame 6 Frame 12

Frame 18 Frame 24

Unaligned CSPs Aligned CSPs

(c)
Figure 7.8: Results of body shape acquisition for SubjectS. (a) Four input images of camera 4, (b)
unaligned and aligned colored surface points from all frames, (c) refined Visual Hull of the body
displayed from several different view points.

joints on the legs. These two rules are reasonable because of the person’s upright standing

posture on the turntable when the reference frame is captured. The rules can be carried

out by simply averaging the corresponding values from the left and right sides of the body.

Once the joint positions are adjusted, they are transfered to the voxel model. Since the

joints are registered w.r.t. the reference image used to create the voxel model, the transfer

is straightforward.

The only problem left is to automatically segment the voxel centers to the corresponding

body parts. Figure 7.9 illustrates an algorithm to segment the surface voxel centers based

7.3. Merging Shape and Joint Information 113

45o 45o

Right hip
joint

Left hip
joint

(b) (c)

Right shoulder
joint

Planes sweep
circularly around
the shoulder joint

(a)

Plane which
cuts the least
no. of voxels

45o 45o

Right hip
joint

Left hip
joint

(b)

45o 45o

Right hip
joint

Left hip
joint

(b) (c)

Right shoulder
joint

Planes sweep
circularly around
the shoulder joint

(a)

Plane which
cuts the least
no. of voxels

Right shoulder
joint

Planes sweep
circularly around
the shoulder joint

(a)

Plane which
cuts the least
no. of voxels

Figure 7.9: Segmenting all of the voxel centers to the appropriate body parts. (a) The arm cutting
planes are found by sweeping a plane circularly around the shoulder joints. The plane which cuts
the least number of voxels is chosen. (b) The leg cutting planes are formed by two planes passing
through the hips joints at a 45 degree angle with the horizontal, and a vertical plane which separate
the legs from each other. (c) The joints, the cutting planes and the segmented voxels of the model.

on the joint locations. First, five cutting planes are found to separate the four limbs away

from the body (Figure 7.9(c)). Once the limb is segmented, it can be divided into the upper

and lower parts easily using the elbow/knee joint location. The ideal cutting plane for the

arm would be the one which passes through the shoulder joint and the arm pit. To find this

ideal plane, planes with different orientations are sweep circularly around the shoulder joint

across the body as shown in Figure 7.9(a). The plane which cuts the least number of voxels

of the body model is then chosen to be the arm cutting plane. To separate the legs from

the each other and from the body, three planes are used. The first plane passes through the

right hip joint while the second plane passes through the left hip joint, and each of them

making a 45 degree angle with the horizontal plane. The third plane is the vertical plane

which make a “Y” with the first two planes as shown in Figure 7.9(b).

With a slight abuse of terminology, hereafter we treat the surface voxel centers as if

they are CSPs and call the merged model an articulated CSP model of the person. The

articulated CSP models of the synthetic virtual person, SubjectE, SubjectG, and SubjectS

are shown in Figures 7.10(a)(b)(c) and (d) respectively. The video clip Subject-EGS-

kinematicmodels.mpg shows some 3D fly-around views of the built models of SubjectE,

114 Chapter 7. Human Kinematic Modeling

(a) (b) (c) (d)(a) (b) (c) (d)

Figure 7.10: Articulated model of (a) synthetic virtual person, (b) SubjectE, (c) SubjectG and (d)
SubjectS. In (a) and (b), the CSPs are shown with their original colors. In (c) and (d), the CSPs
of different body parts are shown with different colors. For display clarity, the CSPs drawn are
down-sampled at a ratio of one in two.

SubjectG and SubjectS. Note that the articulated CSP model can be turned into an articu-

lated voxel model easily by substituting the center points by solid voxels (3D cubes). As

will be seen in the next two chapters, an articulated voxel model is not only essential for

image-based human motion rendering (Step 3 of Section 9.1.3.2), but is also useful for

determining visibility (Section 8.2.3) in the problem of human motion tracking. As a sum-

mary, Figure 7.11 illustrates the three tasks of our vision-based human kinematic modeling

system.

7.4 Related Work

The work most related to our vision-based human body kinematic information acquisi-

tion system is by Kakadiaris and Metaxas in [KM95]. They used deformable templates

to segment the 2D body parts in a silhouette sequence. The segmented 2D shapes from

three orthogonal view-points are then combined into a 3D shape by SFS. Although our

idea of estimating the joint locations individually instead of all at once is partly inspired by

7.4. Related Work 115

Task 1: Joint Skeleton
Acquisition

Task 2: Body Shape
Acquisition

left shoulder right knee

Individual Joint
Estimation

Joints Registration

Task 3: Merging Shape
& Joint Information

limb joints alignment

global registration

Input

Processes

Output

Visual Hull
Alignment

Visual Hull
Refinement

Joint
skeleton

Voxel
model

Articulated
CSP model

Joints Symmetry
Adjustment & Transfer

Segmenting Surface
Voxel Centers

Whole body sequences Joint skeleton Voxel modelIndividual joint sequences

Task 1: Joint Skeleton
Acquisition

Task 2: Body Shape
Acquisition

left shoulder right knee

Individual Joint
Estimation

Joints Registration

Task 3: Merging Shape
& Joint Information

limb joints alignment

global registration

Input

Processes

Output

Visual Hull
Alignment

Visual Hull
Refinement

Joint
skeleton

Voxel
model

Articulated
CSP model

Joints Symmetry
Adjustment & Transfer

Segmenting Surface
Voxel Centers

Whole body sequences Joint skeleton Voxel modelIndividual joint sequences

Figure 7.11: Flow chart illustrating the three tasks in our human kinematic modeling system.

their system, here we address the acquisition of motion, shape and articulation information,

while [KM95] focuses mainly on shape estimation.

Besides the 2D work by Krahnstoever et al. in [KYS01, KYS03] (which we have al-

ready discussed in the last chapter), the research group led by Fua addressed the problem

of 3D human body modeling using a three-camera system [PFD99, PF01, FGDP02]. They

first extract dense feature points on the surface of the body parts by manual initialization

and stereo matching. The feature points are then tracked across the video sequences using

a template matching technique. A flexible but complex human model consisting of de-

formable metaballs [Bli82] as shape primitives is then used to fit the tracked feature points

116 Chapter 7. Human Kinematic Modeling

through a least square framework. Though they have not demonstrated the modeling of a

complete body, their approach is able to handle non-rigid deformation of the body parts.

Sand et al. have also captured the non-rigid deformation of the human body skin using

silhouette images [SMP03]. However, marker-based motion capture data is used in their

system to estimate the joint skeleton and track the motion of the person.

7.5 Discussion

As opposed to other human modeling approaches which fit and modify generic human

models composed of simple shape primitive to the input image data [LY95, KM98, PFD99,

CKBH00], our vision-based kinematic modeling system constructs the body model from

scratch using simple joint connection knowledge of the body. We acquire and register the

skeletal structure using video sequences of the person moving their limbs and extract shape

information (in terms of CSPs) of the body parts directly from the silhouette and color im-

ages. The joint and shape information is then merged to form a complete kinematic model

consisting of voxels segmented into body parts using the joint locations. Compared to laser

scanning human body modeling technology which usually only capture shape information,

our system is simpler, cheaper, non-invasive and more importantly, provides the joint lo-

cations. However, since our system uses the motion of the body parts to recover the joint

locations, it does not perform well with joints which have a restricted range of movement,

such as the head, wrist and ankle joints.

Chapter 8

Human Motion Tracking

Human motion tracking and capture has long been an important research area in computer

graphics for the entertainment industry of movies and games. Almost all of the state of the

art motion capture systems [MET, MAC, VIC] attach optical or magnetic markers on the

person whose motion is to be tracked and use triangulation on the positions of the mark-

ers to achieve tracking. Although these systems generally produce very good results, they

are not very applicable to applications such as security/surveillance and human-computer

interaction where placing markers on the person is either impossible or undesirable. For

this reason, vision-based motion tracking has gained much attention in recent years (an

extensive survey of the topic can be found in [MG01]) and researchers have proposed sys-

tems to track body parts from video sequences [RK95, GD96, BM97, BM98, HHD98,

JTH99, DCR99, CR99a, CR99b, PRCM99, DF99, CKBH00, SDB00, SBF00, DBR00,

DCR01, DC01, LC01, SC02, MTHC03, CTMS03] using a variety of model-based ap-

proaches. In almost all of these systems, generic shapes (e.g. rectangles/ellipses in 2D,

cylinders/ellipsoids in 3D) are used to model the body parts of the person. Though generic

models/shapes are simple to use and can be generalized to different persons, they suffer

from two disadvantages. Firstly their coarse approximation to the actual body shape of the

person limits the accuracy of motion tracking. Secondly generic shapes/models also lack

117

118 Chapter 8. Human Motion Tracking

accurate joint information of the person. In vision-based motion tracking systems, precise

kinematic (shape and joint) information is essential to obtain accurate motion data. In this

chapter, we show how the kinematic model of a person obtained in Chapter 7 can be used

to track the motion of the person in new video sequences. The formulation of our motion

tracking algorithm is similar to the 3D CSPs/2D image alignment principle of the temporal

SFS alignment algorithm proposed in Chapter 5, with the incorporation of joint constraints

into the motion equations as described below.

8.1 Image-Based Articulated Object Tracking

In this section, we consider the problem of tracking an articulated object in (color and

silhouette) video sequences of the object using a known articulated model of the object. We

assume the articulated model is constructed using the human kinematic modeling system

described in Chapter 7. The model consists of rigid parts with known shape described in

terms of CSPs and are connected with each other at known joint locations.

8.1.1 Problem Scenario

Figure 8.1(a) depicts an articulated CSP model of an object consists of three rigid parts

A, B and C with part A being the base of the object. Without loss of generality, we assume

the model is at its reference configuration which means the rotation angles of the joints

and the translation of the base part A are all zero. We assume the shape information of the

model is given as sets of CSPs represented by {W i,A
0 , µ

i,A
0 ; i = 1, · · · · · · , LA

0 }, {W
i,B
0 , µ

i,B
0 ; i =

1, · · · · · · , LB
0 }, {W

i,C
0 , µ

i,C
0 ; i = 1, · · · · · · , LC

0 } for the parts A, B and C respectively and the

joint locations of the model are known and denoted by Y B
0 and YC

0 . Furthermore, we assume

the model color and silhouette images {Ik
0, S

k
0; k = 1, · · · · · · ,K} that were used to construct

the model are available.

Suppose we have imaged the articulated object by K cameras at each of J time in-

8.1. Image-Based Articulated Object Tracking 119

Base: Part A

Part B

Y0
B

Part C
Y0

C

W0
i,A

W0
i,C

W0
i,B

(a) The articulated CSP model

Yj
BW0

i,A

Yj
C

Qj
C

Qj
B

(Qj , sj)A A

W0
i,B

W0
i,C

world
coordinates

world
coordinates

(b) The object at run-time tj

-

-
-

Base: Part A

Part B

Y0
BY0
B

Part C
Y0

CY0
C

W0
i,A W0
i,A

W0
i,C W0
i,C

W0
i,B W0
i,B

(a) The articulated CSP model

Yj
BYj
BW0

i,A W0
i,A

Yj
CYj
C

Qj
CQj
C

Qj
BQj
B

(Qj , sj)A A(Qj , sj)A A

W0
i,B W0
i,B

W0
i,C W0
i,C

world
coordinates

world
coordinates

(b) The object at run-time tj

-

-
-

Figure 8.1: (a) The articulated CSP model of an articulated object with three rigid parts A, B and C.
(b) The object itself at run-time t j. The articulated CSP model in (a) is used to estimate the motion
parameters of the object at t j.

stants with the color and silhouette images represented by {Ik
j , S

k
j; k = 1, · · · · · · ,K; j =

1, · · · · · · , J}. Also assume we have extracted from these images J sets of (unsegmented)

CSPs {W i
j, µ

i
j} of the object. Now the problem of image-based articulated object tracking

can be stated as

The Image-Based Articulated Object Tracking Problem

Given the above input information, estimate the positions and orientations (QA
j , sA

j) of the

base part A and the rotation matrices QB
j ,Q

C
j of the articulated joints at time t j for all

j = 1, · · · · · · , J.

8.1.2 Tracking Principle

Here we explain our tracking principle using the jth frame data (captured at run-time t j)

of the sequence (see Figure 8.1(b)). We assume the articulated object is already tracked at

120 Chapter 8. Human Motion Tracking

t j−1, i.e. we have estimates of the parameters QA
j−1, sA

j−1,Q
B
j−1 and QC

j−1. As a recap, we have

the following information as the input data:

1. Model data:
1a. segmented model CSPs {W i,A

0 , µ
i,A
0 ,W

i,B
0 , µ

i,B
0 ,W

i,C
0 , µ

i,C
0 },

1b. known model joint positions Y B
0 and YC

0 ,

1c. model color and silhouette images {Ik
0 , S

k
0} used to construct the model.

2. Data at t j:

2a. run-time unsegmented CSPs {W i
j, µ

i
j},

2b. run-time color and silhouette images {Ik
j , S

k
j},

2c. estimated parameters QA
j−1, sA

j−1,Q
B
j−1 and QC

j−1 from previous frame.

Using the idea similar to that used in aligning two Visual Hulls in Section 5.3.3, we pose

the problem of estimating QA
j , sA

j ,Q
B
j and QC

j as the problem of minimizing the geometric

and color errors caused by projecting the 3D CSPs into the 2D images. To be more specific,

there are two types of temporal errors we can use:

1. the forward geometric and photometric errors of projecting (respectively) the seg-

mented model CSPs into the run-time silhouette and color images,

2. the backward geometric and photometric error of projecting (respectively) the run-

time CSPs into the model silhouette and color images.

Provided with estimates of QA
j , sA

j ,Q
B
j and QC

j , the forward errors are obtained easily

by applying the appropriate motions to the already segmented model CSPs and projecting

them into the run-time images. To calculate the backward errors, however, an extra step

is required. In order to apply the correct motion transformations (due to part A, B or C)

to the run-time CSPs, we have to decide for each run-time CSP W i
j, which part of the

articulated object it belongs to. In other words, we have to segment the set of CSPs {W i
j, µ

i
j}

to parts A, B and C. Generally segmenting a set of 3D points is an non-trivial problem, and

different approaches are used under different situations. Two approaches for segmenting

8.1. Image-Based Articulated Object Tracking 121

the run-time CSPs based on the known shape information of the model and the estimated

motion parameters from the previous frame will be proposed in Section 8.2.4 when we

apply the tracking algorithm to human body. Once the run-time CSPs are segmented, the

backward error can be calculated easily and added to the forward errors.

Theoretically, to estimate the motion parameters, it is sufficient to just include the for-

ward errors in the optimization equations. However, the advantage of including the back-

ward errors is that the motion parameters are then highly constrained. This means that with

the addition of backward errors, the tracking is less likely to fall into local minimum, espe-

cially when any two jointed parts of the articulated object are very close to each other (see

Section 8.2.5 for details). The disadvantage of including the backward errors is the extra

step that is required to segment the run-time CSPs. Note that the backward errors should

not be used if the segmentation of the run-time CSPs is not reliable.

