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ABSTRACT

Genetics is a unifying theme of biology that poses a major challenge for

students across a wide range of post-secondary institutions, because it entails

complex problem solving. This article reports a new intelligent learning

environment called the Genetics Cognitive Tutor, which supports genetics

problem solving. The tutor presents complex, multi-step problems and is

constructed around a cognitive model of the knowledge needed to solve

the problems. This embedded cognitive model enables the tutor to provide

step-by-step assistance, and to maintain a model of the student’s problem-

solving knowledge. The tutor consists of 16 modules with about 125 total

problems, spanning five general topics: Mendelian inheritance, pedigree

analysis, genetic mapping, gene regulation, and population genetics. This

article reports two evaluations of the tutor. A pretest/posttest evaluation

of student learning gains for individual tutor modules across multiple col-

leges and universities yielded average gains equivalent to almost two letter

grades, and the accuracy of student modeling in predicting students’ test

performance was empirically validated.
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This article describes a new intelligent learning environment called the Genetics

Cognitive Tutor that supports student problem solving in genetics. This Cognitive

Tutor poses rich, multi-step problem-solving tasks to students and provides the

individualized advice students need to succeed. The tutor is constructed around a

cognitive model of the knowledge required to solve the problems. This cognitive

model is a type of embedded expert system that can solve the problems posed to

students in the many ways that students solve them. The cognitive model is used to

follow each student’s solution path through complex problems, enabling the tutor to

provide step-by-step accuracy feedback, to provide advice as needed, and to maintain

a model of the student’s problem-solving knowledge based on student perform-

ance. In the following sections, we provide an overview of the tutor, describe the

cognitive model that underlies its performance, and report empirical evaluations of

student learning gains and of the predictive validity of the tutor’s student model.

Genetics is a fundamental unifying theme of biology and a key component of

scientific literacy (AAAS, 1993; Garton, 1992; Lewis & Wood-Robinson, 2000;

NRC, 1996). Advances in genetics underlie key areas in 21st century technology,

science, and industry, from forensic DNA analyses to detecting and under-

standing the causes of cancer. These advances require a workforce capable of

contributing to these fields, and also raise complex ethical and legal issues that will

require a comprehensive understanding of genetics. However, research suggests

that students are currently not succeeding at developing the deep understanding

of genetics necessary to participate in these activities (Garton, 1992; Lewis &

Wood-Robinson, 2000).

Problem solving is heavily emphasized in genetics (Smith, 1988). Genetics

problem solving is characterized by abductive reasoning, a complex type of

reasoning used in real-world analysis of genetics data (cf. Papatheodorou,

Kakas, & Sergot, 2005; Zupan, Bratko, Demšar, Juvan, Curk, Borštnik, et al.,

2003). In contrast with deductive hypothesis testing, abductive reasoning in

genetics starts with a set of observations and reasons backwards to infer properties

of the genetics processes that produced the data (e.g., whether a trait expressed

in a family pedigree chart is dominant or recessive). In addition to the challenge

of abductive reasoning, genetics problem solving relies on successful use of

mathematical skills, particularly reasoning about probability (Cavallo, 1996;

Smith, 1988), but including algebraic modeling and symbol manipulation, and

proportional reasoning. The dual learning goals of genetics problem-solving

activities are to develop the big ideas that underlie genetics and to develop

students’ reasoning skills in various problem situations.

