
Programming Models
and Frameworks:
Iterative Computation

Advanced Cloud Computing

15-719/18-847b

Garth Gibson
Greg Ganger
Majd Sakr

Feb 8, 2017 15719 Adv. Cloud Computing 1

Advanced Cloud Computing Programming Models

•  Ref 1: Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson,

Carlos Guestrin, and Joseph M. Hellerstein (2010). "GraphLab: A New

Parallel Framework for Machine Learning." Conf on Uncertainty in

Artificial Intelligence (UAI).

http://www.select.cs.cmu.edu/publications/scripts/papers.cgi

•  Ref 2: Spark: cluster computing with working sets. Matei Zaharia,

Mosharaf Chowdhury, Michael Franklin, Scott Shenker, Ion Stoica.

USENIX Hot Topics in Cloud Computing (HotCloud’10).

http://www.cs.berkeley.edu/~matei/papers/2010/hotcloud_spark.pdf

Feb 8, 2017 15719 Adv. Cloud Computing 2

Advanced Cloud Computing Programming Models

•  Optional
•  Ref 3: DyradLinQ: A system for general-purpose distributed data-parallel

computing using a high-level language. Yuan Yu, Michael Isard, Dennis Fetterly,
Mihai Budiu, Ulfar Erlingsson, Pradeep Kumar Gunda, Jon Currey. OSDI’08.
http://research.microsoft.com/en-us/projects/dryadlinq/dryadlinq.pdf

•  Ref 5: TensorFlow: A system for large-scale machine learning. Martin Abadi,
Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeff Dean, Matthieu
Devin, Sanjay Ghemawatt, Geoffrey Irving, Michael Isard. OSDI’16.
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

Feb 8, 2017 15719 Adv. Cloud Computing 3

Map/Reduce as Elastic Big Data Processing

•  Big data has lots
of input: divide
into many splits
to be ‘map’ed

•  Queue map tasks
on virtual cores

•  Partition map task output to load balance work in reduce tasks
•  Effective elastic exploitation of more data on map task side

o  Critical to scalability: partition function & reduce function
•  Unfortunate partition -> imbalanced load, degrade to little parallelism
•  Unfortunate reduce -> may need pre-sort (out of core), highly sensitive to real memory

availability (too little -> more out of core; too much -> thrashes)

Feb 8, 2017 15719 Adv. Cloud Computing 4

Through files (disk)

Spark as Map/Reduce 2.0

•  Abstract as a sequential program in one machine (driver)
o  Driver sends work to a separate cluster (workers) to do map/reduce

•  Combine map functions (spark calls these transformations)
o  E.g. rdd_x.map(foo).map(bar) is 2 passes of MR with null reduces
o  Spark creates function foo_bar() that combines foo() & bar() in map task
o  Spark transforms combine this way until a shuffle is unavoidable (stage)

•  Is big data big? (100X prior examples is big, but might only be GBs)
o  Cache reduce outputs in memory (or discard & recompute as needed)

•  ‘cat <in | wc >out2’ versus ‘cat <in >out1; wc <out1 >out2’
•  for thin map() and reduce() functions, capturing out1 can be costly

•  Automate splitting/partitioning (unless overridden)

Feb 8, 2017 15719 Adv. Cloud Computing 5

DryadLinq

•  Simplify efficient data parallel code
o  Compiler support for imperative and

declarative (eg., database) operations
o  Extends MapReduce to workflows

that can be collectively optimized

•  Data flows on edges between processes at vertices (workflows)
•  Coding is processes at vertices and expressions representing workflow
•  Interesting part of the compiler operates on the expressions

o  Inspired by traditional database query optimizations – rewrite the
execution plan with equivalent plan that is expected to execute faster

Feb 8, 2017 15719 Adv. Cloud Computing 6

DryadLinq

•  Data flowing through a graph abstraction
o  Vertices are programs (possibly different with each vertex)
o  Edges are data channels (pipe-like)
o  Requires programs to have no side-effects (no changes to shared state)
o  Apply function similar to MapReduce reduce – open ended user code

•  Compiler operates on expressions, rewriting execution sequences
o  Exploits prior work on compiler for workflows on sets (LINQ)
o  Extends traditional database query planning with less type restrictive code

