Diagnosis via
monitoring & tracing

Greg Ganger, Garth Gibson, Majd Sakr
adapted from Raja Sambasivan

15-719: Advanced Cloud Computing
Sorina 2017

Problem diagnosis is difficult

e For developers of clouds
e For cloud users (i.e., software developers)
e Must debug own applications

* Must debug interactions w/cloud

e E.g., is a slowdown due to other VMs or my app?

15-719/18-847b: Advanced cloud computing, CMU
2 Revised: 04/3/2017

Monitoring via perf. counters

¢ Yields counters of low-level data
e E.g., CPU time, disk I/Os, etc.
e E.g., AWS CloudWatch, Ganglia

Lightweight, commonly available

e Cons: Black-box; machine oriented

15-719/18-847b: Advanced cloud computing, CMU
3 Revised: 04/3/2017

Logging events of interest

¢ Yields detailed text describing system’s
behavior (e.g., application, OS, VM, etc.)

e Available in most systems (in some form)

White-box approach

e Cons: High overhead; machine-oriented

15-719/18-847b: Advanced cloud computing, CMU
4 Revised: 04/3/2017

End-to-end activity tracing

e Similar to logging, but workflow-based

e E.g., Dapper, Stardust, X-Trace, etc.

° White box, shows workflow

e Cons: Requires system modifications

15-719/18-847b: Advanced cloud computing, CMU
5 Revised: 04/3/2017

Monitoring

15-719/18-847b: Advanced cloud computing, CMU
6 Revised: 04/3/2017

A key cloud-specific issue

e Cloud providers and users usually do not
wish to share information

e As such:

e Counters normalized to VM capacity

* e.g., percentage of AWS instance

* Provider logs/traces not visible to users

15-719/18-847b: Advanced cloud computing, CMU
7 Revised: 04/3/2017

Ganglia [Massie04]

e Designed for HPC environments
e Paper assumes bare-metal hardware

e (Collects and aggregates counters
e Counters can be app or machine specific
e Within cluster, counters visible everywhere

e Counters from multiple clusters aggregated

15-719/18-847b: Advanced cloud computing, CMU
8 Revised: 04/3/2017

Ganglia architecture

Source: The ganglia distributed monitoring
system: design, implementation, and
experience. Parallel Computing, Volume 30,
Issue 7, July 2004.

I .. I ..
; failover ; failover

/

XDR over UDP
il "?‘"7‘"7" il Al)
| | gmond| | gmond gmond| ' | [gmond| | gmond gmond :
I
| o 0 o0 o 0 o
| Node Node Node | ! : Node Node Node | !
- | - |
Cluster Cluster
15-719/18-847b: Advanced cloud computing, CMU
9 Revised: 04/3/2017
9

AWS CloudWatch

e Provides monitoring for all AWS resources
e EC2 counters show VM-normalized values

¢ Also, can monitor app-specific metrics

15-719/18-847b: Advanced cloud computing, CMU
10 Revised: 04/3/2017

10

End-to-end tracing

15-719/18-847b: Advanced cloud computing, CMU
1 Revised: 04/3/2017

11

End-to-end tracing overview

e Focus of many research efforts for ~10 yrs
e Currently used in Google, Bing, etc.
e Traces show causality-related activity

e Trace: set of events from different threads/
machines merged & sorted by causality

e E.g., flow of indiv. requests (request flows)

15-719/18-847b: Advanced cloud computing, CMU
12 Revised: 04/3/2017

12

End-to-end tracing
implementation

® Tracing infrastructure tracks trace points
touched by individual requests

e Some “start” traces (eg. user request rec’d)
e QOthers propagate trace ID created at start

e Traces obtained by stitching together trace
points accessed by individual requests

¢ Hard to account for async and batched work

15-719/18-847b: Advanced cloud computing, CMU
13 Revised: 04/3/2017

13

Throttling by Sampling

e Users trace too little or too much

e Limit user bytes added per trace span

e Request sampling to limit global overhead
e Collects all trace points for a req. or none
e Hash trace ID to [0,1] and keep if < threshold

¢ Allows end-2-end tracing to be “always on”

15-719/18-847b: Advanced cloud computing, CMU
14 Revised: 04/3/2017

14

End-to-end tracing architecture

presentation layer (visualization)

trace e N
construction

0 trace points

..} causal tracking

8 storage/
construction
N

sampling
decision

App Server Client Server Distributed
Tahla Stara FIIeSyStem)
15-719/18-847b: Advanced cloud computing, CMU
15 Revised: 04/3/2017
15

A few key design questions

e How much representational power?
e DAGsS, trees, or paths?

e \What causal relationships to preserve?
e Read-after-write, contention, etc.

¢ How many request flows to sample?

¢ Where to make sampling decision?