THE GENETICS COGNITIVE TUTOR

In response to this challenge, we have developed a Genetics Cognitive Tutor

to support students in completing and learning from complex problem-solving

tasks. Cognitive Tutors pose complex problems and employ a cognitive model
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of relevant domain knowledge and problem-solving skills to provide the indi-

vidualized help students need to complete the problems (Anderson, Corbett,

Koedinger, & Pelletier, 1995). Successful Cognitive Tutors have been developed

for programming and mathematics that yield large improvements in student

learning (Anderson et al., 1995; Koedinger, Anderson, Hadley, & Mark, 1997;

Koedinger & Corbett, 2006). Cognitive Tutors have been shown to speed learning

by as much as a factor of three (Corbett & Anderson, 2001) and to yield an

achievement effect size of about one-standard deviation compared to conven-

tional instruction (Anderson et al., 1995; Corbett, 2001). This is about twice the

achievement effect size of typical human tutors (Cohen, Kulik, & Kulik, 1982)

and conventional computer-based instruction (Kulik, 1994), and about half the

effect of the best human tutors (Bloom, 1984; Kulik, 1994).

The Genetics Cognitive Tutor consists of 16 modules, spanning five general

topics: Mendelian inheritance, pedigree analysis, recombination and genetic

mapping, gene regulation, and population genetics. The 16 individual modules

are displayed in Table 1. There are a total of about 125 problems in the curric-

ulum, with an average of about 25 problem-solving steps per problem. The use of

a genetics problem-solving cognitive model to interpret student actions and

provide advice, as well as to model student knowledge and individualize the

curriculum, distinguishes the Genetics Cognitive Tutor from other educational

software packages that have been developed for genetics. Some other genetics

software packages are helpful, rich simulation environments that allow students

to breed organisms across generations, conduct experiments, and reason about

inheritance patterns, but provide no in-context instruction nor assessment. Other

software environments provide accuracy feedback and in-context instruction,

but only for multiple-choice or short-answer questions. These other packages

do not combine rich problem-solving activities with feedback on individual steps

and context-sensitive instruction.

An Example Genetics Cognitive Tutor

Problem-Solving Task

Human pedigree analysis is a typical example of genetics problem solving.

In pedigree analysis problems students are asked to examine the pattern of

individuals in a family tree who are affected by a disease trait or unaffected by

the trait, and to reason about whether that disease trait is dominant or recessive,

and whether it is transmitted on the X-chromosome or on one of the 22 autosomal

chromosomes. In the case of recessive traits, the student may also be asked to

reason about the probability that unaffected individuals are carriers of the disease.

Figure 1 displays the tutor screen near the beginning of a problem selected from

the Pedigree Analysis and Carrier Probabilities module. These problems display

the pedigree chart of a family in which some individuals display a rare trait. Circles

represent females, squares represent males, and the darkened individuals (II-2
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and III-5 in this diagram) are affected by the disease. Finally, the circle with a

question mark at the bottom, individual VI-1, represents the potential daughter of

two individuals in the fifth generation of the pedigree; the question mark indicates

that her phenotype (whether or not she has the disease) is unknown. The student

has three problem solving goals:

1. The first steps are to determine whether the rare trait is dominant or

recessive and whether the gene is X-linked or is autosomal, from the pattern

of affected and unaffected individuals.

THE GENETICS COGNITIVE TUTOR / 223

Figure 1. The Genetics Cognitive Tutor Pedigree Analysis/ Carrier Probability

problem-solving interface partway through a problem.



2. Next, students calculate the probability that specified unaffected individuals

(listed in the table on the right side of the screen) are carriers of the trait.

3. Finally, students determine the probability that the unobserved hypothetical

offspring VI-1, will be affected by the trait.

In Figure 1, the student has indicated that the trait is recessive and X-linked

on the lower left side of the screen, and filled in the probabilities that six of the

individuals are carriers in the table at the lower right. The tutor provides immediate

accuracy feedback on each step and the student can ask for problem-solving

advice at any step, so students always reach a complete and correct problem

solution. If the student asks for advice in the problem-solving state displayed in

Figure 1, the tutor focuses on the probability that individual IV-4 is a carrier and

provides the first message in Figure 2. This message suggests a general abductive

reasoning strategy to apply in the current context—how to begin reasoning

about an unaffected female in an X-linked pedigree. If the student requests more

advice, the second message focuses in on the relevant empirical evidence in this

context. A third help request elicits instruction on the relevant underlying genetic

transmission process and, finally, a fourth request elicits the final conclusion on

the probability that the female IV-4 is a carrier.