8.1.3 Incorporating Joint Constraints into Optimization Equations

In this section we give the mathematical equations to incorporate the joint constraints into

the calculation of the forward and backward errors. For the forward errors, let W̄ i,A
0 , W̄

i,B
0

and W̄ i,C
0 be the positions of W i,A

0 ,W
i,B
0 and W i,C

0 at run-time t j (see Figure 8.1(b)). By

the joint constraints between the parts, we have the following equations relating the trans-

formed model CSPs and the joint positions (Y B
j and YC

j) at t j with the motion parameters:

Part A : W̄ i,A
0 = QA

j W i,A
0 + sA

j , (8.1)

Part B : YB
j = QA

j YB
0 + sA

j ,

W̄ i,B
0 = QA

j QB
j (W i,B

0 − YB
0) + YB

j , (8.2)

Part C : YC
j = QA

j QB
j (YC

0 − YB
0) + YB

j ,

W̄ i,C
0 = QA

j QB
j QC

j (W i,C
0 − YC

0) + YC
2 . (8.3)

122 Chapter 8. Human Motion Tracking

Substituting the above equations into Equation (5.9), the forward errors are written as

e2,1 =

LA
0
∑

i=1

∑

k

{

τ ∗ dk
j (W̄

i,A
0) + [ck

j(W̄
i,A
0) − µi,A

0]2
}

+

LB
0
∑

i=1

∑

k

{

τ ∗ dk
j (W̄

i,B
0) + [ck

j(W̄
i,B
0) − µi,B

0]2
}

+

LC
0
∑

i=1

∑

k

{

τ ∗ dk
j (W̄

i,C
0) + [ck

j(W̄
i,C
0) − µi,C

0]2
}

. (8.4)

As in Equations (5.2) and (5.9) in Chapter 5, the error of a model CSP w.r.t the k th run-time

color and silhouette image is calculated only if the CSP is visible in that camera. Since in

this case, the object consists of articulated rigid parts, the “reverse approach” described in

Section 5.4.2 for testing visibility is not applicable. An alternative method for determining

visibility for articulated object tracking will be discussed in Section 8.2.3.

To calculate the backward errors e1,2, we first express the positions of the (now assumed

segmented) run-time CSPs w.r.t. the model images in terms of the motion parameters

QA
j , sA

j ,Q
B
j and QC

j by inverse transforming the set of motion relations in Equations (8.1)

to (8.3). Then the transformed run-time CSPs are projected into the model silhouette and

color images to get the geometric and photometric errors, again using Equation (5.9). Com-

bining the backward and forward error terms (Equation (8.4)), the optimization equation

becomes

min
sA

j ,Q
A
j ,Q

B
j ,Q

C
j

[

e2,1 + e1,2
]

, (8.5)

which can be solved by using the Levenberg-Marquardt algorithm [DS83, PTVF93].

Although we have described the tracking algorithm using an example articulated object

consists of three parts, it can be easily extended to articulated objects with N parts. In

the special case where the motion (rotation and translation) of the base (part A in our

example) is known, or if it is static, the problem degenerates to tracking a multi-link object

8.2. Tracking Full Body Human Motion 123

around a fixed point. An example would be the situation we discussed in Section 7.1.2.2

for globally registering the joints of the limbs. Note that in such cases our algorithm still

applies with the difference that (QA
j , sA

j) are known constants instead of parameters to be

optimized in Equation (8.5). To conclude this section, we summarize the Image-Based

Articulated Object Tracking Algorithm below:

The Image-Based Articulated Object Tracking Algorithm

1. Initialize the motion parameters in the first frame t1.

2. For j = 1, · · · · · · , J, estimate the motion parameters at t j by the following proce-

dures:

(a) Initialize the motion parameters at t j with those estimated at t j−1.

(b) Segment the run-time CSPs at t j.

(c) Apply the Iterative LM algorithm (described in Section 5.3.2) to Equation (8.5)

to minimize the sum of forward errors and backward errors with respect to the

motion parameters QA
j , sA

j ,Q
B
j and QC

j until convergence is attained or for a fixed

number of iterations.

8.2 Tracking Full Body Human Motion

8.2.1 The Articulated Human Model

The articulated CSP models used to track human motion are the same as those built in

Chapter 7 (see for example Figure 7.10). Each model consists of nine body parts: torso,

right/left lower/upper arms, right/left lower/upper legs, connected by eight joints: right/left

shoulder/elbow joints, right/left hip/knee. Each body part is assumed to be rigid with the

torso being the base. The shoulder and hip joints have 3 degree-of-freedom (DOF) each

while there is 1 DOF for each of the elbow and knee joints. Including translation and

rotation of the torso base, there are a total of 22 DOF in the model.

124 Chapter 8. Human Motion Tracking

8.2.2 Hierarchical Tracking

The most straightforward way to use the Image-Based Articulated Object Tracking Algo-

rithm for human motion tracking is to apply it directly to all the body parts (with a total

of 22 DOF) of the articulated CSP model at the same time. In practice, however, this all-

at-once approach is prone to the problem of too many local minima because of the high

dimensionality. To reduce the chance of falling into local minimum, we instead use a two-

step hierarchical approach: first fit the torso base and then each limb independently. This

approach makes use of the fact that the motion of the body is largely independent of the

motion of the limbs which are, under most of the cases, largely independent of each other.

The first step of our hierarchical approach involves recovering the global translation and

orientation of the torso base. This can be done using the 6 DOF temporal SFS algorithm

for rigid objects in Section 5.3.3. Once the global motion of the torso has been estimated,

the four joint positions: left/right shoulders and left/right hips are calculated. In the second

step, the four limbs of the body are aligned separately around these fixed joint positions

just as in the special case mentioned at the end of Section 8.1.3. Using such a hierarchical

approach not only reduces the chance of falling into local minimum, but also reduces the

processing time as there are only four unknowns to be optimized for each limb.

8.2.3 Determining Visibility

Since the human model consists of articulated body parts, the conservative silhouette-based

visibility test used in Section 5.4 is inapplicable for alignment in motion tracking. Here we

propose another method for testing visibility. The basic idea is to first turn our articulated

CSPs model into an articulated voxel model by replacing the CSPs with solid voxels (as

discussed at the end of Section 7.3). Then at time t j, the voxels in the model are transformed

using the estimated motion parameters at t j to simulate a 3D visibility space as it would

be formed by the actual human body. The visibility of a 3D point w.r.t. a camera is now

8.2. Tracking Full Body Human Motion 125

Articulated CSP
model

Convert articulated
CSP model into
an articulated
voxel model

Visibility test at run-time tj

visible point

invisible
pointsvisible

point

Transform using initial
or estimated motion
parameters at tj

Articulated voxel
model

Simulate occluded
3D space

Articulated CSP
model

Convert articulated
CSP model into
an articulated
voxel model

Visibility test at run-time tj

visible point

invisible
pointsvisible

point

Transform using initial
or estimated motion
parameters at tj

Articulated voxel
model

Simulate occluded
3D space

Figure 8.2: Determining visibility at time t j using an articulated voxel model and the estimated
motion parameters at t j.

determined by intersecting the transformed 3D voxel model with the line joining the camera

and the 3D point. If the line hits any part of any voxels of the model, the 3D point is

invisible, otherwise it is visible. This visibility test is illustrated in Figure 8.2.

Since the voxel model is essentially the Visual Hull (and therefore an overestimated

shape) of the person, there is a definite advantage in using the voxel model as it provides

a conservative margin for the visibility test. It has to be pointed out that since the voxels

are transformed using the estimated or approximated motion parameters instead of the true

values, some of the visibility test results may not be correct (despite the conservative margin

offered by the voxel model). As the estimated motion parameters converges toward the true

solution, however, the visibility tests become more and more accurate.

126 Chapter 8. Human Motion Tracking

8.2.4 Run-time CSPs Segmentation

Here we suggest two approaches to segment the run-time CSPs. The first approach approx-

imates the body parts using simple geometrical primitives and uses the distance between

the CSPs and the primitives for segmentation. The second approach segments the CSPs by

segmenting the boundary of the run-time silhouette images which originate the CSPs.

8.2.4.1 Segmenting 3D CSPs using approximated ellipsoidal shells

Recall that in the real-time SFS system in Chapter 3, we fit and segment the reconstructed

surface voxels using ellipsoidal shells (Section 3.3.2). The first approach of segmenting

run-time CSPs uses a similar idea. The whole procedure (at time t j) is illustrated in Fig-

ure 8.3. It consists of three steps listed follow:

1. The body parts of the CSP articulated model are approximated by ellipsoidal shells

using Equations (3.3) to (3.5) on the given model CSPs.

2. The ellipsoidal shells are transformed using the estimated motion parameters at t j−1.

3. Each run-time CSP at t j is segmented as belonging to the body part whose ellipsoidal

shell is closest in distance to that CSP.

8.2.4.2 Segmenting 3D CSPs by segmenting the 2D silhouette boundary

The idea of the second approach comes from the fact that all CSPs originate from points

on the boundary of the silhouette. This means that segmenting the 3D run-time CSPs can

be done by segmenting the boundaries of the 2D run-time silhouettes. Figure 8.4 illustrates

the steps of segmenting the 2D run-time silhouette boundary at t j:

1. The model CSPs of the articulated model are transformed using the estimated motion

parameters at t j−1.

2. To segment the boundary silhouette of run-time image S k
j , the transformed model

CSPs are projected (along with their body part identities) onto S k
j .

3. For each boundary point of S k
j , it is segmented to belong to the body part which has

the highest number of projected CSPs within a fixed radius of the boundary point.

8.2. Tracking Full Body Human Motion 127

Step 1: Articulated CSP
model approximated
by ellipsoidal shells

Run-time tj

Step 2: Transform
ellipsoidal shells
using motion
parameters
estimated at tj-1

Articulated CSP
model

Unsegmented CSPs at tj
and ellipsoidal shells at tj-1

Unsegmented
CSPs at tj

Step 3: CSPs at tj are
segmented according to
the shortest distance to
the ellipsoidal shells

Segmented
CSPs at tj

Articulated ellipsoidal
shells model

Step 1: Articulated CSP
model approximated
by ellipsoidal shells

Run-time tj

Step 2: Transform
ellipsoidal shells
using motion
parameters
estimated at tj-1

Articulated CSP
model

Unsegmented CSPs at tj
and ellipsoidal shells at tj-1

Unsegmented
CSPs at tj

Step 3: CSPs at tj are
segmented according to
the shortest distance to
the ellipsoidal shells

Segmented
CSPs at tj

Articulated ellipsoidal
shells model

Figure 8.3: Segmenting the 3D CSPs at t j using approximated ellipsoidal shells at t j−1.

Step 3: Segment the silhouette boundary
point by counting how many projected
CSPs within a fixed radius of the
boundary point belong to each
body part

Step 1: Transform
using motion
parameters
estimated at tj-1

Transformed CSPs

Step 2: Project the transformed
CSPs with the body part
identity onto silhouette image Sj

k

Segmented silhouette
boundary

Unsegmented silhouette
boundary

Sj
k

Sj
k

Camera k

Sj
k

Articulated CSP
model

Step 3: Segment the silhouette boundary
point by counting how many projected
CSPs within a fixed radius of the
boundary point belong to each
body part

Step 1: Transform
using motion
parameters
estimated at tj-1

Transformed CSPs

Step 2: Project the transformed
CSPs with the body part
identity onto silhouette image Sj

k

Step 2: Project the transformed
CSPs with the body part
identity onto silhouette image Sj

k

Segmented silhouette
boundary

Unsegmented silhouette
boundary

Sj
kSj
k

Sj
kSj
k

Camera k

Sj
kSj
k

Articulated CSP
model

Figure 8.4: Segmenting the 3D CSPs by segmenting the 2D boundary of the silhouette image S k
j

at t j.

128 Chapter 8. Human Motion Tracking

Although the above two approaches are described using human body tracking as an

example, they can be applied to the tracking of other articulated objects. The advantage of

using the first approach is that it is fast and easy to implement. However, it is not applicable

to articulated objects whose parts cannot be closely approximated by simple geometric

primitives. In such situations, the second approach is preferred though it is slower.

8.2.5 Dealing with Local Minimum

As common to all methods which use an error minimization formulation, our human motion

tracking algorithm is prone to the problem of local minima, especially since the human

articulated body has very large number of DOF. Though we have used the hierarchical

approach (discussed in Section 8.2.2) to reduce the high dimensionality of the tracking into

multiple smaller sub-optimizations to lower the chance of falling into local minimum, the

problem cannot be completely avoided.

There are three situations where our tracking algorithm is particularly vulnerable to

local minima. The first situation occurs when one of the the arms is very close to the

torso. In this situation, there is a big chance that the optimization will get trapped in a local

minimum where the arm stays in a position inside the body of the person (see Figure 8.5(a)

for an example). The second situation occurs when the legs of the person are crossing each

other and the tracking algorithm is not able to distinguish between the left and right lower

legs as shown in Figure 8.5(b). The third situation happens when the arm is straight and

there is not enough color (or texture) information on the arm to differentiate the rotation

angles of the shoulder joint about the axis along the length of the arm. An example is

illustrated in Figure 8.5(c) where the palm of the left arm of SubjectE is facing upward

(see the associated image) but the recovered joint angles have the palm of the arm facing

downward (i.e. the joint angles of the left shoulder joint is rotated around the axis along

the arm by 180 degrees).

To cope with the first two situations, collision detection and reinitialization is added to

8.2. Tracking Full Body Human Motion 129

Left arm is very
close to the body

Legs crossing
each other

Left arm is straight
with homogeneous

color

(a) (b) (c)

Arm pulled inside
the body

Input
images

Recovered
joint angles

Legs tangled

Left arm estimated with
wrong orientation

(palm facing downward
instead of upward)

Left arm is very
close to the body

Legs crossing
each other

Left arm is straight
with homogeneous

color

(a) (b) (c)

Arm pulled inside
the body

Input
images

Recovered
joint angles

Legs tangled

Left arm estimated with
wrong orientation

(palm facing downward
instead of upward)

Figure 8.5: Three situations where our tracking algorithm is particularly vulnerable to local min-
ima. (a) The arm is very close to the body. (b) The legs are crossing each other. (c) The arm is
straight and of homogeneous color.

our algorithm. In each frame, after all the joint angles have been estimated, the body parts

are checked for collision. If a collision is detected between a limb and the body, within

each limb (e.g. collision of upper and lower arm) or between limbs, the joint angles of the

limbs involved in the collision are reinitialized and re-aligned. To reinitialize, instead of

using only the joint angles estimated from the previous one frame, those from the previous

three frames are used to predict the initial guess. To increase the chance of climbing out of

the local minimum, a small random perturbations is also added to the initial guess.

Note that although the above heuristic is sufficient to avoid some of the local minima, it

still fails occasionally. For a failed frame, to avoid propagating the wrong estimates to the

next frame, we set the joint angles to be those estimated from the previous frame. By doing

so, it is hoped that the local minimum problem will be resolved in the next frame. For

130 Chapter 8. Human Motion Tracking

cases where a limb is totally lost in the tracking, simple manual reinitialization is required

to restart the tracking of that limb.

The third situation is difficult to deal with because the geometric constraints are not

able to resolve the ambiguity due to the symmetry of the arm. In cases when there is no

texture on the arm (as in the case of SubjectE), the constraints of photometric consistency

are also unable to correct the mis-alignment. Although currently we have no solution to this

situation, the tracking generally recovers by itself once the arm is bent (when the ambiguity

can be resolved by the geometric constraints).

8.3 Experimental Results

To test our tracking algorithm, two types of data are used: (1) synthetic sequences with

ground-truth are generated using OpenGL to obtain quantitative comparison and (2) se-

quences of real people with different motions are captured for qualitative results.

8.3.1 Synthetic Sequences

Two synthetic motion video sequences: KICK (60 frames) and PUNCH (72 frames) were

generated using the synthetic human model in Section 6.2.1 with a total of eight cameras

per sequence. The recovered articulated model shown in Figure 7.10(a) is used to track

the motion in these sequences. Figure 8.6 compares the ground-truth and estimated joint

angles of the left arm and right leg of the body in the KICK sequence. It can be seen that

our tracking algorithm performs very well.

The movie Synthetic-track.mpg∗ illustrates the tracking results on both sequences.

In the movie, the upper left corner shows one of the input camera sequences, the upper

right corner shows the tracked body parts and joint skeleton (rendered in color) overlaid

∗All movie clips of this chapter can be found at
http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter8/

8.3. Experimental Results 131

20 40 60

−1.5

−1

−0.5

0

0.5

1

1.5

Frame

Left Shoulder Rx

20 40 60

−1.5

−1

−0.5

0

0.5

1

1.5

Frame

Left Shoulder Ry

20 40 60

−1.5

−1

−0.5

0

0.5

1

1.5

Frame

Left Shoulder Rz

20 40 60

−1.5

−1

−0.5

0

0.5

1

1.5

Frame

Left Elbow Rx

Ground−truth paramters
Estimated parameters

20 40 60

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frame

Right Hip Rx

20 40 60

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frame

Right Hip Ry

20 40 60

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frame

Right Hip Rz

20 40 60

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frame

Right Knee Rx

Ground−truth paramters
Estimated parameters

Figure 8.6: Graphs comparing ground-truth and estimated joint angles of the left arm and right leg
of the synthetic sequence KICK. The estimated joint angles closely follow the ground-truth values
throughout the whole sequence. The tracking results of the KICK sequence can be seen in the movie
Synthetic-track.mpg.

on one of the input images (which are converted from color to gray-scale). The lower left

corner depicts the ground-truth motion rendered using an avatar and the lower right corner

represents the tracked motions with the same avatar. The avatar renderings show that the

ground-truth and tracked motions are almost indistinguishable from each order.

