Key-Value Stores

Michael Kaminsky

David Andersen, Bin Fan, Jason Franklin, Hyeontaek Lim,
Amar Phanishayee, Lawrence Tan, Vijay Vasudevan

Carnegie Mellon University
Advanced Cloud Computing (15-719)
February 27, 2017

What is a Key-Value store?

* At the simplest level:
val = GET(key)
PUT(key, val)

n@ Request

Response

Client
(web/application server)

[—x apE

Server

What is a Key-Value store?

* Can have more complicated interfaces
DELETE()

INCREMENT/()

COMPARE_AND SET()

Range Queries

MUultiGET(), MultiPUT()

UPSERT(key, lambda...)

Email:

Password:

Forgot Pas;

Where are KV stores used?

* Everywhere!
 Amazon — Dynamo -2 ElastiCache (memcached/redis)
* Facebook — memcached
* Google — LevelDB
* Twitter

login signup tour
Already a Member? Login

Facebook is a social utility that connects
you with the people around you.

facebook

Seaauho'e hore

search for a keyword or phrase..

Discover what’s happening right now, anywhere in the world

Ionhweeis -

Havean sccoun (S 51

New to Twitter?

Twitter is a rich source of
instant information. Stay
updated. Keep others updated.
It's a whole thing.

Let me in >

Rendering a page requires

nundreds of KV queries!

profile - tag your friends - use pﬁvaw settings to control who sees your info jﬁin a network 1

to see people who live, study, or work around you

[Find your friends »

about developers jobs advertisers polls terms privacy help

THIEL™Y

Friends and industry peers you
know. Celebrities you watch.
Businesses you frequent. Find
them all on Twitter.

© 2010 Twitter

about 1 hour ago

LupeFiasco Writing "The Great American Rap Album" While
Touring America...
about 1 hour aga

b vl Ugly Betty should be o

About Us Contact Blog Status Goodies APl Business Help Jobs Terms Privacy

Check out Twitter 101

Language: English v

Multiple-node KV-store

Request

Response

ANAR

Geographically distributed KV-store
4 h

Data Center 1

|
Uilly

Data Center 2

What do keys look like?

* Plain text “kaminsky”
* Hashed 0x6337dfad...

e What are the tradeoffs?

* Plain text keys provide
* Potential for range queries
e Sorted vs unsorted
* Hash keys provide:
* Potentially smaller/fixed-size keys
* Load balancing

What do values look like?

e Usually opaque blob (e.g., memcached)
* Fixed vs. variable-length
e Could consider having serialized objs; client manipulates

* Might have limited semantic meaning
e E.g., for INCREMENT/()
* E.g., in Redis, values can be lists, sets, tables, etc.

* How big are KV Pairs?
* Usually small: 64 bytes, 1K, etc.
e Overhead matters

How do KV stores fit into the
andscape?

e Typical file systems
* Hierarchical directory structure
* Aimed at much bigger objects (e.g., files)
* Often, allow modifications of partial objects

* Relational Databases (RDBMS)
* More sophisticated data model; schemas
* Interface: SQL, joins, etc.
* Cross-key operations, locking, transactions, secondary indices

* Other data models / NoSQL data stores
 Document-oriented (e.g., CouchDB, MongoDB)
* Column-store (e.g., BigTable, Cassandra, HBase)
* Provide more capability as the expense of complexity/performance

The lines are very blurry

Today’s Focus

* Values are opaque blob
* Small objects

* High throughput / low latency

* Comes from: simplicity and specialization

* Using three examples

* An in-memory KV cache: Memcached
* An on-flash KV storage: FAWN-DS

e A (local area) distributed KV storage: FAWN-KV

Single-node KV — considerations

Unordered Ordered
(hash table) (tree)

Cache (eviction) Memcached [DRAM]

Durable Store FAWN-DS [Flash] LevelDB [disk]
RAMCloud [DRAM->disk] Masstree [DRAM->disk]
Dynamo [disk]

DRAM: Low latency/high throughput (SLOs); smaller capacity; high cost/byte
Disk: Persistence; large capacity; low cost/byte

Flash: between DRAM and Disk; different kind of beast

Next Gen NVM (e.g., PCM): between DRAM and Flash. Coming soon... ?

Example: Memcached

* Very popular single node, in-memory KV store

* Originally developed for Livelournal
* YouTube, Reddit, Facebook, Twitter, Wikipedia, ...
e Often used to cache database queries

e Key =hash of the SQL webserver
Val =datareturned from ﬁ
backend RDBMS ﬂg
* Or, e.g., online status:
* Key =username

Value = available, busy, ...
| - -=| J E

memcached database

Typical Memcached use cases

 Often used for small objects (FB!Atikoglul2])
* 90% keys < 31 bytes
* Some apps only use 2-byte values

* Tens of millions of queries per second for
large memcached clusters (FBINishtala13])

* Read-mostly workloads

Memcached Design

e Core index data structure:

Hash table
with chaining

o— -~ K [V

Large area of
memory where all of
the Key-Value pairs
are actually stored

Memcached Memory Management

e Core index data structure:

Hash table
with chaining

.7

—-

K

Slab 1 (100b)

Slab 2 (128b)

Slab 3 (256b)

Slab 4 (1MB)