THE COGNITIVE MODEL

As in previous Cognitive Tutors, each Genetics Cognitive Tutor module

employs a cognitive model of genetics problem-solving knowledge to provide the

step-by-step assistance described above. The cognitive model is a type of expert

system embedded in the tutor module that can solve the problems posed to students

224 / CORBETT ET AL.

(1) To determine the probability that an unaffected female is a carrier of an

X-linked recessive trait, the first thing to consider is the genotype of her

parents.

(2) Individual IV-4 has an affected father. What can you conclude about the

probability that IV-4 is a carrier?

(3) Her father must have the disease allele on his single X chromosome and

he must transmit that X chromosome to his daughter.

(4) Since IV-4 must inherit the disease allele from her father, the probability

that she is a carrier is 1.

Figure 2. An example of problem-solving advice with four levels of

help for one step in the problem displayed in Figure 1.



in the many ways that students solve them. This cognitive model is grounded

in cognitive psychology: each tutor module employs a model derived from a

cognitive task analysis of the domain knowledge and reasoning strategies students

are learning and applying in problem solving. The cognitive model is employed

for two purposes in a Cognitive Tutor, to model and to adapt to the individual

student. First, as described above, the model is employed to interpret the students’

problem-solving actions and to provide feedback and advice, in a process called

Model Tracing. Second, it is employed to monitor each student’s growing

problem-solving knowledge, in a process called Knowledge Tracing.

The Cognitive Model for Pedigree

Carrier Probabilities

The cognitive model is based on ACT-R theory (Anderson, 1993; Anderson &

Lebiere, 1998), a unified theory of the nature, acquisition, and use of human

knowledge. ACT-R assumes that problem-solving knowledge is represented in the

form of a set of goal-specific if-then knowledge chunks called cognitive rules.

There are two general sets of rules in the cognitive model for the Pedigree Analysis

and Carrier Probabilities unit. One set reasons about the dominance and linkage

of traits. An “English translation” of one of these rules is:

• If an affected individual (e.g., II-2) has unaffected parents, Then the trait

must be recessive.

(Since the individual must have inherited at least one allele for the trait from

at least one parent, and a parent with even a single dominant allele would

be affected).

A second set of cognitive rules reasons about the probability that unaffected

individuals in the family carry an allele for the trait and the probability that the

hypothetical descendant will be affected. Some example rules for an X-linked

recessive trait (the type displayed in Figure 1) include:

• If a male is unaffected (e.g., I-2), Then he cannot be a carrier.

(Since males have a single X chromosome, a male will be affected by a single

X-linked disease allele and cannot be a carrier).

• If an unaffected female (e.g, III-2) has an affected father, Then she must be

a carrier.

(A father always passes his single X-chromosome to his daughters, along

with the X-linked allele of the rare trait).

Model Tracing

In Model Tracing, the cognitive model runs in step-by-step synchrony with

the student. At each problem-solving step, the student’s problem-solving action is

compared to all the problem-solving actions the model is capable of generating for

THE GENETICS COGNITIVE TUTOR / 225



the step. As with effective human tutors, cognitive tutor feedback is brief and

focused on the student’s problem-solving context. If the student action matches

the action of an applicable cognitive rule, it is simply accepted by the tutor. If

the student action matches no applicable rule, it is rejected and flagged as

incorrect. The cognitive model also includes some buggy rules, which represent

common student misconceptions and if an action matches a buggy rule, it is

flagged as incorrect and the tutor displays a brief just-in-time error message in the

hint window. The tutor does not automatically provide advice on an incorrect

problem-solving step; instead students have the opportunity to reflect on and

correct their own mistakes. However, if the student asks for advice, the cognitive

model is also employed to provide problem-solving advice: An applicable rule

is identified and associated help message templates are employed to construct

context-specific advice. As indicated earlier, there are generally three or more

levels of advice available for each problem-solving step. These messages describe

an appropriate goal and provide advice on satisfying the goal, with successive

messages providing more and more specific advice on solving the goal in the

current context.