•  Unlike traditional plans, virtualizes resources (so might spill to storage)

o  Knows how to partition sets (hash, range and round robin) over nodes
o  Doesn’t always know what processes do, so less powerful optimizer than

database – where it can’t infer what is happening, it takes hints from users
o  Can auto-pipeline, remove redundant partitioning, reorder partitionings, etc

Feb 8, 2017 15719 Adv. Cloud Computing 7

Example: MapReduce (reduce-reorderable)

•  DryadLinq
compiler can
pre-reduce,
partition,
sort-merge,
partially
aggregate

•  In MapReduce
you “configure”
this youself

Feb 8, 2017 15719 Adv. Cloud Computing 8

“Killer App” for Big Data:

Machine Learning

Feb 8, 2017 15719 Adv. Cloud Computing 9

Kosinski M et al. PNAS 2013;110:5802-5805 ©2013 by National Academy of Sciences

“The study is based on a sample of 58,466 volunteers from the United States, obtained
through the myPersonality Facebook application (www.mypersonality.org/wiki), which
included their Facebook profile information, a list of their Likes (n = 170 Likes per person ...”

“… easily accessible digital records of behavior, Facebook Likes, can be used to automatically
and accurately predict a range of highly sensitive personal attributes … model correctly
discriminates between homosexual and heterosexual men in 88% of cases, African Americans and
Caucasian Americans in 95% of cases, and between Democrat and Republican in 85% of cases.”

10

Machine Learning (ML) works

Jan 30, 2017 15719/18847b Adv. Cloud Computing 11

2005 NIST Arabic-English Competition

Translate 100 articles
•  2005 : Google wins!

Qualitatively better 1st entry

Not most sophisticated approach
No one knew Arabic
Brute force statistics

But more data & compute !!
200M words from UN translations
1 billion words of Arabic docs
1000 processor cluster

è Can’t compete w/o big data

BLEU Score

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Google
ISI
IBM+CMU
UMD
JHU+CU
Edinburgh

Systran
Mitre
FSC

0.7

Topic
identification

Human-edittable
translation

Usable
translation

Expert human
translator

Useless

Stages of Machine Learning

•  Data collection
o  Logistics, cleaning, ….

•  Model selection
o  Domain knowledge

•  Data engineering
o  Extract, transform, ….

•  Model training
o  Fit parameters to data

•  Model inferencing
o  Predict/label outcome from model

Feb 8, 2017 15719 Adv. Cloud Computing 12

645 million users
500 million tweets / day

100+ hours video
uploaded every
minute

 Collaborative
filtering

for Video recommendation:
1 Billion

 model
parameters

Google Brain
Deep Learning

for images:
1 Billion

model
parameters

Stages of Machine Learning

•  Data collection
o  Done mostly away from machine learning data center, then aggregated

•  Model selection
o  Done offline from collection/engineering/training/inference

•  Data engineering (project 2 part 1)
o  Multiple data passes (Map/Reduces), large data reduction

•  Model training (project 2 part 2)
o  Start with a guess of parameters, test against recorded input and output data,

adjust parameters, iterate many times (many data passes)

•  Model inferencing
o  For one input, apply model and return one predicted output (no data passes)

Feb 8, 2017 15719 Adv. Cloud Computing 13

G. Gibson, www.pdl.cmu.edu 14

Eg. Medical Research

•  Collect human genome and disease outcome for lots of people

•  Model disease probability as a linear model of presence of gene pairs

•  Millions to 1011 (pair-wise genes) parameters; thousands of patients
•  Model training is solving for “best” parameter weights

o  Under-determined set of equations for learning model of gene influence on
disease; infinite number of parameter sets match observed outputs

o  Add figure of merit (objective function) to value a solution and search
solution space for best merit

AT…….CG G AAA
AT…….CG T AAA

AT…….CG T AAA
AT…….CG T AAA

April 16, 2015

Samples
(patients)

Model Training

Feb 8, 2017 15719 Adv. Cloud Computing 15

for	
 (t	
 =	
 1	
 to	
 T)	
 {	

	
 	
 doThings()	

	
 	
 	
 	
 	

	
 	
 doOtherThings()	

}	

~✓t+1 = ~✓t +�f
~✓(D)

argmax

~✓
⌘ L({xi,yi}Ni=1 ;

~✓) + ⌦(

~✓)

Model Parameter Data

This computation needs to be parallelized!

