
Diagnosis via
monitoring & tracing

Greg Ganger, Garth Gibson, Majd Sakr
adapted from Raja Sambasivan

15-719: Advanced Cloud Computing
Spring 2017

1

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Problem diagnosis is difficult

• For developers of clouds

• For cloud users (i.e., software developers)

• Must debug own applications

• Must debug interactions w/cloud

• E.g., is a slowdown due to other VMs or my app?

2

2

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Monitoring via perf. counters

• Yields counters of low-level data

• E.g., CPU time, disk I/Os, etc.

• E.g., AWS CloudWatch, Ganglia

• Pros: Lightweight, commonly available

• Cons: Black-box; machine oriented

3

3

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Logging events of interest

• Yields detailed text describing system’s
behavior (e.g., application, OS, VM, etc.)

• Available in most systems (in some form)

• Pros: White-box approach

• Cons: High overhead; machine-oriented

4

4

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

End-to-end activity tracing

• Similar to logging, but workflow-based

• E.g., Dapper, Stardust, X-Trace, etc.

• Pros: White box, shows workflow

• Cons: Requires system modifications

5

5

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/20176

Monitoring

6

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

A key cloud-specific issue

• Cloud providers and users usually do not
wish to share information

• As such:

• Counters normalized to VM capacity

• e.g., percentage of AWS instance

• Provider logs/traces not visible to users

7

7

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Ganglia [Massie04]

• Designed for HPC environments

• Paper assumes bare-metal hardware

• Collects and aggregates counters

• Counters can be app or machine specific

• Within cluster, counters visible everywhere

• Counters from multiple clusters aggregated

8

8

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Ganglia architecture

9

Ganglia federates multiple clusters together using a tree of point-to-point connec-
tions. Each leaf node specifies a node in a specific cluster being federated, while
nodes higher up in the tree specify aggregation points. Since each cluster node con-
tains a complete copy of its cluster’s monitoring data, each leaf node logically rep-
resents a distinct cluster while each non-leaf node logically represents a set of
clusters. (We specify multiple cluster nodes for each leaf to handle failures.) Aggre-
gation at each point in the tree is done by polling child nodes at periodic intervals.
Monitoring data from both leaf nodes and aggregation points is then exported using
the same mechanism, namely a TCP connection to the node being polled followed by
a read of all its monitoring data.

4. Implementation

The implementation consists of two daemons, gmond and gmetad, a command-
line program gmetric, and a client side library. The Ganglia monitoring daemon
(gmond) provides monitoring on a single cluster by implementing the listen/
announce protocol and responding to client requests by returning an XML represen-
tation of its monitoring data. gmond runs on every node of a cluster. The Ganglia
Meta Daemon (gmetad), on the other hand, provides federation of multiple clus-
ters. A tree of TCP connections between multiple gmetad daemons allows monitor-
ing information for multiple clusters to be aggregated. Finally, gmetric is a
command-line program that applications can use to publish application-specific
metrics, while the client side library provides programmatic access to a subset of
Ganglia’s features.

4.1. Monitoring on a single cluster

Monitoring on a single cluster is implemented by the Ganglia monitoring daemon
(gmond). gmond is organized as a collection of threads, each assigned a specific task.

client

gmetad

gmetad

gmetad

Node

gmond

Node

gmond

Node

gmond. . .
Node

gmond

Node

gmond

Node

gmond. . .

dataconnect

failoverpoll

poll poll

failoverpoll

Cluster Cluster

XML over TCP

XDR over UDP

Fig. 1. Ganglia architecture.

822 M.L. Massie et al. / Parallel Computing 30 (2004) 817–840

Source: The ganglia distributed monitoring
system: design, implementation, and

experience. Parallel Computing, Volume 30,
Issue 7, July 2004.

9

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

AWS CloudWatch

• Provides monitoring for all AWS resources

• EC2 counters show VM-normalized values

• Also, can monitor app-specific metrics

10

10

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/201711

End-to-end tracing

11

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

End-to-end tracing overview

• Focus of many research efforts for ~10 yrs

• Currently used in Google, Bing, etc.

• Traces show causality-related activity

• Trace: set of events from different threads/
machines merged & sorted by causality

• E.g., flow of indiv. requests (request flows)

12

12

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

End-to-end tracing
implementation

• Tracing infrastructure tracks trace points
touched by individual requests

• Some “start” traces (eg. user request rec’d)

• Others propagate trace ID created at start

• Traces obtained by stitching together trace
points accessed by individual requests

• Hard to account for async and batched work

13

13

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Throttling by Sampling

• Users trace too little or too much

• Limit user bytes added per trace span

• Request sampling to limit global overhead

• Collects all trace points for a req. or none

• Hash trace ID to [0,1] and keep if < threshold

• Allows end-2-end tracing to be “always on”

14

14

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

End-to-end tracing architecture

15

• causality slice choice

App Server

Table Store

Distributed
Filesystem

Client Server

trace storage
(optional)

trace points

storage/
construction

trace
construction

causal tracking

presentation layer (visualization)

• trace representation

conceptual choices

sampling
decision

15

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

A few key design questions

• How much representational power?

• DAGs, trees, or paths?

• What causal relationships to preserve?

• Read-after-write, contention, etc.

• How many request flows to sample?

• Where to make sampling decision?