Knowledge Tracing

In Knowledge Tracing the tutor monitors the student’s growing knowledge

during problem solving, maintaining an estimate of the probability that the student

has learned each of the cognitive rules in the cognitive model, based on the

student’s problem-solving performance. Each problem-solving step represents an

opportunity to apply some rule in the underlying cognitive model. Note that

some rules may apply multiple times within a single problem. For example, each

of these two cognitive rules applies twice in the problem displayed in Figure 1:

• If an unaffected female has an affected father, then she must be a carrier.

• If an unaffected female has an unaffected mother and an unaffected father

and no affected male descendents, then the probability of being a carrier is

1/2 the probability that her mother is a carrier.

Note also that two applications of the same cognitive rule generally do not

yield the same outcome. For, instance, the second rule immediately above applies

to individuals IV-1 and V-4 in Figure 1, but the probability value generated by

the rule is different for the two individuals.

At the conclusion of each problem-solving step, the tutor updates its estimate

of the probability that the student has learned an applicable rule. This updated

probability estimate is the sum of two probabilities:

1. A revised estimate of the probability that the rule was already in the

learned state, given the new evidence (a correct or incorrect response or

help request); and
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2. the probability the student learned the rule at this opportunity if the student

did not already know the rule. See Corbett and Anderson (1995) for

computational details. Knowledge Tracing in turn is employed in cognitive

tutors to implement Cognitive Mastery, a process in which the tutor con-

tinues selecting appropriate problems based on the student’s knowledge

state, until the student has learned each rule to a criterion level (Corbett

& Anderson, 1995).

EMPIRICAL EVALUATION: LEARNING GAINS

Genetics Cognitive Tutor modules have been piloted in 12 colleges and uni-

versities around the country. These include a broad range of post-secondary

institutions, including public and private institutions, liberal arts institutions and

research universities, and minority-serving universities. The tutor has been piloted

in seven different courses across these institutions, ranging from introductory

biology to upper level genetics courses. For each course, the instructor selected

between two and six tutor modules that both matched the course content and

fit course time constraints. Students in the courses completed the Cognitive Tutor

problems either as in-class activities in section or lab meetings, or as homework

assignments.

Across all these contexts, we have conducted and analyzed 36 pretest-posttest

evaluations of individual modules. Each of these single-unit evaluations con-

sisted of:

1. completion of a proctored paper-and-pencil pretest (approximately 20

minutes);

2. completion of the Genetics Tutor problem solving module (approximately

1 hour); and

3. a proctored paper-and-pencil posttest (approximately 20 minutes).

Students worked through a fixed problem set in these modules. The paper-

and-pencil tests consisted of problems similar to the Cognitive Tutor problems

and two paper test forms were constructed for each module. The tests were

designed to be very challenging for students, in order to avoid ceiling effects in

measuring learning gains. Each form serves as the pretest for half the students,

who then switch to the other form for the posttest, so that the pretests and posttests

are matched across the full set of students, but for each student the pretest and

posttest are different. As displayed in Table 2, the tutor module was used as an

in-class activity in 22 of the evaluations and as a homework assignment in the

other 14 evaluations. A total of 1050 students participated in these evaluations.

Average student pretest and posttest performance (percent correct) in each of

these 36 evaluations is displayed in Table 2, grouped by main genetics problem-

solving topics. Overall, the Cognitive Tutor modules proved very effective.

Across the 36 evaluations, students averaged 43% correct on the pretest and 61%
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correct on the posttest and this average gain of 18 percentage points is the

equivalent of almost two letter grades. Thirty-two of the 36 evaluations led to

positive learning gains, and this overall result is reliable by a simple sign test.

