

Programming Models and Frameworks: Iterative Computation

Advanced Cloud Computing

15-719/18-847b

Garth Gibson Greg Ganger Majd Sakr

Advanced Cloud Computing Programming Models

 Ref 1: Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Hellerstein (2010). "GraphLab: A New Parallel Framework for Machine Learning." Conf on Uncertainty in Artificial Intelligence (UAI).

http://www.select.cs.cmu.edu/publications/scripts/papers.cgi

 Ref 2: Spark: cluster computing with working sets. Matei Zaharia, Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica. USENIX Hot Topics in Cloud Computing (HotCloud'10).

http://www.cs.berkeley.edu/~matei/papers/2010/hotcloud_spark.pdf

Advanced Cloud Computing Programming Models

- Optional
- Ref 3: DyradLinQ: A system for general-purpose distributed data-parallel computing using a high-level language. Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson, Pradeep Kumar Gunda, Jon Currey. OSDI'08.
 <u>http://research.microsoft.com/en-us/projects/dryadlinq/dryadlinq.pdf</u>
- Ref 5: TensorFlow: A system for large-scale machine learning. Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeff Dean, Matthieu Devin, Sanjay Ghemawatt, Geoffrey Irving, Michael Isard. OSDI'16.
 <u>https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf</u>

Map/Reduce as Elastic Big Data Processing

- Big data has lots of input: divide into many splits to be 'map'ed
- Queue map tasks on virtual cores

- Partition map task output to load balance work in reduce tasks
- Effective elastic exploitation of more data on map task side
 - Critical to scalability: partition function & reduce function
 - Unfortunate partition -> imbalanced load, degrade to little parallelism
 - Unfortunate reduce -> may need pre-sort (out of core), highly sensitive to real memory availability (too little -> more out of core; too much -> thrashes)

- Abstract as a sequential program in one machine (driver)
 Driver sends work to a separate cluster (workers) to do map/reduce
- Combine map functions (spark calls these transformations)
 - [°] E.g. rdd_x.map(foo).map(bar) is 2 passes of MR with null reduces
 - Spark creates function foo_bar() that combines foo() & bar() in map task
 - Spark transforms combine this way until a shuffle is unavoidable (stage)
- Is big data big? (100X prior examples is big, but might only be GBs)
 - Cache reduce outputs in memory (or discard & recompute as needed)
 - 'cat <in | wc >out2' versus 'cat <in >out1; wc <out1 >out2'
 - for thin map() and reduce() functions, capturing out1 can be costly
- Automate splitting/partitioning (unless overridden)

DryadLinq

- Simplify efficient data parallel code
 - Compiler support for imperative and declarative (eg., database) operations
 - Extends MapReduce to workflows
 that can be collectively optimized
- Data flows on edges between processes at vertices (workflows)
- Coding is processes at vertices and expressions representing workflow
- Interesting part of the compiler operates on the expressions
 - Inspired by traditional database query optimizations rewrite the execution plan with equivalent plan that is expected to execute faster

DryadLinq

- Data flowing through a graph abstraction
 - Vertices are programs (possibly different with each vertex)
 - Edges are data channels (pipe-like)
 - Requires programs to have **no side-effects** (no changes to shared state)
 - Apply function similar to MapReduce reduce open ended user code
- Compiler operates on expressions, rewriting execution sequences
 - Exploits prior work on compiler for workflows on sets (LINQ)
 - Extends traditional database query planning with less type restrictive code
 - Unlike traditional plans, virtualizes resources (so might spill to storage)
 - Knows how to partition sets (hash, range and round robin) over nodes
 - Doesn't always know what processes do, so less powerful optimizer than database – where it can't infer what is happening, it takes hints from users
 - Can auto-pipeline, remove redundant partitioning, reorder partitionings, etc

Example: MapReduce (reduce-reorderable)

- DryadLinq
 compiler can
 pre-reduce,
 partition,
 sort-merge,
 partially
 aggregate
- In MapReduce you "configure" this youself

Figure 6: Execution plan for MapReduce, described in Section 4.2.4. 15719 Adv. Cloud Computing 8

"Killer App" for Big Data:

Machine Learning

Machine Learning (ML) works

"... easily accessible digital records of behavior, Facebook Likes, can be used to automatically and accurately predict a range of highly sensitive personal attributes ... model correctly discriminates between homosexual and heterosexual men in 88% of cases, African Americans and Caucasian Americans in 95% of cases, and between Democrat and Republican in 85% of cases."

"The study is based on a sample of 58,466 volunteers from the United States, obtained through the myPersonality Facebook application (www.mypersonality.org/wiki), which included their Facebook profile information, a list of their Likes (n = 170 Likes per person ..."

