
Cloud Storage 2

15-719 Advanced Cloud Computing

Garth Gibson
Greg Ganger
Majd Sakr

Feb 15, 2017 15719 Adv. Cloud Computing 1

Cloud storage options
•  Provide an ”traditional” filesystem for clients’ VM

–  API/consistency tuned for expected apps
–  E.g., pNFS, Google file system, HDFS

•  Provide a containerized (traditional) union filesystem on client
–  Union FS does pathname lookup in one namespace, then a second, third, etc taking the first

instance found; allows reuse of common (lower level) file systems
–  Populate private top layers of union (the container) from repositories of FS images (pull & untar)
–  E.g., Docker

•  Provide just a block store (a virtual disk) to VM
–  Let clients build needed filesystem (is this a simplification?)
–  E.g., AWS EBS, Eucalyptus VBS

•  Provide an archive store (an object store) separate from VM
–  Simple put/get semantics (like UNIX SCP)

•  CRUD: Create, Read, Update, Delete API
•  HDFS “Block”: single writer, sequential write, immutable on close

–  Explicitly external for thinking about failures
•  Archive, backup & disaster recovery, simple sharing

–  E.g. AWS S3, UNIX FTP/SCP, Box/Dropbox, iCloud

2

Containerized Union Filesystem
•  Containers customize OS in “hypervisor”

–  Base OS is shared, so startup is faster, but customizations limited

•  Container file system is union of multiple FS
–  Search in specific order, so lots of file be shared between containers
–  Can “white out” specific files; can copy-on-write into private layers
–  Use pull from image repository to build customized images

•  Even with sharing, still lots of unnecessary data access during startup
–  Harter16 shows Docker “hello world” millions of pulls, little of it read

3 Gao09

[Harter, FAST16]

AWS EBS or OpenStack Cinder
•  Allows users to create virtual disks (VDs)

–  1GB to 1TB in size

•  VDs behave like block devices
–  Can be formatted; can be used like a HD; inherently not shared

•  VDs are replicated for availability
–  Can also be snapshotted and stored in object store (S3, etc)

4 Gao09

Details & implementation
•  Clients access VDs with low-level protocol

–  E.g., iSCSI, not NFS
–  Reason may be non-technical

•  early VM providers were not distributed file system vendors

•  VDs often implemented as files in disk
–  Allows for expansion/shrinking (“thin provisioning”)
–  But can result in performance interference

5

Software Defined Networking (SDN)

•  Before SDN, lots of switches separately configured by admin
o  Many vendors, unique protocols and capabilities

o  System wide results hard to predict and control

•  After SDN, all switches configured by SDN controller
o  Individual switches have little policy (just simple forwarding rules)

•  Individual switches cheaper (this alone facilitates deployment)
o  All exceptions to simple rules go to SDN controller

o  SDN controller sees all, so “maybe” plans global optimal forwarding rules

o  SDN controller not on data path most of time, so can be centralized
•  Maybe expensive but cost is amortized

Feb 15, 2017 15719 Adv. Cloud Computing 6

Software Defined Storage (SDS)

•  By analogy to SDN, separate execution path from planning path
•  Homogenize all device & SW with capabilities abstractions & API

o  E.g. disk size, disk speed, RAID reliability, RAID speed, cache coherence
o  Can commoditize device costs (driving down prices)

•  Homogenize all workloads with requirements abstraction & API
o  E.g. speed, reliability, access pattern, utility of old data

•  Develop a placement scheduler to match requirement to capability
o  Maybe simple “good enough” compatibility plus cost of service

•  Maybe apply continual evaluation and optimizing reconfiguration
o  An appealing idea that suffers from interference >> benefit too often

•  Really a “Quality of Storage” abstraction

Feb 15, 2017 15719 Adv. Cloud Computing 7

Background on Quality of Service (QoS)

•  Quality of service (QoS) generalizes Quality of Storage (QoSt)
o  Service level objectives (SLO): goals, requirements, priorities