A t-test was performed on each of the 36 individual evaluations. As indicated

in Table 2, 26 of the evaluations yielded reliable learning gains, 2 evaluations

yielded a marginally reliable gain, and 8 of the evaluations did not yield reliable

learning gains. These evaluations are conducted after the instructor has finished

lecturing on the topic, so these gains are in addition to the learning that resulted

from traditional instruction. The existing courses do not already contain com-

parable problem-solving curricula, so these learning gains directly represent the

impact of the Cognitive Tutor related to current course practice. These evaluations

serve both to validate the general effectiveness of the modules and to identify

individual modules that are candidates for further improvement.

There is a wide range in learning gains across the 36 evaluations. Gains

exceeded 30 points for 8 evaluations, while for another 8 evaluations there were

no reliable gains. With multiple factors varying in an unsystematic fashion

across the evaluations, we cannot draw strong conclusions about the possible

factors that affect the magnitude of learning gains, but one relationship emerges

from the table. Across the 36 evaluations, the size of the learning gain is inversely

correlated with average pretest score, r = –0.45, t(34) = –2.90, p < .01. This

correlation suggests that across the variations in student populations and topics,

the tutor modules tend to yield larger learning gains for the topics that the

students initially find more challenging.

Table 3 shows the average learning gains across the 36 evaluations for each

of the 11 individual topics. A reliable inverse correlation of pretest score and

learning gain is again observed across these 11 topics, r = –0.60, t(9) = –2.27,

p < .05. Since the number of evaluations per topic varies, any conclusions are

preliminary, but this correlation suggests that the tutor is more helpful specif-

ically for the topics that are initially most challenging, collapsing across student

populations.

While these correlations of pretest scores and gain scores are suggestive, they

can arise in part through regression to the mean, resulting from test measurement

error. To derive more objective measure of topic difficulty, we counted the total

number of problem-solving steps in a typical problem in each topic. These steps

can include typed inputs and menu-based entries, and we separately counted just

the number of steps with typed inputs, since these inputs are more challenging.

The total number of steps and total number of typed inputs for each topic are

displayed in the two right columns of Table 3. Across the 11 topics, the correlation

of learning gains with total number of problem-solving steps is marginally

reliable, r = 0.53, t(9) = 1.87, p < .10, while the correlation of learning gains with

total number of typed student inputs is reliable, r = 0.63, t(9) = 2.46, p < .05. These

correlations provide converging evidence that the Cognitive Tutor Modules are

most effective for the topics students find most challenging.
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EMPIRICAL EVALUATION:

KNOWLEDGE TRACING PREDICTIVE VALIDITY

Knowledge Tracing estimates a hypothetical construct—student learning—

based on the student’s observable performance in Cognitive Tutor problem

solving. The probability that a student has learned a rule in the cognitive model

is not synonymous with the probability the student will apply the rule correctly,

because the model recognizes that students may “slip” and fail to apply a

rule they actually know, or may guess an answer correctly, even if they have

not learned an appropriate rule. However, the same performance assumptions

(probabilities of slips and guesses) that are employed in Knowledge Tracing

calculations can also be employed to predict student performance based on the

tutor’s model of the student’s knowledge. That is, we can predict the probability

a student will apply a rule correctly based on the probability that the student

knows the rule and the probabilities of slipping and correct guessing. We can

validate the tutor’s estimates of each student’s knowledge by examining how

well these Knowledge Tracing estimates predict the student’s subsequent

paper-and-pencil test performance.

