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Advanced Cloud Computing Programming Models 

•  Ref 1: Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, 

Carlos Guestrin, and Joseph M. Hellerstein (2010). "GraphLab: A New 

Parallel Framework for Machine Learning." Conf on Uncertainty in 

Artificial Intelligence (UAI). 

http://www.select.cs.cmu.edu/publications/scripts/papers.cgi  

•  Ref 2: Spark: cluster computing with working sets. Matei Zaharia, 

Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica. 

USENIX Hot Topics in Cloud Computing (HotCloud’10). 

http://www.cs.berkeley.edu/~matei/papers/2010/hotcloud_spark.pdf  
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Advanced Cloud Computing Programming Models 

•  Optional 
•  Ref 3: DyradLinQ: A system for general-purpose distributed data-parallel 

computing using a high-level language.  Yuan Yu, Michael Isard, Dennis Fetterly, 
Mihai Budiu, Ulfar Erlingsson, Pradeep Kumar Gunda, Jon Currey.  OSDI’08.  
http://research.microsoft.com/en-us/projects/dryadlinq/dryadlinq.pdf 

•  Ref 5: TensorFlow: A system for large-scale machine learning. Martin Abadi, 
Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeff Dean, Matthieu 
Devin, Sanjay Ghemawatt, Geoffrey Irving, Michael Isard.  OSDI’16.   
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf 
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Map/Reduce as Elastic Big Data Processing 

•  Big data has lots 
of input: divide 
into many splits 
to be ‘map’ed 

•  Queue map tasks 
on virtual cores 

•  Partition map task output to load balance work in reduce tasks 
•  Effective elastic exploitation of more data on map task side 

o  Critical to scalability: partition function & reduce function 
•  Unfortunate partition -> imbalanced load, degrade to little parallelism 
•  Unfortunate reduce -> may need pre-sort (out of core), highly sensitive to real memory 

availability (too little -> more out of core; too much -> thrashes) 
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Through files (disk) 



Spark as Map/Reduce 2.0 

•  Abstract as a sequential program in one machine (driver)  
o  Driver sends work to a separate cluster (workers) to do map/reduce 

•  Combine map functions (spark calls these transformations) 
o  E.g. rdd_x.map(foo).map(bar) is 2 passes of MR with null reduces 
o  Spark creates function foo_bar() that combines foo() & bar() in map task 
o  Spark transforms combine this way until a shuffle is unavoidable (stage) 

•  Is big data big? (100X prior examples is big, but might only be GBs) 
o  Cache reduce outputs in memory (or discard & recompute as needed) 

•  ‘cat <in | wc >out2’ versus ‘cat <in >out1; wc <out1 >out2’ 
•  for thin map() and reduce() functions, capturing out1 can be costly  

•  Automate splitting/partitioning (unless overridden) 
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DryadLinq 

•  Simplify efficient data parallel code 
o  Compiler support for imperative and  

declarative (eg., database) operations 
o  Extends MapReduce to workflows  

that can be collectively optimized 

•  Data flows on edges between processes at vertices (workflows) 
•  Coding is processes at vertices and expressions representing workflow 
•  Interesting part of the compiler operates on the expressions 

o  Inspired by traditional database query optimizations – rewrite the 
execution plan with equivalent plan that is expected to execute faster 
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DryadLinq 

•  Data flowing through a graph abstraction 
o  Vertices are programs (possibly different with each vertex) 
o  Edges are data channels (pipe-like) 
o  Requires programs to have no side-effects (no changes to shared state) 
o  Apply function similar to MapReduce reduce – open ended user code 

•  Compiler operates on expressions, rewriting execution sequences 
o  Exploits prior work on compiler for workflows on sets (LINQ) 
o  Extends traditional database query planning with less type restrictive code 

•  Unlike traditional plans, virtualizes resources (so might spill to storage) 

o  Knows how to partition sets (hash, range and round robin) over nodes 
o  Doesn’t always know what processes do, so less powerful optimizer than 

database – where it can’t infer what is happening, it takes hints from users 
o  Can auto-pipeline, remove redundant partitioning, reorder partitionings, etc 
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Example: MapReduce (reduce-reorderable) 

•  DryadLinq  
compiler can 
pre-reduce, 
partition, 
sort-merge, 
partially  
aggregate 

•  In MapReduce 
you “configure” 
this youself 
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“Killer App” for Big Data: 

Machine Learning 
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Kosinski M et al. PNAS 2013;110:5802-5805 ©2013 by National Academy of Sciences 

“The study is based on a sample of 58,466 volunteers from the United States, obtained 
through the myPersonality Facebook application (www.mypersonality.org/wiki), which 
included their Facebook profile information, a list of their Likes (n = 170 Likes per person ...” 

“… easily accessible digital records of behavior, Facebook Likes, can be used to automatically 
and accurately predict a range of highly sensitive personal attributes … model correctly 
discriminates between homosexual and heterosexual men in 88% of cases, African Americans and 
Caucasian Americans in 95% of cases, and between Democrat and Republican in 85% of cases.” 
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Machine Learning (ML) works 
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2005 NIST Arabic-English Competition 

Translate 100 articles 
•  2005 : Google wins! 

Qualitatively better 1st entry 

Not most sophisticated approach  
No one knew Arabic 
Brute force statistics 

But more data & compute !! 
200M words from UN translations 
1 billion words of Arabic docs  
1000 processor cluster 

è Can’t compete w/o big data 
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Stages of Machine Learning 

•  Data collection 
o  Logistics, cleaning, …. 

•  Model selection 
o  Domain knowledge 

•  Data engineering 
o  Extract, transform, …. 