132 Chapter 8. Human Motion Tracking

8.3.2 Real Sequences

Our tracking algorithm is tested on a variety of real human subjects performing a wide

range of motions. For SubjectG, three video sequences: STILLMARCH (158 frames) ,

AEROBICS (110 frames) and KUNGFU (200 frames) were captured to test the tracking

algorithm with eight cameras used in each sequence. Figures 8.7 and 8.8 show the track-

ing results on the AEROBICS and KUNGFU sequences respectively. Each figure shows

selected frames of the sequence with the (color) tracked body parts and the joint skeleton

overlaid on one of the eight camera input images (which are converted to gray-scale for

display). The movie SubjectG-track.mpg contains results on all three sequences. In the

movie, the upper left corner represents one of the input camera images and the upper right

corner illustrates the tracked body parts with joint skeleton overlaid on a gray-scale version

of the input images. The lower left corner illustrates the results of applying the estimated

motion data to a 3D articulated voxel model (obtained from the articulated CSP model as

discussed at the end of Section 7.3) of the person while the lower right corner shows the

results of applying the estimated motion data to an avatar. The video demonstrates that

our tracking algorithm tracks well on both simple motions (STILLMARCH, AEROBICS)

and complicated motions (KUNGFU). Note that in the above three sequences, the rem-

edy discussed in Section 8.2.5 is not used for dealing with the problem of local minimum.

Since the motions in the STILLMARCH and AEROBICS are simple, no local minimum

problems are encountered in these two sequences. However, for the KUNGFU sequence,

the tracking of the right arm is lost in frame 91 for 10 frames due to local minimum but

recovers automatically at frame 101.

A motion sequence THROW (155 frames) of SubjectS is captured. The sequence is

first tracked by our algorithm without using the local minimum remedy. Since body parts

are not checked for collision, when the left arm is very close to the body at frame 70, local

minimum pulls the left arm inside the body (see Figure 8.5(a)). Moreover, the tracking

of both legs is also lost around frame 43 (which is shown in Figure 8.5(b)) when the legs

8.3. Experimental Results 133

Frame 0 Frame 20

Frame 60Frame 40

Frame 80 Frame 100

Frame 50

Frame 10

Frame 90

Frame 30

Frame 70

Frame 119

Frame 0 Frame 20

Frame 60Frame 40

Frame 80 Frame 100

Frame 50

Frame 10

Frame 90

Frame 30

Frame 70

Frame 119

Figure 8.7: Tracking results of the AEROBICS sequence with 12 selected frames. The tracked
body parts and joint skeleton (rendered color) are overlaid on one of the input camera images (which
are converted from color to gray-scale for clarity). The whole sequence can be seen in the movie
SubjectG-track.mpg.

started to cross each other. To resolve these problems, the sequence is re-tracked with the

local minimum remedy turned on. The results are shown in Figures 8.9 which shows 24

selected frames of the sequence with the (color) tracked body parts and the joint skeleton

overlaid on one of the eight camera input images (which are converted to gray-scale for

display). The local minima problems of the legs and the left arm are successfully resolved

by checking for body part collision and reinitialization. The whole THROW sequence can

be seen in the movie SubjectS-track.mpg.

Two sequences: SLOWDANCE (270 frames) and STEP-FLEX (90 frames) of SubjectE

are also captured and tracked. Some of the tracked frames are shown in Figure 8.10 for the

SLOWDANCE sequence and Figure 8.11 for the STEP-FLEX sequence (the tracking re-

sults of both sequences are included in the movie clip SubjectE-track.mpg). The shoulder

joint ambiguity problem (Figure 8.5(c)) happens in the SLOWDANCE sequence on the left

134 Chapter 8. Human Motion Tracking

Step Approximate time required per frame
Segmenting run-time CSPs 0.26s

Tracking the torso 61.6s
Tracking the right arm 16.3s
Tracking the left arm 13.2s
Tracking the right leg 49.7s
Tracking the left leg 56.0s
Collision detection 0.18s

Table 8.1: The approximate time required for each step in our tracking algorithm. It takes longer
time to align the torso base and the legs than the arms because the former have much more CSPs
than the latter. The time needed to segment the run-time CSPs and detect body parts collision is
negligible compare to that required for alignment.

arm around frame 28 and on the right arm around frame 85 though the tracking recovers

in later frames of the sequence (see movie clip SubjectE-track.mpg for better views of

the problem). In the STEP-FLEX sequence, although the waist joint is not modeled, our

tracking algorithm is able to approximate the bending of the body (around the waist) using

the hip joints.

Table 8.1 gives the approximate time required for each step of our tracking algorithm. It

takes longer time to align the torso base and the legs than the arms because the former have

much more CSPs than the latter. The time needed to segment the run-time CSPs and detect

body parts collision is negligible compare to that required for alignment. These timings are

averaged from tracking the first 100 frames of the SLOWDANCE sequence on a machine

with a 750MHz Pentium CPU.

8.3. Experimental Results 135

Frame 0 Frame 16

Frame 48Frame 32

Frame 64 Frame 80

Frame 40

Frame 8

Frame 72

Frame 24

Frame 56

Frame 88

Frame 0 Frame 16

Frame 48Frame 32

Frame 64 Frame 80

Frame 40

Frame 8

Frame 72

Frame 24

Frame 56

Frame 88

Frame 96 Frame 112

Frame 144Frame 128

Frame 160 Frame 176

Frame 136

Frame 104

Frame 168

Frame 120

Frame 152

Frame 184

Frame 96 Frame 112

Frame 144Frame 128

Frame 160 Frame 176

Frame 136

Frame 104

Frame 168

Frame 120

Frame 152

Frame 184

Figure 8.8: Tracking results of the KUNGFU sequence with 24 selected frames. The whole se-
quence can be seen in the movie SubjectG-track.mpg.

136 Chapter 8. Human Motion Tracking

Frame 0 Frame 12

Frame 36Frame 24

Frame 48 Frame 60

Frame 30

Frame 6

Frame 54

Frame 18

Frame 42

Frame 66

Frame 0 Frame 12

Frame 36Frame 24

Frame 48 Frame 60

Frame 30

Frame 6

Frame 54

Frame 18

Frame 42

Frame 66

Frame 72 Frame 84

Frame 108Frame 96

Frame 120 Frame 132

Frame 102

Frame 78

Frame 126

Frame 90

Frame 114

Frame 138

Frame 72 Frame 84

Frame 108Frame 96

Frame 120 Frame 132

Frame 102

Frame 78

Frame 126

Frame 90

Frame 114

Frame 138

Figure 8.9: Tracking results of the THROW sequence with 24 selected frames. The whole sequence
can also be seen in the movie SubjectS-track.mpg.

8.3. Experimental Results 137

Frame 0 Frame 24

Frame 72Frame 48

Frame 96 Frame 120

Frame 60

Frame 12

Frame 108

Frame 36

Frame 84

Frame 132

Frame 0 Frame 24

Frame 72Frame 48

Frame 96 Frame 120

Frame 60

Frame 12

Frame 108

Frame 36

Frame 84

Frame 132

Frame 240 Frame 264Frame 252 Frame 269

Frame 144 Frame 168Frame 156 Frame 180

Frame 192 Frame 216Frame 204 Frame 228

Frame 240 Frame 264Frame 252 Frame 269

Frame 144 Frame 168Frame 156 Frame 180

Frame 192 Frame 216Frame 204 Frame 228

Figure 8.10: Tracking results for the SLOWDANCE sequence with 24 selected frames. The whole
sequence can also be seen in the movie SubjectE-track.mpg.

138 Chapter 8. Human Motion Tracking

Frame 0 Frame 16

Frame 48Frame 32

Frame 64 Frame 80

Frame 40

Frame 8

Frame 72

Frame 24

Frame 56

Frame 88

Frame 0 Frame 16

Frame 48Frame 32

Frame 64 Frame 80

Frame 40

Frame 8

Frame 72

Frame 24

Frame 56

Frame 88

Figure 8.11: Tracking results for the STEP-FLEX sequence with 12 selected frames. The whole
sequence can also be seen in the movie SubjectE-track.mpg.

8.4 Related Work

Among all of the model based approaches to track human motion, the work by Sidenbladh

et al. in [SDB00, SBF00], that by Delamarre and Faugeras in [DF99], that by Carranza et

al. in [CTMS03] and that by Mikic et al. in [MTHC03] are the most related to our tracking

algorithm.

Sidenbladh et al. [SBF00] perform human motion tracking by first modeling the person

using articulated cylinders as body parts. Each body part is projected into a reference image

to create an appearance model [SDB00]. Using a particle filtering framework [DBR00], the

articulated 3D appearance model is then used to track the motion [SBF00]. As pointed out

by the authors themselves, their model works well for tracking a single body part but is too

weak for constraining the motion of the entire body without using specific motion models.

8.5. Discussion 139

Hence their approach is restricted to tracking simple motions such as walking or running

for which motion model can be created by collecting examples [SBF00].

In [DF99], silhouette contours from multiple cameras are used to constraint the articu-

lated model (which consists of geometric primitives such as cylinders or truncated cones)

of a person. The way of generating “forces” to align 2D contours of the projected model

with the silhouette boundary is similar to the geometric constraints we use in our track-

ing algorithm. In [CTMS03], Carranza et al. first render a human model using graphics

hardware and then compare the rendered images (using pixel-wise XOR) with the silhou-

ette images extracted from video sequences to track human motion. Although it is unclear

exactly how their XOR errors are formulated as driving forces for optimizing the motion

parameters, their grid-search initialization procedure provides a good way to reduce the

problem of local minima. Mikic et al. also use multiple-view silhouettes in [MTHC03] for

motion tracking, although their body part fitting is done in 3D space and is closely related

to our previous work in [CKBH00]. None of the above work uses color information, unlike

in our algorithm.

8.5 Discussion

Due to the high number of degree of freedom of the human body, motion tracking is a

difficult problem. The problem is even more challenging for vision-based (no markers)

approaches because of self occlusion, unknown kinematic information, perspective distor-

tion and cluttered environment. In this chapter, we have shown how to use the Visual Hull

Alignment idea to perform human motion tracking. Our tracking algorithm has two ma-

jor advantages compared to other model-based methods. First, our person specific models

consist of CSPs which closely approximate the actual shape of the body parts, with joint in-

formation estimated directly from the motion of the person. The accurate kinematic model

gives better shape and joint constraints than methods which uses simple approximating ge-

140 Chapter 8. Human Motion Tracking

ometric primitives. Secondly the (color) appearance model provided by the CSPs help to

combine seamlessly the geometric constraints and the color consistency in one single op-

timization formulation. Most other vision-based motion tracking methods lack this feature

of using both color and shape information simultaneously and effectively.

For relatively simple motions, such as the STILLMARCH and AEROBICS sequences,

our tracking algorithm works very well. However, for complex motions such as those in

the KUNGFU and THROW sequences, our algorithm suffers from the problem of local

minima. This problem is unavoidable because of the error minimization formulation of

the algorithm. Although the remedy we suggested in Section 8.2.5 is able to resolve some

of these local minima problems, there are un-resolvable situations such as the one in Fig-

ure 8.5(c). Another way to deal with the local minima problem is to apply joint angles

limits (or the constraints of reachable workspace as defined in [MLS94]) to the tracking

error measure. More details about this will be discussed in Section 10.2 as future work.

Chapter 9

Human Motion Rendering

In the previous chapters, we have derived algorithms to build detailed kinematic model

of human body and to perform motion tracking in video sequences using the acquired

model. In this chapter, we propose an algorithm to photo-realistically render the articu-

lated human body and demonstrate how the algorithm can be used for interesting com-

puter graphics applications such as generating pictures of “faked” motion of a person

or exchanging motions between two people. The algorithm, which we called Image-

Based Articulated Model Rendering Algorithm uses the image-based rendering technique

[CW93, WHH95, GGSC96, LH96, SD96, McM97, SK98, Deb98, BSV+00, VBK02] to

render, from any viewpoint, the articulated human model performing new motion from a

set of “source images”. The details of the algorithm, including the required input data, the

various rendering steps and the implementation issues are described below.

141

142 Chapter 9. Human Motion Rendering

9.1 Image-Based Articulated Model Rendering Algorithm

9.1.1 Input Data

The following data and information of a person is assumed to be available:

1. An articulated voxel model of the person built using the kinematic modeling system

described in Chapter 7.

2. Video sequence of the person performing some motion. It is assumed that there are

K calibrated cameras and the sequence contains J frames of color images. We call

these JK images as the source images and the first frame of this source sequence is

set as the reference frame.

3. The motion data (which we will refer to as the source motion data) of the person cor-

responding to his motion in the video sequence in (2) above. The motion information

can be obtained using our motion tracking algorithm in Chapter 7 or marker-based

motion capture system. The data is assumed to be registered with respect to the

reference frame.

4. Target motion data to be applied to the model for rendering. The target motion can

be obtained from tracking the motion of another person or from a motion database.

9.1.2 Algorithm Outline

Our rendering algorithm consists of three parts: (I) pre-rendering processing, (II) pixels

rendering and (III) post-rendering processing. In the pre-rendering process, the articulated

voxel model is first converted to a mesh-based model. Then the target motion data is

applied to the converted mesh model to transform the body parts to their target positions.

The voxel-to-mesh conversion is done to ensure continuity between body parts when the

target data is applied to the model. In a voxel model, since the voxels are not properly

9.1. Image-Based Articulated Model Rendering Algorithm 143

connected around the joints, discontinuity artifacts happen when the person moves. The

problem is avoided when mesh-based model is used because meshes are connected with

each other at their vertices. In Section 9.1.3.1, we will suggest a simple way to convert the

articulated voxel model built in Section 7.3 to a mesh model and describe how the mesh

vertices around the articulation joints are moved flexibly using motion weights.

After the mesh model is transformed by the target motion data, it can be rendered

from any virtual camera viewpoint. Hereafter, we call the rendered image of the person

performing the target motion as the target image and its pixels as the target pixels. To

produce photo-realistic pictures, the second part of our IBAMRA render the target image

using an image-based rendering technique by which the target pixel colors are taken from

the source images. This rendering process is illustrated in Figure 9.1 using SubjectE as an

example.

For a target pixel, its color is determined using the following four rendering steps. First

a viewing ray is casted from the (virtual) camera center through the target pixel into the

3D space. The ray is intersected with the transformed mesh model of the person. If the

ray does not intersect the transformed model, the target pixel is a background pixel and is

assigned the appropriate background color. Otherwise, the body part Z where the ray first

intersects the mesh model, together with the point of intersection (hereafter denoted by P

and referred to as the target model point) are found (Step 1 in Figure 9.1). Using the inverse

target motion transformation equations of part Z, the position of P at the source reference

frame, denoted by P1 is computed. Once P1 is known, its positions at all the other source

frames, represented by {P j; j = 2, · · · · · · , J} are calculated using the given source motion

data (Step 2 in Figure 9.1). We name P j as the source model points of the target pixel.