We have begun implementing Knowledge Tracing in Genetics Cognitive

Tutor modules and we conducted a preliminary evaluation of its validity in the

Pedigree Analysis and Carrier Probability module to examine two questions.
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Table 3. A Summary of Average Student Test Performance

and Number of Problem-Solving Steps across

11 Genetics Topics

Genetics topic Evaluations Pretest Posttest Gain Steps

Typed

steps

Gene Interaction

Time of Entry

Population Genetics 2

Three Factor Cross

Carrier Probabilities

Recomb & Segregation

Tetrad Analysis

Basic Pedigree/Expl

Basic Pedigree Analysis

Gene Regulation 2

Mendelian Transmission 2

5

2

1

7

4

4

1

1

7

3

1

30.2

48.5

33.0

37.9

47.3

28.0

69.0

49.0

46.9

66.0

57.0

61.2

79.5

62.0

59.4

68.0

47.3

86.0

59.0

56.0

70.3

55.0

31.0

31.0

29.0

21.6

20.8

19.3

17.0

10.0

9.1

4.3

–2.0

41

42

23

24

11

35

13

7

2

38

9

26

42

19

20

9

35

7

0

0

19

6



First, we examined how well the student models that Knowledge Tracing con-

structs predict individual differences among students in test accuracy. Second,

collapsing across students, we examined how well Knowledge Tracing predicts

overall student accuracy in applying each of the individual cognitive rules on

the paper-and-pencil test.

In this empirical evaluation of Knowledge Tracing predictive validity, we

analyzed the data for a set of 27 students who completed the seven problems in

the Pedigree Analysis Carrier Probabilities module at one pilot university. The

Knowledge Tracing algorithm had not yet been implemented in this module, but

the Cognitive Tutor collects a keystroke-by-keystroke log file of each student’s

problem-solving actions, so we can retroactively examine how accurately the

Knowledge Tracing algorithm can predict students’ application of the cognitive

rules in paper-and-pencil posttest performance.

Basic Knowledge Tracing in cognitive tutors employs a set of two learning

and two performance parameters for each rule. The two learning parameters are:

1. p(L0) the probability that students will have learned the cognitive rule

prior to the first opportunity to apply it in problem solving; and

2. p(T), the probability that students will learn the cognitive rule at each

opportunity to apply the rule in problem solving.

The two performance parameters are:

1. p(S), the probability students will “slip” and make a mistake in applying

a rule even though they have already learned it; and

2. p(G) the probability students will “guess” correctly when they have not

yet learned a cognitive rule.

In this analysis we evaluated a variation of Knowledge Tracing that also employs

four individual difference weights for each student, one weight for each of the

four parameters, to estimate differences among students in the four learning

and performance parameters. As the first step in validating the Knowledge

Tracing algorithm in this module, we submitted the student performance data in

the tutor protocol files to a curve fitting program to generate a best-fitting set

of learning and performance parameter estimates for each of the rules in the

cognitive model, and to generate a best fitting set of individual weights for each

of the students. Then we applied the Knowledge Tracing algorithm with these

best-fitting estimates to the step-by-step student performance data in the protocol

files to estimate the probability that each student knows each rule at the con-

clusion of problem solving. Finally, we employed these estimates of the prob-

abilities that a student has learned the cognitive rules and the best-fitting slip

and guess estimates from tutor problem solving to predict how well each student

would perform on the quiz, by predicting the probability of a correct action at

each step on the quiz.
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Predicting Carrier Probability Test

Performance

To calculate Knowledge Tracing predictions for test performance, the first

step is to construct a list of the cognitive rules that fire at each of the steps in the

test problems. The probability that a student completes a problem-solving step

correctly is a function of the probability that the student has learned an applicable

cognitive rule. Note that in principle, the algorithm for predicting a student’s

step-by-step accuracy in problem solving requires that the student remain on a

recognizable solution path. In general, when a student makes an uncorrected error

in a test environment, we can no longer model the student’s current problem-

solving state and cannot trace further problem-solving actions. In programming,

for example, when a student inserts an unexpected operator in defining a program,

it is difficult to know the student’s current thinking and, in fact, there may be no

path forward to a correct solution.1 However, reasoning about carrier probabilities