2005 NIST Arabic-English Competition

Translate 100 articles • 2005 : Google wins! Qualitatively better 1st entry Not most sophisticated approach No one knew Arabic Brute force statistics But more data & compute !! 200M words from UN translations 1 billion words of Arabic docs 1000 processor cluster

→ Can't compete w/o big data

Stages of Machine Learning

- Data collection
 - Logistics, cleaning,
- Model selection
 - Domain knowledge
- Data engineering
 - Extract, transform,
- Model training
 - Fit parameters to data
- Model inferencing
 - Predict/label outcome from model

100+ hours video uploaded every minute

645 million users 500 million tweets / day

Stages of Machine Learning

- Data collection
 - ^o Done mostly away from machine learning data center, then aggregated
- Model selection
 - Done offline from collection/engineering/training/inference
- Data engineering (project 2 part 1)
 - Multiple data passes (Map/Reduces), large data reduction
- Model training (project 2 part 2)
 - Start with a guess of parameters, test against recorded input and output data, adjust parameters, iterate many times (many data passes)
- Model inferencing
 - For one input, apply model and return one predicted output (no data passes)

Eg. Medical Research

- Collect human genome and disease outcome for lots of people
- Model disease probability as a linear model of presence of gene pairs

	┌ ATCG	Т	AAA		•••
Samples	ATCG	G	AAA	\longrightarrow	
(patients)	ATCG	т	ΑΑΑ	\longrightarrow	
	ATCG	Т	AAA	\longrightarrow	

- Millions to 10¹¹ (pair-wise genes) parameters; thousands of patients
- Model training is solving for "best" parameter weights
 - Under-determined set of equations for learning model of gene influence on disease; infinite number of parameter sets match observed outputs
 - Add figure of merit (objective function) to value a solution and search solution space for best merit

This computation needs to be parallelized!

Machine Learning (ML) via MapReduce (MR)

o) Store engineered data and initial model parameters in files
1) Split engineered data to map tasks; replicate/broadcast parameters
(this is known as "data parallel" decomposition)
2) Each map task tests model against data inputs & outputs and
computes changes in model parameters; send changes to reducers
3) Reducers combine changes from different map splits of data and
write a new model parameters file (and decide if training is over)
4) If training is not over, go to (1)

Problems with ML via MR

- If Hadoop, each map task and each reduce task are Java VM launch
- Iteration is in external scripts repeating Hadoop invocations
- Amount of compute per data item is not much
- No need to issue parameter update per data item; could pre-combine updates for same parameter in memory of each map

 So shuffle is not a flow, but a single set of parameter updates per map
- Reducer function is simple add updates for each parameter
 - $_{\circ}~$ Most work is communication through file system
- It may scale but overhead is high

Spark for ML via MR

- Don't write reducer output to file system; cache in memory
- Don't re-read engineered data from file system; cache in memory
- For small numbers of parameters, driver collect & broadcast
- Combine map transformations to try for one shuffle per iteration
- Don't launch separate Java VMs for each map task; retain one VM for all tasks across all iterations
- Potential speedup is large 10X in Spark paper

Parameter Servers

- ML via MR model moves parameter updates through MR shuffle to reducers, then combines all parameters into an RDD (possibly collected/broadcast by driver)
- Parameter Servers use a shared memory model for parameters
 - All map tasks can cache any/all parameters; changes are pushed to them
 - All reducers are replaced with atomic "add to parameter in shared mem"
 - Less data transmitted and less task overhead
 - Engineered data easily avoids repartitioning in the next iteration

Does ML via MR need to be synchronized

- Basic MR is functional; inputs are read-only, outputs write-only
 - All communication occurs through RDDs/file systems after one complete MR when a later MR reads the output file (RDD) of a prior MR
 - This separation of write-only output becoming read-only input is a barrier synchronization
- Parameter servers can be used synch or allowed to run asynch
 - Async works because ML is iterative approximation, converging to optimum provided async error is bounded

GraphLab: early tools for parameter servers

- GraphLab started not from Hadoop MR but from shared memory transaction processing lots of parallel updates ordered by locks
- GraphLab provides a higher level programming model
 - Data is associated with vertices and edges between vertices, inherently sparse (or we'd use a matrix representation instead)
 - Non zeroes in a matrix representation are edges or vertices
 - Lots of machine learning data sets, like social media, are very sparse
 - Update: code updates a vertex and its neighbor vertices in isolation
 - Iteration: one complete pass over the input data, calculating updates
 (Fold in GraphLab paper), then combine changes (Apply in GraphLab)

- Many machine learning algorithms are tolerant of some data races
 - $_{\circ}~$ "converging" to good enough may depend on data and schedule
- Graphlab allows some updates to "overlap" (not fully lock)
 - Much more parallel than matrix multiply because of the sparseness
 - Totally safe if the transactions don't update what is being overlapped
 - Ie., database serializable concurrent transactions guaranteed for edge or vertex consistency given restrictions on what the update code can do
- Natural for shared memory multithreaded update
 - Like HPC (distributed) simulation

Scheduling

- Graphlab allows some updates to do scheduling
 - Baseline is sequential execution of each vertex' update once per iteration

CPU 1

CPU 2

CPU 3

Execute Update

• Sparseness allows non-overlapping updates to execute in parallel

Update₁(v₁

Update₂(v_r

Update₁(v₃

Update₁(v₉)

Scheduler

- Opportunity for smart schedulers to exploit more app properties
 - Prioritize specific updates over other updates because these communicate more information more quickly
 - Possible to execute some updates more often than others

Data Dependency Graph

Shared Data Table

Data

Data

Data

Data

Data

Data

Data

Next day plan

- Project 2 part 2
- Cloud Storage comes next