•  Model training 
o  Fit parameters to data 

•  Model inferencing 
o  Predict/label outcome from model 
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645 million users 
500 million tweets / day 
 

100+ hours video 
uploaded every 
minute 
 

      Collaborative 
filtering  

for Video recommendation: 
1 Billion 

                model  
parameters 

Google Brain  
Deep Learning  

for images: 
1 Billion 

model 
parameters 



Stages of Machine Learning 

•  Data collection 
o  Done mostly away from machine learning data center, then aggregated 

•  Model selection 
o  Done offline from collection/engineering/training/inference 

•  Data engineering (project 2 part 1) 
o  Multiple data passes (Map/Reduces), large data reduction 

•  Model training (project 2 part 2) 
o  Start with a guess of parameters, test against recorded input and output data, 

adjust parameters, iterate many times (many data passes) 

•  Model inferencing 
o  For one input, apply model and return one predicted output (no data passes) 
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Eg. Medical Research 

•  Collect human genome and disease outcome for lots of people 

•  Model disease probability as a linear model of presence of gene pairs 

 
•  Millions to 1011 (pair-wise genes) parameters; thousands of patients 
•  Model training is solving for “best” parameter weights 

o  Under-determined set of equations for learning model of gene influence on 
disease; infinite number of parameter sets match observed outputs 

o  Add figure of merit (objective function) to value a solution and search 
solution space for best merit 

AT…….CG G AAA 
AT…….CG T  AAA 

AT…….CG T  AAA 
AT…….CG T  AAA 

April 16, 2015

Samples 
(patients) 



Model Training 
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for	
  (t	
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  1	
  to	
  T)	
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~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model Parameter Data 

This computation needs to be parallelized!  

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm on vectors & matrices 



Machine Learning (ML) via MapReduce (MR) 

0) Store engineered data and initial model parameters in files 

1) Split engineered data to map tasks; replicate/broadcast parameters 

(this is known as “data parallel” decomposition) 

2) Each map task tests model against data inputs & outputs and 

computes changes in model parameters; send changes to reducers 

3) Reducers combine changes from different map splits of data and 

write a new model parameters file (and decide if training is over) 

4) If training is not over, go to (1) 
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Problems with ML via MR 

•  If Hadoop, each map task and each reduce task are Java VM launch 

•  Iteration is in external scripts repeating Hadoop invocations 

•  Amount of compute per data item is not much 

•  No need to issue parameter update per data item; could  

pre-combine updates for same parameter in memory of each map 
o  So shuffle is not a flow, but a single set of parameter updates per map 

•  Reducer function is simple add updates for each parameter 
o  Most work is communication through file system 

•  It may scale but overhead is high 
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Spark for ML via MR 

•  Don’t write reducer output to file system; cache in memory 

•  Don’t re-read engineered data from file system; cache in memory 

•  For small numbers of parameters, driver collect & broadcast 

•  Combine map transformations to try for one shuffle per iteration 

•  Don’t launch separate Java VMs for each map task; retain one VM 

for all tasks across all iterations 

•  Potential speedup is large – 10X in Spark paper 
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Parameter Servers 

•  ML via MR model moves parameter updates through MR shuffle to 

reducers, then combines all parameters into an RDD (possibly 

collected/broadcast by driver) 

•  Parameter Servers use a shared memory model for parameters 
o  All map tasks can cache any/all parameters; changes are pushed to them 

o  All reducers are replaced with atomic “add to parameter in shared mem” 

o  Less data transmitted and less task overhead 

o  Engineered data easily avoids repartitioning in the next iteration  
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Does ML via MR need to be synchronized 

•  Basic MR is functional; inputs are read-only, outputs write-only 
o  All communication occurs through RDDs/file systems after one complete 

MR when a later MR reads the output file (RDD) of a prior MR 
o  This separation of write-only output becoming read-only input is a barrier 

synchronization 

•  Parameter servers can be used synch 
or allowed to run asynch 
o  Async works because ML is iterative 

approximation, converging to optimum 
provided async error is bounded 

Feb 8, 2017 15719 Adv. Cloud Computing 20 



GraphLab: early tools for parameter servers 

•  GraphLab started not from Hadoop MR but from shared memory 

transaction processing – lots of parallel updates ordered by locks 

•  GraphLab provides a higher level programming model 
o  Data is associated with vertices and edges between vertices, inherently 

sparse (or we’d use a matrix representation instead) 
•  Non zeroes in a matrix representation are edges or vertices 
•  Lots of machine learning data sets, like social media, are very sparse 

o  Update: code updates a vertex and its neighbor vertices in isolation 

o  Iteration: one complete pass over the input data, calculating updates 

(Fold in GraphLab paper), then combine changes (Apply in GraphLab) 
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Consistency 

•  Many machine learning algorithms are tolerant of some data races 
o  “converging” to good enough may depend on data and schedule 

•  Graphlab allows some updates to “overlap” (not fully lock) 
o  Much more parallel than matrix multiply because of the sparseness 

o  Totally safe if the transactions don’t update what is being overlapped 
•  Ie., database serializable concurrent transactions guaranteed for edge or 

vertex consistency given restrictions on what the update code can do 

•  Natural for shared memory multithreaded update  
o  Like HPC (distributed) simulation 
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Scheduling 

•  Graphlab allows some  

updates to do scheduling 
o  Baseline is sequential execution of each vertex’ update once per iteration 

o  Sparseness allows non-overlapping updates to execute in parallel 

o  Opportunity for smart schedulers to exploit more app properties 
•  Prioritize specific updates over other updates because these communicate 

more information more quickly 
•  Possible to execute some updates more often than others 
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Next day plan 

•  Project 2 part 2 

•  Cloud Storage comes next 
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