has an important property: even if a student makes a mistake in reasoning about

the probability that an individual in a pedigree is a carrier, we can still identify the

correct cognitive rules to apply for successive descendents in a pedigree (as

long as the incorrect answers are numbers in the range 0-1). For example, in

Figure 1 the probability that individual IV-1 is a carrier is one-half the prob-

ability that her mother III-2 is a carrier. The actual probability that III-2 is a

carrier is 1.0 and the probability that IV-1 is a carrier is 0.5. But if the student

makes a mistake and assigns III-2 any probability, p, between 0 and 1, we can

still evaluate whether the student executes the appropriate rule for IV-1, because

that rule will assign the probability p/2. As a result, we can exhaustively predict

step-by-step accuracy for complete problem solutions, even incorrect solutions.

This in turn enables us to make use of all the test data to examine how well

the Knowledge Tracing model predicts performance for the 14 individual rules

in the cognitive model.

Predicting Student Posttest Accuracy

For each of the 27 students, we calculated the probability that the student will

apply each successive cognitive rule correctly in the four test problems, given

the tutor’s model of the student’s knowledge. We then calculated the average of

all these probabilities as a prediction of the student’s overall test accuracy. The

scatterplot in Figure 3 displays the accuracy of the Knowledge Tracing model in

predicting student performance. The x-axis represents the model’s predictions

of test accuracy, the y-axis represents students’ empirical performance on the test
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this by predicting performance at the level of whole problems, rather than at the level of each

step. However, this approach does not apply to investigating predictions about individual

cognitive rules on tests.



and the points represent the 27 students. The model predicts overall group

performance quite well; it predicts that students will average 85% correct on

the test and the actual average score is 85%. Similarly, the model predicts

individual differences among students very accurately. The predicted and

actual test scores are highly correlated across the 27 students, r = 0.85, t(25) =

8.07, p < .01.

These results represent an upper bound on the predictive validity of Knowledge

Tracing, since the analysis employs best fitting parameter values for the set

of students in the analysis and employs individual difference weights, but they

are a highly promising indication that Knowledge Tracing can be used effectively

to implement Cognitive Mastery in the Genetics Cognitive Tutor, that is, to

individualize the curriculum, adapting the number of problems to each student’s

needs. Note that the slope of the regression function is greater than 1. The

model slightly underestimates the accuracy of the best students and slightly
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predicted accuracy for 27 students.



overestimates the accuracy of the students who are struggling. This suggests

that, while less successful students will receive more tutor problems than more

successful students and that Cognitive Mastery will close the test performance

gap between students, the less successful students may still receive a little less

practice than they need in principle, while the more successful students may

receive a little more practice than they need.

Predicting Accuracy of Applying Cognitive

Rules on the Posttest

In addition to examining how well the Knowledge Tracing model predicts

each student’s overall test accuracy, we examined how well the model predicts

overall student accuracy in applying each of the 14 rules in the cognitive model.

In this analysis, we collapsed across the 27 students and for each cognitive rule,

we calculated:

1. the average predicted probability of applying the rule correctly across all

the opportunities in the test; and

2. the empirical probability that students did apply the rule correctly across

all opportunities on the test.

Figure 4 displays a scatterplot of the predicted and actual accuracies for the

14 cognitive rules. Predicted accuracy is on the x-axis, empirical accuracy is

on the y-axis, and each of the points represents one of the cognitive rules.

Again the model accurately predicts differences among the rules. The pre-

dicted and actual scores for the 14 rules are highly correlated, r = 0.74, t(12) =

3.81, p < .01.

Again, the results in Figure 4 represent an upper bound on the predictive

validity for Knowledge Tracing, but the model’s accurate prediction of student

performance is of substantial practical importance in validating the foundations

of tutor’s Cognitive Mastery process. The model’s accurate prediction of test

performance on the individual rules both serves to validate the underlying cogni-

tive model in detail and can help guide iterative tutor improvements by identifying

those cognitive rules that give students the most difficulty.