Once computed, each source model point P j is projected onto the K source color images

of the jth frame. If the projected point is visible in the kth image, the color of the projected

pixel is valid, otherwise the color is invalid (Step 3 in Figure 9.1). Finally the color of the

target pixel is assigned to be the weighted average of the valid source pixel colors using the

144 Chapter 9. Human Motion Rendering

Frame 1
(Reference frame)

Source color
images

Frame J

Source
motion data

Step 1

Step 2Step 2

Step 3Step 3

Step 4

Virtual
camera

Target image

Target pixel

Articulated mesh model
after target motion

data is applied

Camera 1
Camera 2

Camera K

P
P1PJ Body part Z

ΣΣΣΣComputed
viewing angles

Source model points

Occluded
pixel not

used

Occluded
pixel not used

Frame 1
(Reference frame)

Source color
images

Frame J

Source
motion data

Step 1

Step 2Step 2

Step 3Step 3

Step 4

Virtual
camera

Target image

Target pixel

Articulated mesh model
after target motion

data is applied

Camera 1
Camera 2

Camera K

P
P1PJ Body part Z

ΣΣΣΣΣΣΣΣComputed
viewing angles

Source model points

Occluded
pixel not

used

Occluded
pixel not used

Figure 9.1: The pixel rendering part of our Image-Based Articulated Model Rendering Algorithm.
Four steps are used to determine the color of a target pixel.

viewing angles between the virtual camera, the source camera and the target model point P

as weights (Step 4 in Figure 9.1). The viewing angle between two cameras and a 3D point

is defined as the angle between the two lines joining the point and the cameras.

The final part of our algorithm involves a post-rendering process to fill in those target

pixels whose colors cannot be determined because their source model points are invisible

in all of the source images. Background and shadows are also added to enhance the photo-

realism of the final image. As a summary, our rendering algorithm is summarized below:

9.1. Image-Based Articulated Model Rendering Algorithm 145

Image-Based Articulated Model Rendering Algorithm (IBAMRA)

(I) Pre-rendering Processing

Convert the articulated voxel model into a mesh model and apply the target motion

data to the converted mesh model.

(II) Pixels Rendering

Determine the color of each target pixel of the target image by:

1. Intersect the viewing ray (originated from the virtual camera center) of the tar-

get pixel with the transformed target mesh model to locate the target model

point P.

2. Compute the source model points {P j; , j = 1, · · · · · · , J} from the target model

point P, using both the target and source motion data.

3. For each source model point P j and camera k, if P j is visible to camera k at

frame j, project P j into the kth color images of frame j and collect the color of

the projected point as a source pixel color.

4. Average the source pixel colors collected in Step 3 with weights according to

the viewing angles between the source camera, the virtual camera and the target

model point P. Set the averaged color as the target pixel color.

(III) Post-rendering Processing

Fill in colors of the target pixels which are not visible in any of the source images.

Add background and shadows to the final target image.

9.1.3 Implementation Details

In the last section, we briefly explain the steps of our rendering algorithm. Here we discuss

some of the implementation issues of the algorithm. Note that the idea provided in this

section focus on simplicity. Naturally there are other ways to implement our algorithm.

146 Chapter 9. Human Motion Rendering

9.1.3.1 Pre-rendering Processing

There are two tasks to the pre-rendering process: convert the voxel model to a mesh model

and apply the target motion data to the converted model. To convert the voxel model

to a mesh model, Marching Cubes Algorithm [LC87] is used. Since the voxel data is

discrete, the mesh model generated by the Marching Cubes Algorithm is blocky. To remove

the blockiness, the mesh is smoothed (but without being shrunk) by applying a low-pass

filter to the positions of the vertices of the mesh [JH97]. Once the mesh is smoothed, the

same segmentation algorithm proposed in Section 7.3 (see Figure 7.9) is used to segment

the vertices to belong to different body parts. Each triangular face of the mesh is also

segmented according to the segmentation of its three vertices (i.e. a face is segmented as

belonging to body part Z if 2 or more of its vertices belong to Z).

One way to apply the target motion data to the mesh model is to move each vertex of the

mesh according to the 6D transformation of the body part the vertex belongs to. Though

simple, this method causes abrupt changes of the mesh around the joints where two body

parts meet. To create smoother transition of the mesh between body parts, each vertex is

transformed by a weighted sum of the motions of the body part around that vertex. This

idea, which is also known as skinning, is commonly used in the computer animation of

skin. Here we suggest a very simple way to compute the weights. Figure 9.2 shows a

vertex V and all the vertices which share an edge with V . The segmentation of the vertices

are also indicated in the figure by black and white dots which represent two different body

parts. The idea is to set the motion weight of V w.r.t. a body part as the fraction of vertices

around V (including V itself) which are classified as belonging to that body part. For the

example in Figure 9.2, the motion weight for V w.r.t the body part represented by the black

dot is 3
7 while that represented by the white dot would be 4

7 .

9.1.3.2 Pixels Rendering

Step 1: Intersect casting rays with the articulated model

The simplest way to find the intersection point P is to intersect the viewing ray directly

9.1. Image-Based Articulated Model Rendering Algorithm 147

V

Motion weight of the body part
represents by the black dot = 3 / 7

Motion weight of the body part
represents by the white dot = 4 / 7

V

Motion weight of the body part
represents by the black dot = 3 / 7

Motion weight of the body part
represents by the white dot = 4 / 7

Figure 9.2: Pre-rendering processing: motion weights for a vertex V are calculated using the
segmentations of the vertices around V .

with all the faces of the articulated mesh model and choose the one which is closest to

the camera. However, in practice this approach is too slow as the model usually composes

of thousands of faces. Instead, we employ the graphic hardware acceleration idea (the

item buffer) that is used in [WHG84, VBK02]. Each mesh face of the model is assigned a

distinct RGB color as its identity (ID) number (note that with color of 24 bits, up to 16M

faces can be assigned with distinct ID numbers). After the model is transformed by the

target motion data, the mesh faces are rendered with their ID colors using OpenGL and

graphic hardware. The triangular face that intersects the casting ray of a target pixel can

easily be found by reading the ID color of the same pixel of the rendered ID picture. Once

the intersecting mesh face is found, it is intersected with the viewing ray to locate the target

model point P.

Step 2: Compute the source model points P j

Because of the motion weighing strategy (Section 9.1.3.1) used to smooth the motion of

the model near the joints, some of the mesh faces are stretched after the target motion

data is applied (see Figure 9.3). The following procedure is used to compensate for this

stretching when calculating P1 (the source model point at the reference frame) from P. Let

V1,V2,V3 be the vertices of the intersecting mesh face after applying the target motion

data, and V1
1 ,V

2
1 ,V

3
1 be the corresponding vertices of the same face at the reference frame.

148 Chapter 9. Human Motion Rendering

Casting ray

V
3

V1
2

P1

V1
1

V1
3

P

V
1 V

2

Mesh face transformed
by target motion data, note

that the face is stretched Mesh face at reference frame

Intersection
point

Casting ray

V
3

V
3

V1
2V1
2

P1

V1
1V1
1

V1
3V1
3

P

V
1

V
1 V

2
V

2

Mesh face transformed
by target motion data, note

that the face is stretched Mesh face at reference frame

Intersection
point

Figure 9.3: Step 2 of the pixel rendering process: mesh face is stretched because of the different
motion weights of the vertices. This stretching has to be compensated when calculating P1 from P.

Note that V1
1 ,V

2
1 ,V

3
1 are known and V1,V2,V3 can be calculated using the motion weights.

Now since P lies on and inside the triangular patch formed by V 1,V2,V3, we have

P = a1V1 + a2V2 + a3V3 , (9.1)

where a1, a2, a3 are constants lies between 0 and 1. Now we apply the same constants to

the corresponding vertices V1
1 ,V

2
1 ,V

3
2 at the reference frame as

P1 = a1V1
1 + a2V2

1 + a3V3
1 . (9.2)

By substituting Equation (9.1) into Equation (9.2), P1 is calculated by

P1 =

[

V1
1 V2

1 V3
1

] [

V1 V2 V3
]−1

P . (9.3)

Step 3: Project P j onto visible source images to get valid source pixel colors

After computing the source model points P j, they are projected into the source color images

to get a total of JK source pixel colors that can be used as the color of the target pixel.

However, among these JK pixel colors, only those which come from frame j and camera k

such that P j is visible in camera k are valid. Here we suggest two different approaches to

9.1. Image-Based Articulated Model Rendering Algorithm 149

test the visibility of P j against the kth camera at frame j: the 3D approach as proposed in

Section 8.2.3, and the 2D z-buffer approach used in [FVFH92, VBK02]. The first approach

checks the visibility directly by intersecting the line joining the point and the camera with

the visibility space formed by the human articulated voxel model (see Section 8.2.3). Since

this approach involves intersecting a line with a voxel model, it is relatively slow. The

second approach first generates a 2D depth image of the voxel model at frame j of camera

k using the z-buffer graphic hardware. The visibility of any point is then determined by

first projecting the point into the depth image to get a depth value and then comparing this

depth value with the distance of the point from the camera (details of the approach can be

found in [FVFH92, VBK02]). This 2D z-buffer approach of testing visibility is faster than

the 3D approach because the depth images can be generated in advance and the test only

requires one 3D to 2D projection and one scalar (depth) comparison.

Step 4: Average the visible source pixel colors according to the viewing angles

The naive way for calculating the target pixel color is to simply average the set of all visible

source pixel colors. There are, however, two problems associated with this naive approach.

First of all, among the visible source pixels, some of them are at oblique directions between

the source and the virtual cameras. In general these pixels are not reliable and should not

be used in calculating the target pixel color. Secondly, due to variations in camera color

responses, averaging all the visible pixel colors would lead to a “blur” effect and reduce

the sharpness of the resulting target pictures.

To distinguish reliable source pixels from the unreliable ones, we use the viewing angles

between the virtual camera, the the source cameras and target model points as weights to

average the source pixel colors. For simplicity, the viewing angles are all calculated w.r.t.

the reference frame. Figure 9.4 shows an example of computing the viewing angle for the

source pixel color from the kth camera at the jth frame. The basic idea is to transform both

the virtual camera Cvirtual and the kth source camera Ck to the reference frame. Let the 6D

transformations between P (the target frame) and P1 (the reference frame) be T and that

150 Chapter 9. Human Motion Rendering

Pj

P1

P

TTj

T
-1

Tj
-1 θj

k

Source
camera k Virtual cameraCk

Cvirtual

Tj ()-1 Ck

T ()-1
Cvirtual

Viewing angle

Pj

P1

P

TTj

T
-1

T
-1

Tj
-1

Tj
-1 θj

kθj
k

Source
camera k Virtual cameraCkCk

CvirtualCvirtual

Tj ()-1 CkTj ()-1 CkCk

T ()-1
CvirtualT ()-1
Cvirtual

Viewing angle

Figure 9.4: Step 4 of the pixel rendering process: computing the viewing angle between the virtual
camera, the kth source camera at the jth frame and the target model point P.

between P j (the jth source frame) and P1 be T j, i.e. P1 = T(P) and P1 = T j(P j) (Note that

both T j and T can be found from the target and the source motion data). Now the position

of Cvirtual and Ck at the reference frame are given as T−1(Cvirtual) and T−1
j (Ck) respectively.

The viewing angle θk
j is then calculated using the following equation:

cos θkj =
(T−1

j (Ck) − P1) · (T−1(Cvirtual) − P1)

‖T−1
j (Ck) − P1‖‖(T−1(Cvirtual) − P1‖

. (9.4)

Note that since the reliability of the source pixel is inversely proportional to the viewing

angle (i.e. the smaller the viewing angle, the more reliable the pixel is), we generate weights

(see [DTM96, VBK02]) for each color pixel as 1
1−cos θkj

. Once all the viewing angles are

calculated, the valid source pixel colors are sorted according to their associated weights.

The source pixel colors correspond to the n largest weights are then averaged using their

weights to generate the target pixel color. The value of n is chosen to be small in order to

get a sharp target picture.

9.1.3.3 Post-Processing of Rendered Image

Depends on the source images used, there may exist some target pixels whose pixel color

cannot be determined. This happens when the 3D source model points P j of a target pixel

are invisible in all of the cameras. To fill in the color of a missing target pixel (or hole),

9.1. Image-Based Articulated Model Rendering Algorithm 151

the average color of its neighboring pixels is used. Note that in the averaging process,

only colors of those neighbors from the same body part as the hole pixel are used, so as to

prevent the artifacts of color diffusion between body parts. Besides holes filling, shadows

and background are added to the rendered image to increase photo-realism. For the sake of

simplicity we use an easy planar surface shadowing technique [Bli88], though other more

sophisticated soft shadow generation methods [WPF90] can also be used.

9.1.4 Experimental Results

Two sets of real data experiments are performed to study the performance of our render-

ing algorithm. Experiment I compares different ways of rendering the motion: (1) render

the transformed voxel model directly, (2) render the transformed mesh model directly and

(3) render using our Image-Based Articulated Model Rendering Algorithm. The effect of

the number of averaging source pixels on the quality of the rendered target pictures is also

studied in Experiment I. Experiment II investigates how well our rendering algorithm per-

forms by comparing the rendered images with real images of the same person performing

the same motion.

9.1.4.1 Experiment I

In the first rendering experiment, the kinematic model of SubjectE (see Figure 7.10(b))

is rendered with the PUNCH motion (which was used to test the tracking algorithm in

Section 8.3.1). We use the ESTILL sequence (which was captured in Section 7.2 to build

the voxel model of SubjectE) as the source sequence with a total of 240 source images (8

cameras with 30 frames per camera). Figure 9.5 shows rendered results of the 38th frame of

the target PUNCH motion. In the top row of the figure, the virtual camera is set to coincide

with camera 3 of the source sequence. In the middle row the virtual camera is placed at a

new position. The bottom row of the figure redisplays the portion of the top row images

(where the face is) at a higher resolution for better visual comparison. Figures 9.5(a) and (b)

respectively show results of direct rendering of the colored voxel and texture-mapped mesh

152 Chapter 9. Human Motion Rendering

(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Figure 9.5: Images obtained by (a) direct rendering of the colored voxel model, (b) direct render-
ing of the texture-mapped mesh model, (c) using the Image-Based Articulated Model Rendering
Algorithm with each target pixel color averaged from 1 source pixel, (d) 5 source pixels and (e) 9
source pixels. The top row shows results with the virtual camera set to coincide with camera 3 of the
source sequence. The middle row shows results with the virtual camera placed at a new position.
The bottom row redisplays the portion (the face of the person) of the images in the top row at a
higher resolution for better visual comparison.

models using OpenGL. Figures 9.5(c)(d) and (e) show rendering results using the Image-

Based Articulated Model Rendering Algorithm with each target pixel color averaged using

1, 5 and 9 source pixels (of highest weights) respectively.

Comparing Figures 9.5(a), (b) and (c), the images obtained using our rendering algo-

rithm are much shaper than those obtained from direct rendering of either the voxel or mesh

models, especially at detailed area such as the face. Moreover, the voxel model also suffers

from joint discontinuity problem (see both knee joints in Figure 9.5(a)). Note that the white

patches in Figure 9.5(b) represents the part of the mesh model where no texture can be ob-

tained from the source sequence. From Figure 9.5(c), (d) and (e), it can be seen that the

rendered images using different number of averaged source pixels are visually very similar

9.1. Image-Based Articulated Model Rendering Algorithm 153

(a)

(b)

(a)

(b)

Figure 9.6: Selected frames of the SubjectE performing the PUNCH motion rendered using
IBAMRA with the ESTILL sequence as the source sequence. One averaging pixel is used to gen-
erate these pictures. Background with soft shadows are added to increase the photo-realism of the
images. In (a) the viewpoint is set as the same as camera 3 of the source sequence while a completely
new viewpoint is used to generate pictures in (b). The rendered sequence from both viewpoints can
be seen in the video clip SubjectE-rendered-PUNCH.mpg.

to each other, indicating that if the cameras are well color-balanced (which is the case in

the ESTILL source sequence), our rendering algorithm is not sensitive to the number of

averaged source pixels used . Note that due to occlusion, some of the target pixels do not

have enough visible source pixels for averaging as set by the algorithm. In such cases, the

color of the target pixel is obtained by averaging all the visible source pixel colors.

Figure 9.6 shows some selected frames of the rendered sequence (using IBAMRA with

1 averaging source pixel color) of SubjectE performing the PUNCH motion from two dif-

ferent camera viewpoints. The rendered sequences from both viewpoints, together with

four of the eight source images sequences (ESTILL) and sequence of a stick figure illustrat-

ing the PUNCH motion are included in the video clip SubjectE-rendered-PUNCH.mpg∗ .