•  Eg. Cloud service available > 99.999% 0f year
o  Service level agreements (SLA): contract with failure penalties

•  E.g 25% refund if availability (99.99-99.999)%,
50% refund if (99.9%-99.99)%, money back otherwise

•  Usually restricts customer too
–  Eg. Reconfiguration downtime not counted, service load bounded

to <= 6000 requests per minute
–  If bound is exceeded, a non-penalty outage of N minutes may occur

in the next hour

•  Monetary/contractual side makes continual optimization feasible
o  CFO funds initial design, adding/removing funds with frequency of penalties

Feb 15, 2017 15719 Adv. Cloud Computing 8

Quality of Storage (QoSt)

•  History of QoSt is series of attempts on SLO/SLA APIs
o  SNMP – peek into appliance internals to see what it is doing
o  SMIS – object model of system; sub classes specializing device function
o  TOSCA/OSLC – IBM’s new JSON/XML specification language

•  Problem with SLO/SLA is unpredictability of complex systems
o  Models of complex systems not accurate much of the time
o  Optimal matching only possible in simplified view of system
o  Leads to over-promising and under-delivering at technology level
o  CFO doesn’t care that much because contract terms and alternative

suppliers “optimization” works anyway (provided agility to change)

Feb 15, 2017 15719 Adv. Cloud Computing 9

One aggressive demonstration of QoSt

•  IOFlow: a Software-Defined Storage Architecture.

Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis,

Antony Rowstron, Tom Talpey, Richard Black, Timothy Zhu.

SOSP 2013, Farmington PA, Nov 2013.
o  SDN “forwarding rules” replaced with “request queue ordering”

o  Flows are abstraction of SLO, service binding, data & requests
•  Used for bandwidth allocation & sharing, content checking,

prioritization for latency

Feb 15, 2017 15719 Adv. Cloud Computing 10

Next day plan

•  Scheduling

Feb 15, 2017 15719 Adv. Cloud Computing 11

IOFlow: a Software-Defined Storage
Architecture

 Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas
Karagiannis,

Antony Rowstron, Tom Talpey, Richard Black, Timothy Zhu

Microsoft Research!
You!may!re*use!these!slides!freely,!but!please!cite!them!appropriately:!
“IOFlow:!A!So>ware*Defined!Storage!Architecture.!Eno!Thereska,!Hitesh!Ballani,!Greg!O'Shea,!Thomas!Karagiannis,!!
Antony!Rowstron,!Tom!Talpey,!and!Timothy!Zhu.!!In!SOSP'13,!Farmington,!PA,!USA.!November!3*6,!2013.!“!

Background: Enterprise data centers

•  General purpose applications
•  Application runs on several VMs

•  Separate network for VM-to-VM
 traffic and VM-to-Storage traffic

•  Storage is virtualized

•  Resources are shared

Switch Switch Switch

S-NIC S-NIC

S-NIC NIC S-NIC NIC

VM VM VM Virtual
Machine

vDisk

VM VM VM Virtual
Machine

vDisk

2

Motivation
!
!
!
!
!
!
!

It!is!hard!to!provide!such!SLAs!today!

!
Want:!predictable!applicaYon!behaviour!and!performance!
!
Need!system!to!provide!end*to*end!SLAs,!e.g.,!!
•  Guaranteed!storage!bandwidth!B!
•  Guaranteed!high!IOPS!and!priority!
•  Per*applicaYon!control!over!decisions!along!IOs’!path!

3!

…
!

IOFlow architecture

App!
OS!

App!
OS!

Controller!

High*level!SLA!

4!

IOFlow!API!

Decouples!the!data!plane!(enforcement)!from!the!!
control!plane!(policy!logic)!!IO#Packets

...

Queue#nQueue#1

Storage flows
Storage!“Flow”!refers!to!all!IO!requests!to!which!an!SLA!applies!