Note that students’ actual test accuracy is at least 80% for 11 of the 14 rules,

and falls to between 60% and 80% for the other three rules. These latter three

rules involve reasoning about the expression and transmission of X-Linked

recessive traits by males:

• If a trait is X-Linked and recessive and a male is unaffected, Then he cannot

be a carrier (because a hemizygous male necessarily displays the trait).

• If a trait is X-Linked and recessive and a daughter has an unaffected father,

Then she cannot be a carrier (because her father cannot be a carrier).
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• If a trait is X-Linked and recessive and an unaffected female has an affected

son, Then she must be a carrier (because a son cannot inherit an X-Linked

trait from his father).

The Knowledge Tracing algorithm predicts the test accuracy well, suggesting

that these three rules are psychologically valid, but the empirical accuracy results

can lead us to redesign the Cognitive Tutor curriculum to include more oppor-

tunities to apply the rules.

CONCLUSION AND FUTURE PLANS

In summary, in 36 evaluations at 12 institutions, the Cognitive Tutor’s Model

Tracing support led to sizeable pretest-posttest learning gains for complex multi-

step genetics problem solving. These learning gains averaged 18 percentage points
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Figure 4. Actual test accuracy plotted as a function of predicted

accuracy for 14 rules in the cognitive model.



or about two letter grades across the evaluations. Detailed empirical evaluations

of Knowledge Tracing for one set of students and one module revealed that the

student modeling algorithm is capable of accurately predicting individual student

performance on paper-and-pencil posttests, and of accurately predicting how well

students will apply the individual reasoning rules in the cognitive model.

One important conclusion that emerged is that Cognitive Tutor technology can

be successfully applied to genetics problem solving. While successful Cognitive

Tutors have previously been developed for middle school mathematics, high

school mathematics, and introductory programming, in this project the technology

is applied in the substantially different domain of scientific inference. In this

domain, students need to reason from observable data to underlying processes as

well as to design experiments that will yield useful data. The problem-solving

interfaces and underlying cognitive model for the 16 Cognitive Tutor modules

proved successful in helping students acquire these reasoning skills.

Designing the problem-solving activities and developing the 500-rule cognitive

model for the 125-problem curriculum with its roughly 3000 individual problem-

solving steps is a large task. This project has reinforced our prior strong belief

that a successful educational technology development process requires an inter-

disciplinary team, including experts in the problem-solving domain and in

teaching in the domain, cognitive scientists with expertise in analyzing and

modeling student problem solving and behavioral scientists with expertise in

empirical evaluation. Finally, the teacher in the classroom is the other major

member of the team in a successful educational technology project. The interest

in the project of genetics instructors at our partner sites confirmed our belief

that there is a perceived need to provide better genetics problem-solving support

across a wide range of colleges and universities. At our summer workshops the

instructors were enthusiastic about discussing the challenges they encountered

in their courses and provided useful ideas for, and critiques of, the Cognitive

Tutor activities. Finally, the instructors were motivated not just to incorporate

novel activities into their courses, but to participate in evaluating student learn-

ing outcomes. Technology was not a limiting factor in pursuing the project.

While instructors had different levels of control over computer facilities at their

respective institutions and had different levels of technical support that made

software installation more or less challenging, in the end technology did not

limit any instructor’s participation in the project and the Cognitive Tutor activities

proved effective across the various institutions.

Finally, while the project has been successful, we are pursuing multiple

activities to further develop the Cognitive Tutor curriculum. In particular, we are

developing Knowledge Tracing and implementing Cognitive Mastery for many

of the individual modules and we are developing Cognitive Tutor units for

additional key topics that arise in undergraduate genetics course, including com-

pound probabilities in inheriting two segregating genes, and human pedigree

genetic mapping with log odds analysis.
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