16

16

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

A DAG-based request flow

17

SN1
Reply

1,500μs
SN2

Reply

1,500μs

9

NFS Read
Call

Cache
Miss

100μs

SN1 Read
Call

SN2 Read
Call

10μs 10μs

NFS
Reply10μs 10μs

Response-time:
8,120μs

Work on
SN1

Work on
SN2

1,000μs 1,000μs

3,500μs 5,500μs

Nodes show trace points & edges show latencies

Storage node 1
NFS server

Storage node 2

17

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Dapper [Sigelman10]

• Google’s impl. of end-2-end tracing

• In use since at least 2008

• Similar in architecture to other examples

• But, optimized for traces expected at Google

• Trace records gathered in external system

• median lat. 15s, 25% of time 98%tile > hrs

18

18

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Dapper design decisions

• Traces represented as trees of of RPCs

• Node contains all work done for an RPC

• Edges indicate new RPC calls/replies

• Core tracing infrastruct. + developer adds

• Sampling decision made at request entry

• Based on hash of root ID (keep x% traces)

19

19

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Example Dapper trace tree

20

tem on behalf of a given initiator. For example, Fig-
ure 1 shows a service with 5 servers: a front-end (A),
two middle-tiers (B and C) and two backends (D and E).
When a user request (the initiator in this case) arrives at
the front end, it sends two RPCs to servers B and C. B
can respond right away, but C requires work from back-
ends D and E before it can reply to A, which in turn re-
sponds to the originating request. A simple yet useful
distributed trace for this request would be a collection
of message identifiers and timestamped events for every
message sent and received at each server.

Two classes of solutions have been proposed to ag-
gregate this information so that one can associate all
record entries with a given initiator (e.g., RequestX in
Figure 1), black-box and annotation-based monitoring
schemes. Black-box schemes [1, 15, 2] assume there is
no additional information other than the message record
described above, and use statistical regression techniques
to infer that association. Annotation-based schemes
[3, 12, 9, 16] rely on applications or middleware to
explicitly tag every record with a global identifier that
links these message records back to the originating re-
quest. While black-box schemes are more portable than
annotation-based methods, they need more data in order
to gain sufficient accuracy due to their reliance on sta-
tistical inference. The key disadvantage of annotation-
based methods is, obviously, the need to instrument pro-
grams. In our environment, since all applications use the
same threading model, control flow and RPC system, we
found that it was possible to restrict instrumentation to
a small set of common libraries, and achieve a monitor-
ing system that is effectively transparent to application
developers.

We tend to think of a Dapper trace as a tree of nested
RPCs. However, our core data model is not restricted
to our particular RPC framework; we also trace activ-
ities such as SMTP sessions in Gmail, HTTP requests
from the outside world, and outbound queries to SQL
servers. Formally, we model Dapper traces using trees,
spans, and annotations.

2.1 Trace trees and spans

In a Dapper trace tree, the tree nodes are basic units of
work which we refer to as spans. The edges indicate a
casual relationship between a span and its parent span.
Independent of its place in a larger trace tree, though, a
span is also a simple log of timestamped records which
encode the span’s start and end time, any RPC timing
data, and zero or more application-specific annotations
as discussed in Section 2.3.

We illustrate how spans form the structure of a larger
trace in Figure 2. Dapper records a human-readable span
name for each span, as well as a span id and parent id

Figure 2: The causal and temporal relationships be-
tween five spans in a Dapper trace tree.

in order to reconstruct the causal relationships between
the individual spans in a single distributed trace. Spans
created without a parent id are known as root spans. All
spans associated with a specific trace also share a com-
mon trace id (not shown in the figure). All of these ids
are probabilistically unique 64-bit integers. In a typical
Dapper trace we expect to find a single span for each
RPC, and each additional tier of infrastructure adds an
additional level of depth to the trace tree.

Figure 3 provides a more detailed view of the logged
events in a typical Dapper trace span. This particular
span describes the longer of the two “Helper.Call” RPCs
in Figure 2. Span start and end times as well as any RPC
timing information are recorded by Dapper’s RPC library
instrumentation. If application owners choose to aug-
ment the trace with their own annotations (like the “foo”
annotation in the figure), these are also recorded with the
rest of the span data.

It is important to note that a span can contain informa-
tion from multiple hosts; in fact, every RPC span con-
tains annotations from both the client and server pro-
cesses, making two-host spans the most common ones.
Since the timestamps on client and server come from

Figure 3: A detailed view of a single span from Fig-
ure 2.

3

20

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Dapper UI Example

21

21

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/201722

End-to-end tracing
analysis tools

22

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Spectroscope
[Sambasivan11]

• Localizes performance degradations

• By ID’ing changed request flows

• Output:

• Groups of before/after request flows

• Some changes automatically ID’d

23

23

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Spectroscope workflow

24

Before degradation
request flows

After degradation
request flows

Ranking

Grouping

Structural change
identification

Response-time only
change identification

Presentation

24

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Automatically ID’d changes

• Same structure is same trace points
• Groups w/structural changes

• Identified via heuristics (e.g. freq. of types)
• Groups w/response-time changes

• Have identical flows in both periods
• ID’d via statistical significance testing

25

25

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/201726

Before

10μs

20μs

50μs

NFS Lookup Call

MDS DB Lock

MDS DB Unlock

NFS Lookup Reply

10μs

50μs

After
NFS Lookup Call

MDS DB Lock

MDS DB Unlock

NFS Lookup Reply

350μs

Developers localize root cause by ID’ing how
differences before/after degradation

Group w/structural changes

26

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Group w/response time

27

After degradation avg.
response time: 1,090μs

Before degradation avg.
response time: 110μs

Avg. 10μs

Avg. 20μs
Avg. 1,000μs

Avg. 80μs

NFS Read Call

SN1 Read Start

SN1 Read End

NFS Read ReplyRoot cause localized by ID’ing responsible interaction

27

15-719/18-847b: Advanced cloud computing, CMU
Revised: 04/3/2017

Summary

• Debugging distributed systems is hard

• Performance debugging is harder still

• Monitoring is counting without causation

• But people want examples (traces)

• Too much statistical analysis slows trust

• Traces are logistically expensive, quick to rot

28

28