! <{VMs}, {File Operations}, {Files}, {Shares}> ---> SLA

•  Aggregate,!per*operaYon!and!per*file!SLAs,!e.g.,!!
 <{VM 1-100}, write, *, \\share\db-log}>---> high priority
 <{VM 1-100}, *, *, \\share\db-data}> ---> min 100,000 IOPS

•  Non*performance!SLAs,!e.g.,!path!rouYng!
!!!!!<VM 1, *, *, \\share\dataset>---> bypass malware scanner

5!

source!set! desYnaYon!sets!

IOFlow API: programming data plane queues
!
1.!ClassificaYon![IO!Header!*>!Queue]!
2.!Queue!servicing![Queue!*>!<token)rate,)priority,)queue)size>]!
3.!RouYng![Queue!*>!Next6hop]!
!
!

Malware!!
scanner!

6!

Rate limiting for congestion control
Queue!servicing![Queue!*>!<token!rate,!priority,!queue!size>]!

!
•  Important!for!performance!SLAs!
•  Today:!no!storage!congesYon!control!

Challenging!for!storage:!e.g.,!how!to!rate!limit!two!VMs,!one!
reading,!one!wriYng!to!get!equal!storage!bandwidth?!

!
!

7!

IOs!

tokens!

Rate limiting based on cost
!  Controller!constructs!empirical!cost!models!based!on!
device!type!and!workload!characterisYcs!
!  RAM,!SSDs,!disks:!read/write!raYo,!request!size!

!  Cost!models!assigned!to!each!queue!
!  ConfigureTokenBucket)[Queue)6>)cost)model])

!  Large!request!sizes!split!for!pre*empYon!
8!

Distributed, dynamic enforcement

•  SLA!needs!per*VM!enforcement!
•  Need!to!control!the!aggregate!rate!of!

VMs!1*4!that!reside!on!different!
physical!machines!

•  StaYc!parYYoning!of!bandwidth!is!!!!
sub*opYmal!

<{Red!VMs!1*4},!*,!*!//share/dataset>!**>!Bandwidth!40!Gbps!

9!

VM VM VM VM VM VM
VM VM

40Gbps!

IOFlow implementation

VM
1

VM
2

VM
3

Application

VM
4

SMBc

Physical1NIC

Network1driver

Physical1NIC

1

SMBs

File
system

Network1
driver

Disk
driver

Compute.Server Storage.Server

Guest
OS

Hypervisor

File
system

Block
device

VHD
Scanner

Controller,

12!

2!key!layers!for!
VM*to*Storage!!
performance!SLAs!

4!other!layers!
.!Scanner!driver!(rouYng)!
.!User*level!(rouYng)!
!
.!Network!driver!!
.!Guest!OS!file!system!

Implemented!as!filter!drivers!on!top!of!layers!

Summary of contributions
!
•  Defined!and!built!storage!control!plane!
•  Controllable!queues!in!data!plane!
•  Interface!between!control!and!data!plane!(IOFlow!

API)!

•  Built!centralized!control!applicaYons!that!
demonstrate!power!of!architecture!!

•  Ongoing)work:)applying)to)public)cloud)scenarios)

!

13!

Related work (1)
" Software-defined Networking (SDN)
"  [Casado et al. SIGCOMM’07], [Yan et al. NSDI’07], [Koponen et al.

OSDI’10], [Qazi et al. SIGCOMM’13], and more in associated
workshops.

"  OpenFlow [McKeown et al. SIGCOMM Comp. Comm.Review’08]
"  Languages and compilers [Ferguson et al. SIGCOMM’13], [Monsanto

et al. NSDI’13]

" SEDA [Welsh et al. SOSP’01] and Click [Kohler et al. ACM
ToCS’00]

14

Related work (2)
" Flow name resolution
"  Label IOs [Sambasivan et al. NSDI’11], [Mesnier et al. SOSP’11], etc

" Tenant performance isolation
"  For storage [Wachs et al. FAST’07], [Gulati et al. OSDI’10], [Shue et al.

OSDI’12], etc.
"  For networks [Ballani et al. SIGCOMM’11], [Popa et al. SIGCOMM’12]
"  Distributed rate limiting [Raghavan et al. SIGCOMM’07]

15