∗All movie clips of this chapter can be found at
http://www.cs.cmu.edu/˜german/research/Thesis/Video/Chapter9/

154 Chapter 9. Human Motion Rendering

(a)

(b)

(a)

(b)

Figure 9.7: Comparison between rendered images and real images of SubjectS performing the
THROW motion: (a) rendered images of the THROW motion using the SSTILL sequence as the
source sequence, (b) corresponding images from the THROW sequence. It can be seen that the
quality of the rendered images are comparable to the real images.

9.1.4.2 Experiment II

Our second experiment compares rendered images with real images of a person performing

the same motion. We rendered SubjectS with the motion data tracked from the THROW

sequence in Section 8.3.2 using the SSTILL sequence (captured in Section 7.2) as the

source images. Some rendered frames with the virtual camera set to source camera 7 are

shown in Figure 9.7(a). The corresponding real images of the THROW sequence from the

same camera are shown in Figure 9.7(b) for comparison. It can be seen that the quality

of the rendered images are comparable to the real images. The rendered images from two

different camera viewpoints, together with the corresponding real images from the THROW

sequence can be found in the video clip SubjectS-rendered-THROW.mpg.

Table 9.1 lists the averaged time required for each step of our rendering algorithm to

generate the images in Experiment II. Note that in our implementation, the depth infor-

9.1. Image-Based Articulated Model Rendering Algorithm 155

Processing Step Approximate Time required
I. Pre-rendering Processing:

Convert the voxel model to mesh model 4.2s
Smooth the mesh model 78.3s

II. Pixels Rendering
Step 1: Intersect viewing ray 1.5s per image (640 x 480 pixels)
Step 2: Compute source model points 8.7s per image (640 x 480 pixels)
Step 3: Project model points and test visibility 258s per image (640 x 480 pixels)
Step 4: Get and average source pixels 244s per image (640 x 480 pixels)

III. Post-rendering processing:
Add background and render shadows 1.7s per image (640 x 480 pixels)
Fill holes 0.26s per image (640 x 480 pixels)

Table 9.1: The approximate time required for each processing step of the Image-Based Articulated
Object Rendering Algorithm.

mation used to test visibility is stored in the computer memory while the source images

are accessed from the hard-disks whenever needed. This explains why Step 4 of the pixel

rendering process requires much longer time than just averaging the source pixel colors.

The timing results are obtained on a machine with a 750MHz Pentium CPU.

9.1.5 Applications

The most direct application of our rendering algorithm is to generate pictures of a person

performing some ”faked” motion. Good examples are the results shown in Experiment I

and II above. Our algorithm can also be applied to alter or edit video of human motions,

similar to Seitz and Kutulakos’s idea of video editing in [SK98]. Another interesting appli-

cation of our algorithm is to exchange motions between people.

Consider the scenario shown in Figure 9.8 where two people perform (separately) two

different motions. Assume the motions are recorded by multiple cameras. The vision-based

motion exchange idea is to render new videos of each person performing the motion of the

other person, after building their articulated models and tracking their motions from the

156 Chapter 9. Human Motion Rendering

Input

Output

Videos of martial arts
master kung-fu fighting

Videos of ballet expert
dancing

Videos of martial arts
master dancing

Motion
Tracking

Motion
Rendering

Processing Kinematics
Modeling

Videos of ballet expert
kung-fu fighting

Input

Output

Videos of martial arts
master kung-fu fighting

Videos of ballet expert
dancing

Videos of martial arts
master dancing

Motion
Tracking

Motion
Rendering

Processing Kinematics
Modeling

Videos of ballet expert
kung-fu fighting

Figure 9.8: Motion Transfer between two people.

recorded video.

To illustrate this idea we exchange the motions KUNGFU, STEP-FLEX and THROW

(which were all tracked in Section 8.3.2) of SubjectG , SubjectE and SubjectS. More specif-

ically, the motion KUNGFU (originally performed by SubjectG) is transferred to SubjectS,

the motion THROW (originally performed by SubjectS) is transferred to SubjectE and the

motion STEP-FLEX (originally performed by SubjectE) is transferred to SubjectG. The

sequences ESTILL, GSTILL and SSTILL are used as the source sequences and the target

motions are smoothed before applying to the mesh models. Figure 9.9(a) shows some of

the images from the rendered sequence of SubjectE performing the THROW motion while

Figure 9.9(b) shows the images from the original THROW sequence of SubjectS. Despite

some visual artifacts, it can be seen that we successfully transfer the motions from SubjectS

to SubjectE. The video clips SubjectE-transfer-THROW.mpg shows some of the source

images, the THROW motion and rendering results from different fixed and moving virtual

camera view-points.

9.1. Image-Based Articulated Model Rendering Algorithm 157

(a)

(b)

(a)

(b)

Figure 9.9: The THROW motion is transferred from (b) SubjectS to (a) SubjectE. The whole
sequence can be found in the video clip SubjectE-transfer-THROW.mpg.

(a)

(b)

(a)

(b)
Figure 9.10: The KUNGFU motion is transferred from (b) SubjectG to (a) SubjectS. The whole
sequence can be found in the video clip SubjectS-transfer-KUNGFU.mpg.

158 Chapter 9. Human Motion Rendering

(a)

(b)

(a)

(b)
Figure 9.11: The STEP-FLEX motion is transferred from (b) SubjectE to (a) SubjectG. The whole
sequence can be found in the video clip SubjectG-transfer-STEP-FLEX.mpg.

Similarly the rendered and original images of transferring the KUNGFU motion from

SubjectG to SubjectS and that of STEP-FLEX motion from SubjectE to SubjectG are

shown in Figures 9.10 and 9.11 and respectively in the video clips SubjectS-transfer-

KUNGFU.mpg and SubjectG-transfer-STEP-FLEX.mpg.

9.2 Related Work

In work concurrent with this paper, Carranza et al. rendered tracked human motion us-

ing a view-dependent texture mapping algorithm which is similar to our pixel rendering

algorithm [CTMS03]. However, they do not render the person with any new motion or

perform motion transfer. In [VBK02], Vedula et al. proposed an image-based spatial

and temporal view interpolation algorithm for non-rigid dynamic events using scene flow

[VBR+99, VBSK00]. There are two major differences between our algorithm and the one

9.3. Discussion 159

in [VBK02]. The first difference lies in the type of models used. In our rendering algo-

rithm, we assume the human model consists of articulated rigid body parts, each with rigid

motions while in [VBK02], the authors assume the human is totally non-rigid with motions

represented by the scene flow. Moreover, Vedula et al. aim at “interpolating” the motion

spatially and temporally while we focus on “extrapolating” the human body model with

new motions. Note that some of the speed optimization techniques in [VBK02] and the

original view-dependent texture mapping idea by Debevec et al. in [DTM96] are adopted

in our algorithm.

9.3 Discussion

The recording and replaying of static and dynamic events have been a very active research

topic in computer vision and graphics over the last ten years [DTM96, KRN97, RNK97,

Sei97, KSV98, Deb98, NRK98, SBK+99, BSV+00]. In the case of dynamic events, all of

the above systems replayed the events according to what have actually happened. Although

there is research on removing/adding objects/persons [IRP94, SK98, TSA01, JFB02] from

an video sequence, and recently work on increasing the spatial and/or temporal resolution

of rendering a dynamic event [Ved01, VBK02, SCI02], little attempts has been made to

replay an “altered” dynamic event. Here “altered” means the course or motions of the per-

sons or objects in the replay are changed and different from what have actually happened

(and recorded) in the video sequences. The ability to replay an altered dynamic sequence

is useful in a lot of entertainment and visual effects applications. For example, in chore-

ographing a dancing performance, the choreographer can see the effect of adjusting the

positions of the body/arms/legs of the dancers easily without asking them to re-perform the

dance. Another extreme example is in movie making when the director can change a scene

of the movie without re-shooting it.

While replaying an event truthfully and photo-realistically from a new virtual viewpoint

160 Chapter 9. Human Motion Rendering

is already a challenging task, replaying an altered event is even more difficult as it involves

solving a lot of difficult computer vision and graphics problems: how to accurately track

people/objects in the video, how to remove/add objects/people to the scene [IRP97, SK98,

JF01, TSA01], how to estimate and simulate the lighting conditions [SSI99, SSI03] and

how to render changed motion photo-realistically. The purpose of this chapter is to provide

a feasible solution to the last problem. We have shown that with an accurate articulated

model and video sequences (with tracked motion) of a person, videos of the person per-

forming new or altered motion can be created using our image-based rendering algorithm.

Compared to direct rendering of a texture-mapped model, our algorithm is able to generate

much more photo-realistic looking pictures.

There are two factors which cause the visual artifacts in the images rendered using our

algorithm. First, although we have adopted the weighted sum approach for transforming the

mesh vertices between body parts, the transition are not smooth enough when the motion is

large. This problem can be solved if more sophisticated skinning methods such as those in

[SK00, WP02] are used. Secondly, since the position of the 3D source model point (which

in turn determine the source pixel color) in each source frame is calculated using the motion

data of the source image sequence, any tracking errors in the source motion data would

cause the algorithm to pick the wrong source pixel color. To reduce artifacts caused by this

problem, it is important to make sure the motion of the person in the source sequence is

tracked correctly. For this reason, source sequences with simple and easily tracked motions

(such as the STILL sequences) are better than those with complex motions.

Chapter 10

Conclusion

The ultimate goal of this thesis is to study how traditional Shape-From-Silhouette methods

can be improved to apply better to the problems of human articulated body modeling, mo-

tion tracking and rendering. Two problems, non-realtime reconstruction speed and coarse

shape approximation (caused by an inadequate number of cameras), which prohibited the

effective use of traditional SFS algorithms in human related applications were considered.

We addressed the first problem by proposing a fast testing/projection algorithm (SPOT)

for voxel-based SFS algorithms. To deal with the second problem, we combined silhou-

ette information over time to effectively increase the number of cameras without physically

adding new cameras. The resulting temporal SFS algorithm was first developed for rigid

objects and then extended to multiple and articulated objects. These temporal SFS algo-

rithms were applied to acquire kinematic (shape and joint positions) models of humans.

Once the articulated human models were built, they were used for motion tracking (analy-

sis) and motion rendering (synthesis).

161

162 Chapter 10. Conclusion

10.1 Thesis Contributions

The contributions of this thesis can be categorized into two areas: (1) theoretical analysis,

improvement of and extensions to Shape-From-Silhouette and (2) practical applications of

the improved algorithms to human related problems.

Theoretical Contributions to Shape-From-Silhouette:

• Analysis of silhouette image noise. The effect of noisy silhouette images on the

accuracy of the traditional voxel-based SFS method was analyzed. Based on the

analysis, a fast testing algorithm SPOT for voxel-based SFS methods was derived.

The main contribution of SPOT is that it provides a speed-optimized strategy for

reconstruction given a required accuracy ratio and knowledge of the silhouette noise

statistics.

• Visual Hull representation by Bounding Edges. We defined the notion of a Bound-

ing Edge and proposed using it as a representation of a Visual Hull. We also showed

that the Second Fundamental Property of Visual Hulls (2nd FPVH) is closely related

to the definition of a Bounding Edge. This thesis established and emphasized the

importance of the 2nd FPVH (which previously has often been overlooked by SFS

researchers) in shape reconstruction as it expresses one important aspect of how the

shape information of the object is stored in the silhouette images.

• Theoretical study of Visual Hull alignment ambiguity. We showed that the prob-

lem of aligning two Visual Hulls using silhouette images only is inherently ambigu-

ous and is governed by a set of geometric (shape) constraints. Also, by expressing

the constraints in terms of Bounding Edges and silhouette images, an inconsistent

alignment between two Visual Hulls can be easily rejected using simple tests.

10.1. Thesis Contributions 163

• Temporal Shape-From-Silhouette algorithm for rigid objects. One of the major

contributions of this thesis is the development of the temporal SFS algorithm for

rigid objects. The algorithm extracts Colored Surface Points (CSPs) on the surface

of the object using stereo and applies both geometric (shape) constraints and color

consistency of the CSPs to resolve the alignment ambiguity. Once the motions of

the object are recovered, a refined shape of the object is reconstructed using all of

the silhouette images (after the motion is compensated for) captured over time. Our

algorithm not only extends traditional SFS over time, but it also combines the key

advantages of the two important and complementary [BSK01] shape reconstruction

principles: Shape-From-Silhouette and Stereo.

• Temporal Shape-From-Silhouette algorithm for articulated objects. Using the

Expectation-Maximization paradigm, the temporal SFS algorithm was extended to

articulated objects. It first iteratively segments and aligns the extracted CSPs to es-

timate the shape and motion of individual parts of the articulated object. Once the

motions of all parts are recovered, the joint positions are estimated using articulation

constraints. The extension to include articulated objects is a critical contribution as

it allows us to apply the temporal SFS algorithms to the human body (which approx-

imately consists of articulated parts) for kinematic information acquisition.

Practical Contributions to Human Related Applications:

• Real-time 3D voxel motion reconstruction system. Based on SPOT, we have built

a real-time system which reconstructs rough 3D voxel models of a person and fits el-

lipsoidal shells as body parts to the model. This system has inspired the construction

of other real-time people tracking/posture estimation systems [MHTC01, LSS02].

164 Chapter 10. Conclusion

• Articulated human body modeling. This thesis proposed a step-by-step procedure

to acquire articulated models (with accurate shape information and joint location) of

human bodies using only cameras and an uncalibrated turn-table. Our vision-based

procedure provides an inexpensive alternative for human body modeling to expensive

laser-scanning based commercial systems (most at which acquire body shape without

the joint information).

• Vision-based human motion tracking from video sequences. Another contribu-

tion of this thesis is that we successfully applied the temporal SFS algorithms (of

articulated objects) to the difficult problem of non-invasive human motion tracking.

We built a practical vision-based system which emphasized two important aspects:

(1) using detailed person-specific body shape models and (2) combining geometric

and photometric constraints during tracking. The system accurately tracks compli-

cated human motions from video sequences without using markers of any kind.

• Image-based articulated model rendering for motion editing and transfer. This

thesis has demonstrated a practical motion transfer system using recorded video

sequences of a person to generate photo-realistic images of the same person per-

forming completely different motion. The idea is realized in practice through the

Image-Based Articulated Model Rendering Algorithm. We showed that convincing

images of a person performing complicated motions can be synthesized from video

sequences of the person performing simple motions.

10.2 Future Work

In Chapter Three we studied the effect of noisy silhouettes on the accuracy of voxel-based

Shape-From-Silhouette. Besides silhouette noise, the shape estimation accuracy of SFS is

also greatly affected by errors in the camera projection parameters. For SFS at a single

time instant, the projection errors come from inaccurate camera calibration. For temporal

10.2. Future Work 165

SFS with silhouettes captured at different time instants, there are additional errors caused

by mis-alignment. An in-depth theoretical and quantitative analysis of how SFS is affected

by camera projection errors (similar to what we have done with silhouette noise) would

be very useful in deriving an optimal or robust SFS algorithm for both calibration errors

at a single time, and alignment errors across time. Note that using Tsai’s camera model

[Tsa87], Niem has done a preliminary but limited analysis of camera calibration errors on

SFS in his paper [Nie97]. This paper can be used as a starting point for such a study.

While our temporal SFS algorithm can be used to recover the motion and shape of

moving rigid and articulated rigid objects, a lot of naturally occurring objects are non-rigid

and/or are deformable. A logical future direction is to extend our temporal SFS algorithms

to deformable objects such as a piece of cloth or a crawling caterpillar. There are two ma-

jor difficulties in extending temporal SFS to non-rigid objects. The first difficulty, which

is common to other surface-point-based 3D shape/motion estimation methods [ACLS94],

is to assume suitable deformable shape and motion models for the object. The choice of

deformable model is critical and depends on the application it may not be an easy task. The

second difficulty is caused by the fact that since our temporal SFS algorithm is not feature-

based, the CSPs are not tracked over time and there is no point-to-point correspondence

between two sets of CSPs extracted at different instants. Hence it is unclear how the cho-

sen deformable model can be applied to the CSPs across time. Despite these difficulties,

however, the possibility of extending temporal SFS to non-rigid objects is worth studying

as it would help to solve important non-rigid tracking problems in computer vision.