15-719/18-847b: Advanced cloud computing, CMU
16 Revised: 04/3/2017

16

A DAG-based request flow

_) NFS server
() Storage node 1
() Storage node 2

SN1
| o Y [_

Nodes show trace points & edges show latencies
\IIUWWISJWH 8-g47bjAdyaiieed cIou'g(;:Vc;;n‘:\;()jl:lt(i)r:f;:,s/(é‘.l(\)/I1U7

17

Dapper [Sigelman10]

e Google’s impl. of end-2-end tracing

® In use since at least 2008
e Similar in architecture to other examples

¢ But, optimized for traces expected at Google
® Trace records gathered in external system

® median lat. 15s, 25% of time 98%°tile > hrs

15-719/18-847b: Advanced cloud computing, CMU
18 Revised: 04/3/2017

18

Dapper design decisions

e Traces represented as trees of of RPCs
* Node contains all work done for an RPC

e Edges indicate new RPC calls/replies

Core tracing infrastruct. + developer adds

Sampling decision made at request entry

e Based on hash of root ID (keep x% traces)

15-719/18-847b: Advanced cloud computing, CMU
19 Revised: 04/3/2017

19

Example Dapper trace tree

(time) —

Frontend.Request
(no parent id)
span id: 1

. Backend.Call
—— parentid: 1
span id: 2

Backend.DoSomething '
parent id: 1 Ee—
spanid: 3 .

parent id: 3
span id: 4

A

Helper.Call
parent id: 3
span id: 5

20 22 24 26 28 30

15-719/18-847b: Advanced cloud computing, CMU
20 Revised: 04/3/2017

20

Dapper Ul Example

Job Selection ©

Start Date: |05/06/2008

StartHour:j09 @

End Date: [05/06/2008

End Hour: |10 @

Cluster: |cuusteraBC ~|
User: usert23 =
Job: ljobXYZ |

Node Information &

I~ User
[~ RPC or Span Name

Global Local L
solute Scaled
Total 90%ile 90%ile View

) o

e Calls (ms) & Contribution (ms) "'(;‘:fg"' Hl(l"t‘:)y:m 2]
(count) & ~ (2]

All® 40,990,720 (100.00%) 139,773,132.8 (100.00%) 4,098,118 (100.00%) 8.91

E 3450880 (842%) 394373120(28.22%) 1918437 (4681%) 19.17

R 1,658,880 (4.05%) 55,939,686.4 (40.02%) 1,658,880 (40.48%) 47.21

Simplified Call Tree &

Min Max
I~ Job ms) ~ (ms) Trce?
. 4020 5150 Example
Cost Metric & y 3140 4020 Example
etdocs
@ Latency © J : 2450 5140 Examoi
¢ Parent Latency ® B 2450 3140 Example
" Request Size & [thing1 ‘ [thing2 | [helper1 | 2450 3140 Example
lad Respoﬂse Size® 2450 3140 Example 4
R 19.10 2450 Example ¥
© Recursive Size ® A
¢ Recursive Queue Time &
0 sms 10ms 15ms 20ms 25ms 30ms 35ms 40ms 45ms
=L] = 2oaciB web mixersenve —+ poRh3E merascor getdocs
] = pohh38/ ms.rascorer — poanid/ m.cacheserver thing1
@ N — £hh38/ m s rascorer -» poab23/ ms.p ascorer helpert
‘ 1 — £9hh38/ s rascorer -* poactl ms.p.ascorer helper!
a I I pohh38/ ms.rascorer * poah38/ ms.p.ascorer helpert
T < 293h38 mep ascorer + poahiE/ melsscorer helper2
™ £08h38/ ms.p.ascorer —» poah21/ ms.lascorer helper2
I — ns poah38/ ms.p.ascorer ~* poahl17/ ms.lascorer helper2
@ | — ns pohh38/ms.rascorer - poailQ/ ms.p.ascorer helperl
8 | — + pohh38/ ms.rascorer - poao22/ ms.p.ascorer helpert
& I — pohh38/ m.s.r.ascorer ~* poap10/ ms.p.ascorer helpert
+ | — ns pohh38/ ms.rascorer — poawi2/ ms.p.ascorer helpert

Figure 6: A typical user workflow in the general-purpose Dapper user interface.

21

End-to-end tracing

analys

s tools

15-719/18-847b: Advanced cloud computing, CMU

22

Revised: 04/3/2017

22

Spectroscope
[Sambasivanii]

e | ocalizes performance degradations

e By ID’ing changed request flows

e Qutput:
e Groups of before/after request flows

e Some changes automatically ID’d

15-719/18-847b: Advanced cloud computing, CMU
23 Revised: 04/3/2017

23

Spectroscope workflow

Before degradation After degradation
request flows request flows

\[Grouping]/

N‘*
Structural change Response-time only
identification change identification

\[Ranking /

v
[Presentation

"

S

15-719/18-847b: Advanced cloud computing, CMU
24 Revised: 04/3/2017

24

Automatically ID’d changes

» Same structure is same trace points
- Groups w/structural changes

- ldentified via heuristics (e.g. freq. of types)
- Groups w/response-time changes

- Have identical flows in both periods
- ID’d via statistical significance testing

15-719/18-847b: Advanced cloud computing, CMU
25 Revised: 04/3/2017

25

Group w/structural changes

Before After
10us Ous
408 08 Lock -
20us O I
@ 350us|
S0us o :

I
NFS Lookup Reply MDS DB Unlock > —
@ 50us

Developers localize root cause by ID’ing how
differences before/after degradation

26

Group w/response time

Before degradation avg. After degradation avg.
response time: 110us response time: 1,090us

NFS Read Call
Avg. 10us

SN1 Read Start

A

Avg. 20pus
Avg. 1,000pus

SN1 Read End

@ Avg. 23();1/3}\

Root cause localized by ID’ing responsible interaction
Rt e

15-719/18-847b: Advanced cloud computing, CMU
27 Revised: 04/3/2017

27

Summary

e Debugging distributed systems is hard

e Performance debugging is harder still
e Monitoring is counting without causation
e But people want examples (traces)

e Too much statistical analysis slows trust

® Traces are logistically expensive, quick to rot

15-719/18-847b: Advanced cloud computing, CMU
28 Revised: 04/3/2017

28

