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Problem diagnosis is difficult

e For developers of clouds
e For cloud users (i.e., software developers)
e Must debug own applications

* Must debug interactions w/cloud

e E.g., is a slowdown due to other VMs or my app?
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Monitoring via perf. counters

¢ Yields counters of low-level data
e E.g., CPU time, disk I/Os, etc.
e E.g., AWS CloudWatch, Ganglia

Lightweight, commonly available

e Cons: Black-box; machine oriented
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Logging events of interest

¢ Yields detailed text describing system’s
behavior (e.g., application, OS, VM, etc.)

e Available in most systems (in some form)

White-box approach

e Cons: High overhead; machine-oriented
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End-to-end activity tracing

e Similar to logging, but workflow-based

e E.g., Dapper, Stardust, X-Trace, etc.

° White box, shows workflow

e Cons: Requires system modifications
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Monitoring
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A key cloud-specific issue

e Cloud providers and users usually do not
wish to share information

e As such:

e Counters normalized to VM capacity

* e.g., percentage of AWS instance

* Provider logs/traces not visible to users
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Ganglia [Massie04]

e Designed for HPC environments
e Paper assumes bare-metal hardware

e (Collects and aggregates counters
e Counters can be app or machine specific
e Within cluster, counters visible everywhere

e Counters from multiple clusters aggregated
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Ganglia architecture

Source: The ganglia distributed monitoring
system: design, implementation, and
experience. Parallel Computing, Volume 30,
Issue 7, July 2004.
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AWS CloudWatch

e Provides monitoring for all AWS resources
e EC2 counters show VM-normalized values

¢ Also, can monitor app-specific metrics
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End-to-end tracing
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End-to-end tracing overview

e Focus of many research efforts for ~10 yrs
e Currently used in Google, Bing, etc.
e Traces show causality-related activity

e Trace: set of events from different threads/
machines merged & sorted by causality

e E.g., flow of indiv. requests (request flows)

15-719/18-847b: Advanced cloud computing, CMU
12 Revised: 04/3/2017

12




End-to-end tracing
implementation

® Tracing infrastructure tracks trace points
touched by individual requests

e Some “start” traces (eg. user request rec’d)
e QOthers propagate trace ID created at start

e Traces obtained by stitching together trace
points accessed by individual requests

¢ Hard to account for async and batched work

15-719/18-847b: Advanced cloud computing, CMU
13 Revised: 04/3/2017

13

Throttling by Sampling

e Users trace too little or too much

e Limit user bytes added per trace span

e Request sampling to limit global overhead
e Collects all trace points for a req. or none
e Hash trace ID to [0,1] and keep if < threshold

¢ Allows end-2-end tracing to be “always on”
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End-to-end tracing architecture
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A few key design questions

e How much representational power?
e DAGsS, trees, or paths?

e \What causal relationships to preserve?
e Read-after-write, contention, etc.

¢ How many request flows to sample?

¢ Where to make sampling decision?
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A DAG-based request flow
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Dapper [Sigelman10]

e Google’s impl. of end-2-end tracing

® In use since at least 2008
e Similar in architecture to other examples

¢ But, optimized for traces expected at Google
® Trace records gathered in external system

® median lat. 15s, 25% of time 98%°tile > hrs
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Dapper design decisions

e Traces represented as trees of of RPCs
* Node contains all work done for an RPC

e Edges indicate new RPC calls/replies

Core tracing infrastruct. + developer adds

Sampling decision made at request entry

e Based on hash of root ID (keep x% traces)
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Example Dapper trace tree
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Dapper Ul Example
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Figure 6: A typical user workflow in the general-purpose Dapper user interface.
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End-to-end tracing
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Spectroscope
[Sambasivanii]

e | ocalizes performance degradations

e By ID’ing changed request flows

e Qutput:
e Groups of before/after request flows

e Some changes automatically ID’d
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Spectroscope workflow
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Automatically ID’d changes

» Same structure is same trace points
- Groups w/structural changes

- ldentified via heuristics (e.g. freq. of types)
- Groups w/response-time changes

- Have identical flows in both periods
- ID’d via statistical significance testing
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Group w/structural changes
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Developers localize root cause by ID’ing how
differences before/after degradation
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Group w/response time

Before degradation avg. After degradation avg.
response time: 110us response time: 1,090us
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Root cause localized by ID’ing responsible interaction
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Summary

e Debugging distributed systems is hard

e Performance debugging is harder still
e Monitoring is counting without causation
e But people want examples (traces)

e Too much statistical analysis slows trust

® Traces are logistically expensive, quick to rot
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