Although our human motion tracking algorithm works well, it suffers from the problem

of local minimum which is common in methods that use the error optimization formula-

tion. In Chapter 8 we suggested to include joint angles limits to minimize the problem of

local minimum. This line of future work is briefly described below. Prior to tracking, the

allowable range of motions (of all the limbs due to the joint angles limits) of the person is

recorded or estimated. The space of all joint parameters is then divided into the valid and

166 Chapter 10. Conclusion

invalid workspaces. This a priori workspace information can then be incorporated into the

tracking optimization equations by adding very high errors to the error criterion when the

body joint angles are in the invalid workspace, while no extra error is added when the joint

angles are in the valid zones. This approach would effectively remove the local minimum

vulnerability of our tracking algorithm to the first and second situations discussed in 8.2.5.

The final proposed future work is to improve the implementation of the Image-Based

Articulated Model Rendering Algorithm. Possible areas of improvement include better

mesh smoothing methods (after the voxel model is converted to the surface model), better

skinning techniques to compute the motion around the joints, motion data re-targeting and

better hole filling methods in the post-rendering processing.

Bibliography

[ACLS94] J. Aggarwal, Q. Cai, W. Liao, and B. Sabata. Articulated and elastic non-rigid

motion: A review. In Proceedings of IEEE Workshop on Motion of Non-rigid

and Articulated Objects’94, pages 16–22, 1994.

[ACP03] B. Allen, B. Curless, and Z. Popovic. The space of human body shapes: Re-

construction and parameterization from range scans. In Computer Graphics

Annual Conference Series (SIGGRAPH’03), pages 587–594, San Diego, CA,

July 2003.

[AV89] N. Ahuja and J. Veenstra. Generating octrees from object silhouettes in ortho-

graphic views. IEEE Transactions Pattern Analysis and Machine Intelligence,

11(2):137–149, February 1989.

[Bau74] B.G. Baumgart. Geometric Modeling for Computer Vision. PhD thesis, Stan-

ford University, 1974.

[BDC01] A. Broadhurst, T. Drummond, and R. Cipolla. A probabilistic framework

for space carving. In Proceedings of International Conference on Computer

Vision (ICCV’01), Vancouver, Canada, June 2001.

[BK99] D. Beymer and K. Konolige. Real-time tracking of multiple people us-

ing stereo. In Proceedings of International Conference on Computer Vision

(ICCV’99), Corfu, Greece, September 1999.

167

168 BIBLIOGRAPHY

[BK00] C. Barron and I. Kakadiaris. Estimating anthropometry and pose from a single

image. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR’00), Hilton Head Island SC, June 2000.

[BL00] A. Bottino and A. Laurentini. Non-intrusive silhouette based motion capture.

In Proceedings of the Fourth World Multiconference on Systemics, Cybernet-

ics and Informatics SCI 2001, pages 23–26, July 2000.

[BL01] A. Bottino and A. Laurentini. Interactive reconstruction of 3d objects from

silhouette. In Proceedings of the 9th International Conference on Com-

puter Graphics, Visualization and Computer Vision (WSCG’2001), pages 5–9,

February 2001.

[Bli82] J. Blinn. A generalization of algebraic surface drawing. ACM Transactions

on Graphics, 1(3):235–256, 1982.

[Bli88] J. Blinn. Me and my (fake) shadow. IEEE Computer Graphics and Applica-

tions, 8(1):82–86, January 1988.

[BM92] P. Besl and N. McKay. A method of registration of 3D shapes. IEEE Transac-

tion on Pattern Analysis and Machine Intelligence, 14(2):239–256, February

1992.

[BM97] C. Bregler and J. Malik. Video motion capture. Technical Report CSD-97-

973, University of California Berkeley, 1997.

[BM98] C. Bregler and J. Malik. Tracking people with twists and exponential map. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR’98), volume 1, pages 8–15, Santa Barbara, CA, June 1998.

BIBLIOGRAPHY 169

[BMM01] C. Buehler, W. Matusik, and L. McMillan. Polyhedral visual hulls for real-

time rendering. In Proceedings of the 12th Eurographics Workshop on Ren-

dering, 2001.

[BMMG99] C. Buehler, W. Matusik, L. McMillan, and S. Gortler. Creating and rendering

image-based visual hulls. Technical Report MIT-LCS-TR-780, MIT, 1999.

[BSK01] S. Baker, T. Sim, and T. Kanade. A characterization of inherent stereo am-

biguities. In Proceedings of International Conference on Computer Vision

(ICCV’01), Vancouver, Canada, June 2001.

[BSV+00] S. Baba, H. Saito, S. Vedula, K. Cheung, and T. Kanade. Appearance-based

virtual-view generation for fly through in a real dynamic scene. In Proceed-

ings of IEEE TCVG Symposium on Visualization (VisSym’00), May 2000.

[CA96] Q. Cai and J. Aggarwal. Tracking human motion using multiple cameras. In

Proceedings of International Conference on Pattern Recognition (ICPR’96),

volume 3, pages 68–72, August 1996.

[CA98] Q. Cai and J. Aggarwal. Automatic tracking of human motion in indoor

scenes across multiple synchronized video streams. In Proceedings of the

Sixth International Conference on Computer Vision (ICCV’98), Bombay, In-

dia, January 1998.

[CBK03] G. Cheung, S. Baker, and T. Kanade. Visual hull alignment and refinement

across time:a 3D reconstruction algorithm combining shape-frame-silhouette

with stereo. In Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR’03), Madison, MI, June 2003.

[CKBH00] G. Cheung, T. Kanade, J. Bouquet, and M. Holler. A real time system for

robust 3D voxel reconstruction of human motions. In Proceedings of IEEE

170 BIBLIOGRAPHY

Conference on Computer Vision and Pattern Recognition (CVPR’00), Hilton

Head Island, SC, June 2000.

[Coe98] M. Coen. Design principals for intelligent environments. In Proceedings of

AAAI Spring Symposium on Intelligent Environments, Stanford, CA, 1998.

[CR99a] T. Cham and J. Rehg. A multiple hypothesis approach to figure tracking. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR’99), Ft. Collins, CO, June 1999.

[CR99b] T. Cham and J. Rehg. Dynamic feature ordering for efficient registration.

In Proceedings of International Conference on Computer Vision (ICCV’99),

Corfu, Greece, September 1999.

[CTI] Cyra technologies inc. http://www.cyra.com.

[CTMS03] J. Carranza, C. Theobalt, M. Magnor, and H. Seidel. Free-viewpoint video

of human actors. In Computer Graphics Annual Conference Series (SIG-

GRAPH’03), pages 569–577, San Diego, CA, July 2003.

[CW93] S. Chen and L. Williams. View interpolation for image synthesis. In Com-

puter Graphics Annual Conference Series (SIGGRAPH’93), pages 279–285,

1993.

[CYB] Cybearware. http://www.cyberware.com.

[DBR00] J. Deutscher, A. Blake, and I. Reid. Articulated body motion capture by an-

nealed particle filtering. In Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition (CVPR’00), Hilton Head Island, SC, June

2000.

BIBLIOGRAPHY 171

[DC01] T. Drummond and R. Cipolla. Real-time tracking of highly articulated struc-

tures in the presence of noisy measurements. In Proceedings of Interna-

tional Conference on Computer Vision (ICCV’01), pages 315–320, Vancou-

ver, Canada, June 2001.

[DCR99] D. DiFranco, T. Cham, and J. Rehg. Recovering of 3D articulated motion

from 2d correspondences. Technical Report CRL 99/7, Compaq Cambridge

Research Laboratory, 1999.

[DCR01] D. Difranco, T. Cham, and J. Rehg. Reconstruction of 3D figure motion from

2D correspondences. In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR’01), Kauai, HI, December 2001.

[Deb98] P. Debevec. Combining dynamic simulation, high dynamic range photogra-

phy and global illumination. In Computer Graphics Annual Conference Series

(SIGGRAPH’98), 1998.

[DF99] Q. Delamarre and O. Faugeras. 3D articulated models and multi-view tracking

with silhouettes. In Proceedings of International Conference on Computer

Vision (ICCV’99), Corfu, Greece, September 1999.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of Statistical Society, B 39:1–38, 1977.

[DS83] J. Dennis and R. Schnabel. Numerical Methods for Unconstrained Optimiza-

tion and Nonlinear Equations. Prentice Hall, Englewood Cliffs, NJ, 1983.

[DTM96] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture

from photographs: A hybrid geometry- and image-based approach. In Com-

puter Graphics Annual Conference Series (SIGGRAPH’96), pages 11–20,

1996.

172 BIBLIOGRAPHY

[DV99] J. DeBonet and P. Viola. Roxels: Responsibility weighted 3D volume recon-

struction. In Proceedings of International Conference on Computer Vision

(ICCV’99), Corfu, Greece, September 1999.

[EHD99] A. Elgammal, D. Harwood, and L. Davis. Non-parametric model for back-

ground subtraction. In Proceedings of International Conference on Computer

Vision (ICCV’99), Frame-rate Workshop, September 1999.

[FGDP02] P. Fua, A. Gruen, N. D’Apuzzo, and R. Plänkers. Markerless full body shape

and motion capture from video sequences. International Archives of Pho-

togrammetry and Remote Sensing, 34(5):256–261, 2002.

[FHPB00] P. Fua, L. Herda, R. Plänkers, and R. Boulic. Human shape and motion re-

covery using animation models. In XIX ISPRS Congress, July 2000.

[FVFH92] J. Foley, A. VanDam, S. Feiner, and J. Hughes. Computer Graphics: Principle

and Practice. Addison Wesley, second edition, 1992.

[GD96] G. Gavrila and L. Davis. Tracking of humans in action : 3D model-based

approach. In ARPA Image Understanding Workshop 1996, February 1996.

[GGSC96] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. In

Computer Graphics Annual Conference Series (SIGGRAPH’96), pages 43–

54, 1996.

[HHD98] I. Haritaoglu, D. Harwood, and L. S. Davis. W4 : Who? when? where?

what? a real time system for detecting and tracking people. In Proceedings of

IEEE International Conference on Automatic Face and Gesture Recognition

(ICAFGR’98), Nara, Japan, April 1998.

[HHD99] T. Horprasert, D. Harwood, and L. Davis. A statistical approach for real-time

robust background subtraction and shadow detection. In Proceedings of Inter-

BIBLIOGRAPHY 173

national Conference on Computer Vision (ICCV’99), Frame-rate Workshop,

September 1999.

[IBL00] Y. Ivanov, A. Bobick, and J. Liu. Fast lighting independent background sub-

traction. International Journal on Computer Vision, 37(2):199–207, 2000.

[IHA02] M. Irani, T. Hassner, and P. Anandan. What does the scene look like from

a scene point? In Proceedings of European Conference on Computer Vision

(ECCV’02), pages 883–897, Copenhagen, Denmark, May 2002.

[IRP94] M. Irani, B. Rousso, and S. Peleg. Computing occluding and transparent mo-

tions. International Journal on Computer Vision, 12(1):5–16, January 1994.

[IRP97] M. Irani, B. Rousso, and S. Peleg. Recovery of ego-motion using region

alignment. IEEE Transactions on Pattern Analysis and Machine Intelligence,

19(3):268–272, 1997.

[Jai89] A. Jain. Fundamentals of Digital Image Processing. Prentice Hall, 1989.

[JAP94] T. Joshi, N. Ahuja, and J. Ponce. Towards structure and motion estimation

from dynamic silhouettes. In Proceedings of IEEE Workshop on Motion of

Non-rigid and Articulated Objects, pages 166–171, November 1994.

[JAP95] T. Joshi, N. Ahuja, and J. Ponce. Structure and motion estimation from dy-

namic silhouettes under perspective projection. Technical Report UIUC-BI-

AI-RCV-95-02, University of Illinois Urbana Champaign, 1995.

[JBJ01] D Jacobs, P. Belhumeur, and I. Jermyn. Judging whether multiple silhou-

ettes can come from the same object. In Proceedings of the 4th International

Workshop on Visual Form, Capri, Italy, 2001.

[JBY96] S. Ju, M. Black, and Y. Yacoob. Cardboard people: A parameterized model of

articulated image motion. In Proceedings of IEEE International Conference

174 BIBLIOGRAPHY

on Automatic Face and Gesture Recognition (ICAFGR’96), Vermont, USA,

October 1996.

[JF01] N. Jojic and B. Frey. Learning flexible sprites in video layers. In Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’01),

Kauai, HI, December 2001.

[JFB02] A. Jepson, D. Fleet, and M. Black. A layered motion representation with

occlusion and compact spatial support. In Proceedings of European Con-

ference on Computer Vision (ECCV’02), volume 1, pages 692–706, Copen-

hagen, Denmark, May 2002.

[JH97] A. Johnson and M. Hebert. Control of polygonal mesh resolution for 3D com-

puter vision. Technical Report CMU-RI-TR-96-20, Carnegie Mellon Univer-

sity, Pittsburgh, PA, April 1997.

[JTH99] N. Jojic, M. Turk, and T. Huang. Tracking self-occluding articulated objects

in dense disparity maps. In Proceedings of International Conference on Com-

puter Vision (ICCV’99), Corfu, Greece, September 1999.

[KA86] Y. Kim and J. Aggarwal. Rectangular parallelepiped coding: A volumetric

representation of three dimensional objects. IEEE Journal of Robotics and

Automation, RA-2:127–134, 1986.

[KK01] Q. Ke and T. Kanade. A subspace approach to layer extraction. In Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’01),

Kauai, HI, December 2001.

[KM95] I. Kakadiaris and D. Metaxas. 3D human body model acquisition from mul-

tiple views. In Proceedings of International Conference on Computer Vision

(ICCV’95), pages 618–623, Cambridge MA, June 1995.

BIBLIOGRAPHY 175

[KM98] I. Kakadiaris and D. Metaxas. 3D human body model acquisition from multi-

ple views. International Journal on Computer Vision, 30(3):191–218, 1998.

[KMB94] I. Kakadiaris, D. Metaxas, and R. Bajcsy. Active part-decomposition, shape

and motion estimation of articulated objects: A physics-based approach.

Technical Report IRCS Report 94-18, University of Pennsylvania, 1994.

[KRN97] T. Kanade, P. Rander, and P. Narayanan. Virtualized reality: Constructing

virtual worlds from real scenes. IEEE Computer Society Multimedia, 4(1):34–

47, March 1997.

[KS00] K. Kutulakos and S. Seitz. A theory of shape by space carving. International

Journal of Computer Vision, 38(3):199–218, 2000.

[KSV98] T. Kanade, H. Saito, and S. Vedula. The 3D room: Digitizing time-varying

3D events by synchronized multiple video streams. Technical Report CMU-

RI-TR-98-34, Carnegie Mellon University, 1998.

[KYS01] N. Krahnstoever, M. Yeasin, and R. Sharma. Automatic acquisition and ini-

tialization of kinematic models. In Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR’01), Technical Sketches, Kauai,

HI, December 2001.

[KYS03] N. Krahnstoever, M. Yeasin, and R. Sharma. Automatic acquisition and ini-

tialization of articulated models. In To be appeared in Machine Vision and

Applications, 2003.

[Lau91] A. Laurentini. The visual hull : A new tool for contour-based image under-

standing. In Proceedings of the Seventh Scandinavian Conference on Image

Analysis, pages 993–1002, 1991.

176 BIBLIOGRAPHY

[Lau94] A. Laurentini. The visual hull concept for silhouette-based image under-

standing. IEEE Transactions Pattern Analysis and Machine Intelligence,

16(2):150–162, February 1994.

[Lau95] A. Laurentini. How far 3D shapes can be understood from 2D silhouettes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2):188–

195, February 1995.

[Lau97] A. Laurentini. How many 2d silhouettes does it take to reconstruct a 3D

object? Computer Vision and Image Understanding, 67(1):81–87, 1997.

[Lau99] A. Laurentini. The visual hull of curved objects. In Proceedings of Interna-

tional Conference on Computer Vision (ICCV’99), Corfu, Greece, September

1999.

[LBP01] S. Lazebnik, E. Boyer, and J. Ponce. On computing exact visual hulls of

solids bounded by smooth surfaces. In Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’01), Kauai HI, December

2001.

[LC87] W. Lorensen and H. Cline. A high resolution 3D surface reconstruction algo-

rithm. Computer Graphics, 21(4):163–169, 1987.