~✓t+1 = g(~✓t, �f
~✓(D))

Solved by an iterative convergent algorithm on vectors & matrices

Machine Learning (ML) via MapReduce (MR)

0) Store engineered data and initial model parameters in files

1) Split engineered data to map tasks; replicate/broadcast parameters

(this is known as “data parallel” decomposition)

2) Each map task tests model against data inputs & outputs and

computes changes in model parameters; send changes to reducers

3) Reducers combine changes from different map splits of data and

write a new model parameters file (and decide if training is over)

4) If training is not over, go to (1)

Feb 8, 2017 15719 Adv. Cloud Computing 16

Problems with ML via MR

•  If Hadoop, each map task and each reduce task are Java VM launch

•  Iteration is in external scripts repeating Hadoop invocations

•  Amount of compute per data item is not much

•  No need to issue parameter update per data item; could

pre-combine updates for same parameter in memory of each map
o  So shuffle is not a flow, but a single set of parameter updates per map

•  Reducer function is simple add updates for each parameter
o  Most work is communication through file system

•  It may scale but overhead is high

Feb 8, 2017 15719 Adv. Cloud Computing 17

Spark for ML via MR

•  Don’t write reducer output to file system; cache in memory

•  Don’t re-read engineered data from file system; cache in memory

•  For small numbers of parameters, driver collect & broadcast

•  Combine map transformations to try for one shuffle per iteration

•  Don’t launch separate Java VMs for each map task; retain one VM

for all tasks across all iterations

•  Potential speedup is large – 10X in Spark paper

Feb 8, 2017 15719 Adv. Cloud Computing 18

Parameter Servers

•  ML via MR model moves parameter updates through MR shuffle to

reducers, then combines all parameters into an RDD (possibly

collected/broadcast by driver)

•  Parameter Servers use a shared memory model for parameters
o  All map tasks can cache any/all parameters; changes are pushed to them

o  All reducers are replaced with atomic “add to parameter in shared mem”

o  Less data transmitted and less task overhead

o  Engineered data easily avoids repartitioning in the next iteration

Feb 8, 2017 15719 Adv. Cloud Computing 19

Does ML via MR need to be synchronized

•  Basic MR is functional; inputs are read-only, outputs write-only
o  All communication occurs through RDDs/file systems after one complete

MR when a later MR reads the output file (RDD) of a prior MR
o  This separation of write-only output becoming read-only input is a barrier

synchronization

•  Parameter servers can be used synch
or allowed to run asynch
o  Async works because ML is iterative

approximation, converging to optimum
provided async error is bounded

Feb 8, 2017 15719 Adv. Cloud Computing 20

GraphLab: early tools for parameter servers

•  GraphLab started not from Hadoop MR but from shared memory

transaction processing – lots of parallel updates ordered by locks

•  GraphLab provides a higher level programming model
o  Data is associated with vertices and edges between vertices, inherently

sparse (or we’d use a matrix representation instead)
•  Non zeroes in a matrix representation are edges or vertices
•  Lots of machine learning data sets, like social media, are very sparse

o  Update: code updates a vertex and its neighbor vertices in isolation

o  Iteration: one complete pass over the input data, calculating updates

(Fold in GraphLab paper), then combine changes (Apply in GraphLab)

Feb 8, 2017 15719 Adv. Cloud Computing 21

Consistency

•  Many machine learning algorithms are tolerant of some data races
o  “converging” to good enough may depend on data and schedule

•  Graphlab allows some updates to “overlap” (not fully lock)
o  Much more parallel than matrix multiply because of the sparseness

o  Totally safe if the transactions don’t update what is being overlapped
•  Ie., database serializable concurrent transactions guaranteed for edge or

vertex consistency given restrictions on what the update code can do

•  Natural for shared memory multithreaded update
o  Like HPC (distributed) simulation

Feb 8, 2017 15719 Adv. Cloud Computing 22

Scheduling

•  Graphlab allows some

updates to do scheduling
o  Baseline is sequential execution of each vertex’ update once per iteration

o  Sparseness allows non-overlapping updates to execute in parallel

o  Opportunity for smart schedulers to exploit more app properties
•  Prioritize specific updates over other updates because these communicate

more information more quickly
•  Possible to execute some updates more often than others

Feb 8, 2017 15719 Adv. Cloud Computing 23

Next day plan

•  Project 2 part 2

•  Cloud Storage comes next

Feb 8, 2017 15719 Adv. Cloud Computing 24