[LC01] D. Liebowitz and S. Carlsson. Uncalibrated motion capture exploiting artic-

ulated structure constraints. In Proceedings of International Conference on

Computer Vision (ICCV’01), Vancouver, Canada, June 2001.

[LH96] M. Levoy and M. Hanrahan. Light field rendering. In Computer Graphics

Annual Conference Series (SIGGRAPH’96), 1996.

[LSS02] M. Li, H. Schirmacher, and H. Seidel. Combining stereo and visual hull

for on-line reconstruction of dynamic scenes. In Proceedings of IEEE 2002

BIBLIOGRAPHY 177

Workshop on Multimedia and Signal Processing, St. Thomas, Virgin Islands,

December 2002.

[LY95] M. Leung and Y. Yang. First sight : A human body outline labeling system.

IEEE Transactions Pattern Analysis and Machine Intelligence, 17(4):359–

377, April 1995.

[LZG98] M. Lucente, G. Zwart, and A. George. Visualization space: A testbed for

deviceless multimodal user interface. In Proceedings of AAAI Spring Sympo-

sium on Intelligent Environments, Stanford, CA, 1998.

[MA83] W. Martin and J. Aggarwal. Volumetric descriptions of objects from multi-

ple views. IEEE Transactions on Pattern Analysis and Machine Intelligence,

5(2):150–174, March 1983.

[MAC] Motion analysis corporation. http://www.motionanalysis.com.

[Mat01] W. Matusik. Image-based visual hulls. Master’s thesis, Massachusetts Insti-

tute of Technology, 2001.

[MBR+00] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan. Image-

based visual hulls. In Computer Graphics Annual Conference Series (SIG-

GRAPH’00), New Orleans, LA, July 2000.

[McM97] L. McMillan. An Image-Based Approach to Three-Dimensional Computer

Graphics. PhD thesis, Department of Computer Science, University of North

Carolina at Chapel Hill, Chapel Hill, North Carolina, 1997.

[MET] Meta motion. http://www.metamotion.com.

[MG01] T. Moeslund and E. Granum. A survey of computer vision-based human mo-

tion capture. Computer Vision and Image Understanding: CVIU, 81(3):231–

268, 2001.

178 BIBLIOGRAPHY

[MHTC01] I. Mikic, E. Hunter, M. Trivedi, and P. Cosman. Articulated body posture esti-

mation from multi-camera voxel data. In Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’01), Kauai, HI, December

2001.

[MLS94] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic

Manipulation. CRC Press, 1994.

[MTG97] S. Moezzi, L. Tai, and P. Gerard. Virtual view generation for 3D digital video.

IEEE Computer Society Multimedia, 4(1), January-March 1997.

[MTHC03] I. Mikic, M. Trivedi, E. Hunter, and P. Cosman. Human body model acquisi-

tion and tracking using voxel data. International Journal on Computer Vision,

53(3):199–223, July 2003.

[MWC00] P. Mendonca, K. Wong, and R. Cipolla. Camera pose estimation and recon-

struction from image profiles under circular motion. In Proceedings of Eu-

ropean Conference on Computer Vision (ECCV’00), pages 864–877, Dublin,

Ireland, June 2000.

[MWC01] P. Mendonca, K. Wong, and R. Cipolla. Epipolar geometry from profiles

under circular motion. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 23(6):604–616, June 2001.

[NFA88] H. Noborio, S. Fukuda, and S. Arimoto. Construction of the octree approxi-

mating three-dimensional objects by using multiple views. IEEE Transactions

Pattern Analysis and Machine Intelligence, 10(6):769–782, November 1988.

[Nie97] W. Niem. Error analysis for silhouette-based 3d shape estimation. In Pro-

ceedings of International Workshop on Synthetic-Natural Hybrid Coding and

Three Dimensional Imaging (IWSNHC3DI’97), pages 5–9, September 1997.

BIBLIOGRAPHY 179

[NRK98] P. Narayanan, P. Rander, and T. Kanade. Constructing virtual worlds using

dense stereo. In Proceedings of the Sixth International Conference on Com-

puter Vision (ICCV’98), pages 3–10, Bombay, India, January 1998.

[OBBH00] J. O’Brien, R. Bodenheimer, G. Brostow, and J. Hodgins. Automatic joint

parameter estimation from magnetic motion capture data. In Proceedings of

Graphics Interface’00, pages 53–60, May 2000.

[OK93] M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 15(4):353–363, 1993.

[PD98] A. Prock and C. Dyer. Towards real-time voxel coloring. In In Proceedings

of Image Understanding Workshop, 1998., 1998.

[PF01] R. Plänkers and P. Fua. Articulated soft objects for video-based body mod-

eling. In Proceedings of International Conference on Computer Vision

(ICCV’01), pages 394–401, Vancouver, Canada, June 2001.

[PFD99] R. Plänkers, P. Fua, and N. D’Apuzzo. Automated body modeling from video

sequences. In Proceedings of the 1999 International Workshop on Modeling

People (MPEOPLE’99), Corfu, Greece, September 1999.

[PK92] C. Poelman and T. Kanade. A paraperspective factorization method for shape

and motion recovery. Technical Report CMU-CS-TR-92-208, Carnegie Mel-

lon University, Pittsburgh, PA, October 1992.

[Pot87] M. Potmesil. Generating octree models of 3D objects from their silhouettes

in a sequence of images. Computer Vision, Graphics and Image Processing,

40:1–20, 1987.

[PRCM99] V. Pavlovic, J. Rehg, T. Cham, and K. Murphy. A dynamic bayesian network

approach to figure tracking using learned dynamic models. In Proceedings

180 BIBLIOGRAPHY

of International Conference on Computer Vision (ICCV’99), Corfu, Greece,

September 1999.

[PSB99] S. Penny, J. Smith, and A. Bernhardt. Traces: Wireless full body tracking in

the cave. In Proceedings of International Conference on Artificial Reality and

Telexistence (ICAT’99), December 1999.

[PTVF93] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in

C: The Art of Scientific Computing. Cambridge University Press, 1993.

[QK96] L. Quan and T. Kanade. A factorization method for affine structure from

line correspondences. In Proceedings of IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR’96), pages 803–808, San Francisco, CA,

1996.

[RK95] J. Rehg and T. Kanade. Model-based tracking of self-occluding articulated

objects. In Proceedings of International Conference on Computer Vision

(ICCV’95), pages 612–617, Cambridge MA, June 1995.

[RL01] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In

Third International Conference on 3D Digital Imaging and Modeling, pages

145–52, May 2001.

[RNK97] P. Rander, P. Narayanan, and T. Kanade. Virtualized reality : Constructing

time-varying virtual worlds from real world events. In Proceedings of IEEE

Conference on Visualization (ICV’97), pages 277–283, October 1997.

[RT00] M. Ruzon and C. Tomasi. Alpha estimation in natural images. In Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR’00),

volume 1, pages 18–25, Hilton Head Island, SC, June 2000.

BIBLIOGRAPHY 181

[SA96] H. Sawhney and S. Ayer. Compact representations of videos through domi-

nant and multiple motion estimation. IEEE Transaction on Pattern Analysis

and Machine Intelligence, 18(8):814–830, 1996.

[SB96] A. Smith and J. Blinn. Blue screen matting. In Computer Graphics Annual

Conference Series (SIGGRAPH’96), pages 259–268, 1996.

[SBF00] H. Sidenbladh, M. Black, and D. Fleet. Stochastic tracking of 3D human

figures using 2D image motion. In Proceedings of European Conference on

Computer Vision (ECCV’00), Dublin, Ireland, June 2000.

[SBK+99] H. Saito, S. Baba, M. Kimura, S. Vedula, and T. Kanade. Appearance-based

virtual view generation of temporally-varying events from multi-camera im-

ages in the 3D room. Technical Report CMU-CS-99-127, Carnegie Mellon

University, 1999.

[SC02] J. Sullivan and S. Carlsson. Recognizing and tracking human action. In Pro-

ceedings of European Conference on Computer Vision (ECCV’02), Copen-

hagen, Denmark, May 2002.

[SCI02] E. Shechtman, Y. Caspi, and M. Irani. Increasing space-time resolution

in video. In Proceedings of European Conference on Computer Vision

(ECCV’02), Copenhagen, Denmark, May 2002.

[SD96] S. Seitz and C. Dyer. View morphing. In Computer Graphics Annual Confer-

ence Series (SIGGRAPH’96), pages 21–30, 1996.

[SDB00] H. Sidenbladh, F. DeLaTorre, and M. Black. A framework for modeling

the appearance of 3D articulated figures. In Proceedings of IEEE Interna-

tional Conference on Automatic Face and Gesture Recognition (ICAFGR’00),

Grenoble, France, March 2000.

182 BIBLIOGRAPHY

[Sei97] S. Seitz. Image-Based Transformation of Viewpoint and Scene Appearance.

PhD thesis, University of Wisconsin Madison, 1997.

[SG98] R. Szeliski and P. Golland. Stereo matching with transparency and matting.

In Proceedings of the Sixth International Conference on Computer Vision

(ICCV’98), pages 517–524, Bombay, India, January 1998.

[SK98] S. Seitz and K. Kutulakos. Plenoptic image editing. In Proceedings of the

Sixth International Conference on Computer Vision (ICCV’98), Bombay, In-

dia, January 1998.

[SK00] K. Singh and E. Kokkevis. Skinning characters using surface oriented free-

form deformations. In Proceedings of Graphics Interface’00, pages 35–42,

May 2000.

[SKB+98] S. Shafer, J. Krumm, B. Brumitt, B. Meyers, M. Czerwinski, and D. Robbins.

The new easyliving project at microsoft research. In Proceedings of Joint

DARPA/NIST Smart Spaces Workshop, Gaithersburgh, MD, July 1998.

[SMP03] P. Sand, L. McMillan, and J. Popovic. Continuous capture of skin defor-

mation. In Computer Graphics Annual Conference Series (SIGGRAPH’03),

pages 578–586, San Diego, CA, July 2003.

[SP91] K. Shanmukh and A. Pujari. Volume intersection with optimal set of direc-

tions. Pattern Recognition Letter, 12:165–170, 1991.

[SSI99] I. Sato, Y. Sato, and K. Ikeuchi. Acquiring a radiance distribution to super-

impose virtual objects onto a real scene. IEEE Transactions on Visualization

and Computer Graphics, 5(1):1–12, January-March 1999.

BIBLIOGRAPHY 183

[SSI03] I. Sato, Y. Sato, and K. Ikeuchi. Illumination from shadows. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 25(3):290–300, March

2003.

[SVZ00] D. Snow, P. Viola, and R. Zabih. Exact voxel occupancy with graph cuts.

In Proceedings of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR’00), volume 1, pages 345–352, Hilton Head Island, SC, June

2000.

[Sze93] R. Szeliski. Rapid octree construction from image sequences. Computer

Vision, Graphics and Image Processing: Image Understanding, 58(1):23–32,

July 1993.

[Sze94] R. Szeliski. Image mosaicing for tele-reality applications. Technical Report

CRL 94/2, Compaq Cambridge Research Laboratory, 1994.

[TK92] C. Tomasi and T. Kanade. Shape and motion from image streams under or-

thography: A factorization method. International Journal of Computer Vi-

sion, 9(2):137–154, November 1992.

[Tsa87] R. Tsai. A versatile camera calibration technique for high-accuracy 3D ma-

chine vision metrology using off-the-shelf tv cameras and lenses. IEEE Jour-

nal of Robotics and Automation, RA-3(4):323–344, August 1987.

[TSA01] P. Torr, R. Szeliski, and P. Anandan. An integrated bayesian approach to layer

extraction from image sequences. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 23(3):297–303, 2001.

[TTI] Thirdtech inc. http://www.3rdtech.com.

[VBK02] S. Vedula, S. Baker, and T. Kanade. Spatio-temporal view interpolation. In

Proceedings of the 13th Eurographics Workshop on Rendering, June 2002.

184 BIBLIOGRAPHY

[VBR+99] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. Three-dimensional

scene flow. In Proceedings of International Conference on Computer Vision

(ICCV’99), Corfu, Greece, September 1999.

[VBSK00] S. Vedula, S. Baker, S. Seitz, and T. Kanade. Shape and motion carving in

6D. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR’00), Hilton Head Island, SC, June 2000.

[Ved01] S. Vedula. Image Based Spatio-Temporal Modeling and View Interpolation of

Dynamic Events. PhD thesis, Carnegie Mellon University, 2001.

[VIC] Vicon motion systems. http://www.vicon.com.

[VKP96] B. Vijayakumar, D. Kriegman, and J. Ponce. Structure and motion of curved

3D objects from monocular silhouettes. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR’96), pages 327–334, San

Francisco, CA, June 1996.

[WADP97] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: Real-time

tracking of the human body. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19(7):780–785, July 1997.

[WC01a] K. Wong and R. Cipolla. Head model acquisition and silhouettes. In Proceed-

ings of International Workshop on Visual Form (IWVF-4), May 2001.

[WC01b] K. Wong and R. Cipolla. Structure and motion from silhouettes. In Proceed-

ings of International Conference on Computer Vision (ICCV’01), Vancouver,

Canada, June 2001.

[WHG84] H. Weghorst, G. Hooper, and D. Greenberg. Improved computational methods

for ray tracking. ACM Transactions on Graphics, 3(1):52–69, 1984.

BIBLIOGRAPHY 185

[WHH95] T. Werner, R. D. Hersch, and V. Hlavac. Rendering real-world objects using

view interpolation. In Proceedings of the Fifth International Conference on

Computer Vision (ICCV’95), pages 957–962, Cambridge MA, June 1995.

[WP02] X. Wang and C. Phillips. Multi-weight enveloping: Least-squares approxima-

tion techniques for skin animation. In Computer Graphics Annual Conference

Series (SIGGRAPH’02), San Antonio, TX, July 2002.

[WPF90] A. Woo, P. Poulin, and A. Fournier. A survey of shadow algorithms. IEEE

Computer Graphics and Applications, 10(6):13–32, November 1990.

[Zha94] Z. Zhang. Iterative point matching for registration of free-form curves and

surfaces. International Journal of Computer Vision, 13(2):119–152, October

1994.

[Zha99] Z. Zhang. Flexible camera calibration by viewing a plane from unknown

orientations. In Proceedings of International Conference on Computer Vision

(ICCV’99), pages 666–673, September 1999.

Appendix A

Proof of Equivalence of Visual Hull

Definitions

To prove that the following two definitions of Visual Hull are equivalent.

Definition I (Intersecting Visual Cones): The Visual Hull H j with respect to a set of con-

sistent silhouette images {S k
j} is defined to be the intersection of the K visual cones, each

formed by projecting the silhouette image S k
j into the 3D space through the camera center

Ck.

Definition II (Maximally Exactly Explains): The Visual Hull H j with respect to a set of

consistent silhouette images {S k
j} is defined to be the largest possible volume which exactly

explains {S k
j} for all k = 1, · · · · · · ,K.

Proof:

Let’s denote the Visual Hull defined by the first definition (visual cones intersection) by H I

and that defined by the second definition (maximally exactly explains) by H II . To prove the

two definitions are equivalent to each other, we are going to prove H II ⊆ HI and HI ⊆ HII

as below.

187

188 Chapter A. Proof of Equivalence of Visual Hull Definitions

• Proof of HII ⊆ HI :

1. It is suffice to show that for any 3D point P, P ∈ H II =⇒ P ∈ HI .

2. To prove (1) above, let P be a 3D point inside or on the boundary of H II . Since

HII exactly explains all the silhouettes, the projections of P must lie inside or on the

boundary of all of the silhouettes (or otherwise H II will not be exactly explains the

silhouettes).

3. From (2) we know that P has to be inside or on the boundary of the intersection of

all the visual cones formed by the camera centers and silhouettes (or otherwise the

projection of P lies outside one of the silhouettes).

4. The statement in (3) in turn implies P lies inside or on the boundary of H I . Hence

HII ⊆ HI .

• Proof of HII ⊆ HI :

1. Since HI is formed by intersecting the visual cones formed by the silhouettes, the

projection of H I into the kth camera must lies inside all the silhouette S k for all

cameras k, i.e. Πk(HI) ⊆ S k∀k.

2. As we have assumed that the silhouettes are consistent, there exists a non-empty

object O which exactly explains all the silhouettes.

3. Combining (1) and (2) above, the volume H I ∪ O formed by the union of H I and 0

exactly explain all the silhouettes.

4. The statement in (3) means that H I ∪ O ⊆ HII since HII is the maximal volume that

exactly explains the silhouettes.

5. Using (4) we have H I ⊆ HI ∪ O ⊆ HII . This means H I ⊆ HII .

Combining both proofs we get H I ≡ HII .

Appendix B

Proofs of Alignment Ambiguity Lemmas

B.1 Proof of Lemma 5.1

Lemma 5.1:

For a closed and connected 2D object, its Visual Hull from K silhouette images is a convex

polygon with at most 2K Bounding Edges. Conversely, any convex polygon with M ≥ 4

edges can be thought of as a Visual Hull formed from K silhouettes of some closed and

connected 2D object where K = dM
2 e.

Proof:

Since the 2D object is connected, its silhouette on each camera is a continuous one dimen-

sional line. This means that the bounding area formed by each camera and its silhouette is a

convex wedge. The Lemma is obviously true for two-camera case as the intersection of two

convex wedge is a convex polygon. Now assume the Lemma is true for M cameras. This

means we can represent the Visual Hull constructed from M silhouette images by a convex

polygon H(M) with L edges where L ≤ 2M . Suppose we add one more camera. The new

Visual Hull H(M + 1) can be obtained by intersecting M(M) with the convex wedge from

the new camera. Assume the convex wedge is bound by a left bound Ble f t and a right bound

189

190 Chapter B. Proofs of Alignment Ambiguity Lemmas

(a) Camera center lies inside the convex visual hull H(M)

Bleft

H(M+1)

(i)

(i)

H(M)

Bright (ii)

(i)

H(M+1)

Bleft

Bright

H(M)

(ii)

(ii)

Bleft

Bright

H(M+1)

H(M)

(v) (v)

Bleft

H(M)

H(M+1)
Bright

(b) Camera center lies outside the convex visual hull H(M)

(v)

(v)

Bleft

H(M)
H(M+1)

Bright
(iv)

(iii)
Bleft

H(M)

H(M+1)

Bright

(a) Camera center lies inside the convex visual hull H(M)

Bleft

H(M+1)

(i)

(i)

H(M)

Bright (ii)

(i)

H(M+1)

Bleft

Bright

H(M)

(ii)

(ii)

Bleft

Bright

H(M+1)

H(M)

(a) Camera center lies inside the convex visual hull H(M)

Bleft

H(M+1)

(i)

(i)

H(M)

Bright

Bleft

H(M+1)

(i)

(i)

H(M)

Bright (ii)

(i)

H(M+1)

Bleft

Bright

H(M)

(ii)

(i)

H(M+1)

Bleft

Bright

H(M)

(ii)

(ii)

Bleft

Bright

H(M+1)

H(M)

(ii)

(ii)

Bleft

Bright

H(M+1)

H(M)

(v) (v)

Bleft

H(M)

H(M+1)
Bright

(v) (v)

Bleft

H(M)

H(M+1)
Bright

(b) Camera center lies outside the convex visual hull H(M)

(v)

(v)

Bleft

H(M)
H(M+1)

Bright
(iv)

(iii)
Bleft

H(M)

H(M+1)

Bright

(b) Camera center lies outside the convex visual hull H(M)

(v)

(v)

Bleft

H(M)
H(M+1)

Bright

(v)

(v)

Bleft

H(M)
H(M+1)

Bright
(iv)

(iii)
Bleft

H(M)

H(M+1)

Bright

(iv)

(iii)
Bleft

H(M)

H(M+1)

Bright

Figure B.1: Cases of intersecting an existing Visual Hull with a bounding wedge formed
by a new camera and its silhouette. The number (i, ii, iii) at the end of each edges indicate
the cases presented in the proof.

Bright). Depends on the position of the new camera, we divide the situation into two cases

as follows:

(a) The new camera center is inside or on the boundary of H(M) which is shown in

Figure B.1(a). In this case, the left bound Ble f t of the wedge intersect H(M) at one of

the following two cases : (i) Ble f t coincides with one of the edges of H(M), (ii) Ble f t

intersect H(M) at one point. For (i), the intersection does not change H(M). For (ii),

the intersection will results in another convex polygon with at most one more edge

than H(M) (or less edges than H(M)). The same applies to Bright. Hence H(M + 1)

is also a convex polygon with at most L + 2 ≤ 2(M + 1) edges.

(b) The new camera center is outside of H(M) as shown in Figure B.2(b). Here Ble f t

intersect H(M) at one of the following three cases: (iii) Ble f t coincides with one of

the edges of H(M), (iv) Ble f t intersects H(M) at a corner, (v) Ble f t intersects H(M)

B.1. Proof of Lemma 5.1 191

at two points. For (iii) and (iv), the intersection does not change H(M). For (v), the

intersection will results in another convex polygon with at most one more edge than

H(M) (or less edges than H(M) in some cases). The same applies to Bright. Hence

H(M + 1) will have at most L + 2 ≤ 2(M + 1) edges.

Combining both cases, H(M + 1) is a convex polygon with at most 2(M + 1) edges. Hence

by Mathematical Induction, the Lemma is true for any number of cameras.

C
4

1

2

3 4

5

6

7

O

(b)

C
1

C
2

C
3

1

2

3 4

5

6

O

(a)

C
1

C
2

C
3

C
4

1

2

3 4

5

6

7

O

(b)

C
1

C
2

C
3

C
4

C
4

1

2

3 4

5

6

7

O

(b)

C
1

C
1

C
2

C
2

C
3

C
3

1

2

3 4

5

6

O

(a)

C
1

C
2

C
3

1

2

3 4

5

6

O

(a)

C
1

C
1

C
2

C
2

C
3

C
3

Figure B.2: Examples of reconstructing object O and locations of d L
2 e cameras to form the

convex polygonal Visual Hull H. (a) L is even, (b) L is even.

-Converse part:

Assume we are given a convex polygon H with L ≥ 4 edges. We have to show that it

is the Visual Hull formed by d L
2 e cameras of a closed, connected object. Now since H is

convex, any two non-adjacent edges will intersect at a point outside H (If the two edges

are parallel, then they will intersect at a point at infinity). Let’s label the edges of H in

clockwise direction and let L′ = d L
2 e. The edges are then paired up every L′ edges. For

example, edge 1 is paired with edge L′ + 1, edge 2 is paired up with edge L′ + 2, etc.

Moreover, let O be an object formed by the convex hull of the mid-points of the L edges of

H. Note that O is closed and connected because it is the convex hull of L points. Now we

192 Chapter B. Proofs of Alignment Ambiguity Lemmas

can divide the situation into two cases: L is even and L is odd.

(a) If L is even, then there are exactly L′ pairs of edges, by which the edges in each pair

will not be adjacent to each other (as L ≥ 4 =⇒ L′ ≥ 2). Hence each pair of edges

will intersect at a point outside H. Let the L′ intersecting points be the positions of

L′ cameras. In this case H will then be the Visual Hull of the object O formed from

these L′ cameras. An example is shown Figure B.2(a).

(b) If L is odd, then there are exactly L′ − 1 pairs of edges and an unpaired edge (edge

L). Randomly choose from edge 2 to L − 2 to pair with edge L to form a total L′

pairs of edges. Again we choose O as the convex hull of the mid-points of all the

L edges and the L′ intersecting points of the edges as the cameras. An example is

shown Figure B.2(b).

From the above construction, we find an object O and locations of d L
2 e cameras by which

the L-sided polygon H is the Visual Hull of O from the cameras.

B.2 Proof of Lemma 5.2

Lemma 5.2:

Each edge of the 2D polygonal Visual Hull H of an object O has to touch the object O at at

least one point. Conversely any closed and connected 2D object O which satisfies the two

conditions: (1) O ⊆ H, and (2) O touches each edge of H at at least one point, is an object

which forms the silhouettes of H.

Proof:

Firstly by the definition of Visual Hull, the object has to touch both the left bound Ble f t and

right bound Bright of all the bounding wedges formed by the cameras and their silhouettes.

Secondly from Lemma 5.1 and its construction proof, all the edges of the Visual Hull are

part of the left or right bound of a bounding wedge. Moreover since the Visual Hull is

B.3. Proof of Lemma 5.3 193

convex, each left or right bound can only contribute to at most one edge. This means no

two edges of the Visual Hull can come from the same left bound or right bound. Combining

this with the fact that the object has to touch all the left and right bounds, it means that each

bounding edge has to be touched by the object at at least one point.

-Converse part:

Consider a closed and connected 2D object O and a Visual Hull H such that O ⊆ H and O

touches each edge of H at at least one point. Let {S k} be the set of silhouettes which form

H. We have to prove that Πk(O) ≡ S k ∀k. Since O ⊆ H, we have Πk(O) ⊆ S k. Moreover,

as O is closed and connected, Πk(O) is a continuous line. Suppose there exists a silhouette

image S k such that O does not exactly explain S K, i.e. Πk(O) ⊂ S k. This means one of

the endpoints of S k (which is itself a continuous line), say the left endpoint lie outside of

Πk(O). Hence the left bound Ble f t of the 2D bounding wedge formed by S k lies outside of

(and do not touch) O. At the same time, since Ble f t forms one of the edge of H (from the

construction proof in Lemma 5.1). This implies one of the edge of H does not touch O.

This leads to contradiction that O touches all edges of H at at least one point. Therefore

Πk(O) ≡ S k ∀k.

B.3 Proof of Lemma 5.3

Lemma 5.3:

Given two 2D Visual Hulls H1 and H2, the necessary and sufficient condition for them to be

aligned consistently with transformation (R, t) is given as follows : No edge of T (R,t)(H1)

lies completely outside H2 and no edge of H2 lies completely outside T(R,t)(H1).

Proof:

-Necessary part:

Assume the two Visual Hulls are aligned consistently with transformation (R, t). By the

definition of consistent alignment, there exists an object O such that H1 is the Visual Hull of

194 Chapter B. Proofs of Alignment Ambiguity Lemmas

the object at reference position and orientation (I, 0
¯
) and H2 is the Visual Hull of the object

at (R, t). That means the object is bounded by both regions T (R,t)(H1) and H2. Now Suppose

one edge E1
1 of T(R,t)(H1) lies completely outside H2. Since the object O is bounded by H2,

it means that the edge E1
1 is completely outside O. This leads to a contradiction to Lemma

5.2 which states that edge E1
1 has to touch the object O at at least one point. Hence all the

edges of T(R,t)(H1) have to either (1) lie completely inside H2 or (2) intersecting or touching

at least one edge of H2. In other words, at least one point of each edge of T(R,t)(H1) has to

lie on or inside H2. The same applies vice versa.

-Sufficient part:

Assume we are given two Visual Hulls H1, H2 and a transformation (R, t). Consider the

object O constructed by intersecting T(R,t)(H1) and H2. Suppose the transformation (R, t) is

such that no edge of T(R,t)(H1) is completely outside of H2 and vice versa. This means that

each edge of O comes from (the whole or part of) one edge from H1 or H2. This implies

O will touch every edge of H1 and H2 at at least one point. Since O is the intersection of

H1 and H2, it is smaller than either of them. Hence by the converse of Lemma 5.2, O is

an object which forms the silhouettes of H1 and H2. As a conclusion, both H1 and H2 are

Visual Hulls of O at two different orientations and positions related by the transformation

(R, t).

B.4 Proof of Lemma 5.4

Lemma 5.4:

(R, t) is a consistent alignment of two 2D Visual Hulls H1 and H2, constructed from sil-

houette sets {S k
j}; j = 1, 2 if and only if the following condition is satisfied : for each edge

Ei
1 of T(R,t)(H1), there exists at least one point P on E i

1 such that the projection of P onto

the kth image lies inside or on the boundary of the silhouette S k
2 for all k = 1, · · · · · · ,K.

B.5. Proof of Lemma 5.5 195

Proof:

The condition of Lemma 5.4 is equivalent to the condition that at least one point of the

bounding edge E i
1 have to lie inside H2 which is exactly the condition of Lemma 5.3.

B.5 Proof of Lemma 5.5

Lemma 5.5:

For two convex 3D Visual Hulls H1 and H2 constructed from silhouette sets {S k
j}; j =

1, 2, the necessary and sufficient condition for a transformation (R, t) to be a consistent

alignment between H1 and H2 is as follows: for any Bounding Edge E i
1 (defined by (4.2)

in Chapter 4) constructed from the silhouette image set {S k
1}, there exists at least one point

P on Ei
1 such that the projection of the point T(R,t)(P) onto the kth image lies inside or on

the silhouette S k
2 for all k = 1, · · · · · · ,K. Similarly, for any Bounding Edge E i

2 constructed

from {S k
2}, there exists at least one point P on E i

2 such that the projection of the point

T−1
(R,t)(P) on the kth image lies inside or on the silhouette S k

1.

Proof:

-Necessary part:

Assume the two Visual Hulls are aligned consistently with transformation (R, t). By the

definition of consistent alignment, there exists an object O such that H1 is the Visual Hull

of the object at reference position and orientation (I, 0
¯
) and H2 is the Visual Hull of the

object at (R, t). That means the object is bounded by both volumes T (R,t)(H1) and H2.

Now Suppose one edge E1
1 of T(R,t)(H1) lies completely outside H2. Since the object O

is bounded by H2, it means that the edge E1
1 is completely outside O. This leads to a

contradiction to the Second Fundamental Property of Visual Hull which states that edge

E1
1 has to touch the object O at at least one point. Hence all the edges of T (R,t)(H1) have

to either (1) lie completely inside H2 or (2) intersecting or touching at least one edge of

H2. In other words, at least one point of each edge of T(R,t)(H1) has to lie on or inside H2

196 Chapter B. Proofs of Alignment Ambiguity Lemmas

and this is equivalent to saying that there exists at least one point P on E i
1 such that the

projection of the point T(R,t)(P) onto the kth image lies inside or on the silhouette S k
2 for all

k = 1, · · · · · · ,K. The same applies vice versa.

-Sufficient part:

Assume we are given two Visual Hulls H1, H2 and a transformation (R, t). Consider the

object O constructed by intersecting T(R,t)(H1) and H2. Since O is the intersection of H1

and H2, it is smaller than either of them. Moreover, since H1 and H2 are convex, O is also

convex. Now suppose the transformation (R, t) is such that for any Bounding Edge E i
1,

there exists at least one point P on E i
1 such that the projection of the point T(R,t)(P) onto

the kth image lies inside or on the silhouette S k
2 for all k = 1, · · · · · · ,K and vice versa. This

is equivalent to the condition that all possible Bounding Edges of T (R,t)(H1) has to touch

H2 at at least one point and vice versa. This means that the (infinite) ray projected through

any camera from any point on the boundary of the corresponding silhouettes at t1 has to

touch the object O. The same applies to t2. Since O is convex, the above implies that the

projection of O on camera k have to be exactly the same as the silhouettes S k
1 and S k

2 for all

k. Hence O exactly explains the silhouettes which form H1 and H2. As a conclusion, both

H1 and H2 are Visual Hulls of O at two different orientations and positions related by the

transformation (R, t).

Appendix C

Proofs of Visibility Lemma

Lemma 5.6:

Let Πl(P) and Πl(Ck) be the projections of the point P and the kth camera center Ck on the

(infinite) image plane of camera l. If the 2D line segment joining Πl(P) and Πl(Ck) does

not intersect the silhouette image S l
j, then P is visible with respect to camera k at time t j.

Proof:

The Lemma can be proved by contradiction. The 2D segment joining Πl(P) and Πl(Ck) is

the projection of the 3D plane passing through P, Ck and Cl. Suppose the 2D segment does

not intersect with the silhouette image S l
j, this means the corresponding 3D plane is totally

free of any object. Now if P is not visible with respect to camera k, then there must exist

some object on the 3D line (which lies on the above 3D plane) joining P and Ck, blocking

P from Ck. This leads to contradiction that the 3D plane is totally free of object. Hence P

is visible to camera k.

197