Slab-based Memory Allocation:
avoid allocation overhead,
reduce fragmentation, re-use memory

Memcached Eviction

e Core index data structure:

Doubly-linked list Slab 1 (100b)

Hash table
with chaining (for each slab)
o v LRU header Slab 2 (128b)
X [T T 1]
)
"I‘ ‘~~‘s~~ - ‘=
Y ™ ! Slab 3 i256bi
4 U4 [
¢ 4]
N S
\ N / Slab 4 ilMBI
\‘ ’V
0——\\» K|V|@——K|V
\\‘! "’
o— <P p el Slab-based Memory Allocation:
avoid allocation overhead,

reduce fragmentation, re-use memory

Problems with Memcached design

* Single-node scalability and performance
e Poor use of multiple threads

 Global locks serialize access to hash table and LRU list
* Every read updates the LRU list

* Lots of sequential pointer chasing

* Space overhead — affects # items stored & cost
* 56-byte header per object

* Including 3 pointers and 1 refcount
* For a 100B object, overhead > 50%

e Poor hash table occupancy

MemC3 [Fan, NSDI"13]

* Core hash table uses optimistic cuckoo hashing

* Higher concurrency:

* single-writer/multi-reader
* Lookups can be parallelized
e Better memory efficiency:

* No pointers

* 95% hash table occupancy

* CLOCK-based eviction (approximates LRU)
* Better space efficiency and concurrency

Further reading about
single-node KV stores:

Concurrent Cuckoo Hashing [Li, EuroSys’14]
MICA [Lim, NSDI’14/ISCA’15]

Masstree [Mao, EuroSys’12]

HERD [Kalia, SIGCOMM’14]

Multi-node Memcached Clusters

“Shard” keys across

servers
——y
/ _—
i
I
* Can aggregate queries
for multi-GET/PUT e

e Can cache results

Clients route requests through
a request redirector/load balancer

Clients talk directly to
memcached servers

Single-node KV — considerations

Unordered Ordered
(hash table) (tree)
Cache (eviction) Memcached [DRAM]

(flash-base¢ memcached)

Durable Store FAWN-DS [Flash] LevelDB [disk]
RAMCloud [DRAM->disk] Masstree [DRAM->disk]
Dynamo/S3 [disk]

What changes when moving from cache to store?

What changes when moving from DRAM to flash?

Comparison of storage

technologies 2800 MB/s
1900 MB/s
* DRAM, Flash, and Disk are very diffe] 460 000 10ps
interestingly different 90,000 IOPS

Sequential Read 10 GB/s 500 MB/s 100 MB/s
Sequential Write 10 GB/s 315 MB/s 100 MB/s
Random Read 10s millions/s 150 IOPS
Random Write 10s millions/s 300-8,600 IOPS 150 IOPS
Durability volatile persistent persistent
Lifetime infinite < 1-10K write cyu\ infinite
Numbers from around Fast Random-Reads

FAWN-DS era SSD Slow(er) Random-Writes

Flash erase blocks

 NAND flash has limited Program/Erase (P/E) cycles

* All SSDs use a Flash Translation Layer (FTL) to mitigate
 Wear-leveling

* NAND flash cannot overwrite existing data
* Must be erased first

* Erasing is inefficient

* NAND flash is organized into erase blocks
e Usually 128KB — 512KB

* Must erase a whole block before re-writing
(but you can write in pages; e.g., 512B, 4KB)

 What does this all mean for KV-stores...

What if we just write hash table to
flash directly in-place?

 Example: if you write 1MB as 1KB blocks, randomly to flash:
35 201 (4

* With raw flash:
e Each write requires reading 128KB into buffer, changing 1KB, and
writing out 128KB. That’s a write amplification of 128x

* Thus, to write 1MB, you have to write 128 MB.
* Also, very bad for durability

* FTL helps a little

e Solution: log-structured writes

FAWN-DS: external KV store

[Andersen, SOSP’09]

In-memory hash table

Memory

(Older)

On-flash log

(Newer)

Flash

Inserted entries
are appended

—

FAWN-DS: GET()

160-bit key§ (SHA-1) 6 bytes
KeyFrag§ Index KeyFrag i Offset _ iValid
1\ \J/ KeyFrag = Key
Y ’ \> Potential collisions!

* Low probability of
multiple Flash reads

Memory

Flash

Inserted entries
are appended

Log:
—_—

AN
fVahabJe length \

Key Length Data

FAWN-DS Design Advantages

* Flash friendly:
 GET() — Random reads
* PUT() — Append (sequential write)

* Minimize 1/O
 Low prob. of multiple flash reads / GET()

* Memory efficient
e “Only” 12 bytes per entry (assuming 50% load factor)
* Modern external KV-stores use < 1 byte/index entry

FAWN-DS Design Advantages

* Reconstruction
* On-flash Log contains all information to reconstruct index

* FAWN-DS periodically checkpoints index and pointer to
end of log to flash to speed recovery

* Other operations
* Delete: Write a Delete Entry to Log and clear the Valid Bit
 Store (PUT): Append to Log and update Hash Index entry
 Compact: garbage collect old entries
 Split/Merge: needed for FAWN-KV...coming soon

Related systems—durable store

* SILT [Lim, SOSP’11]

* Enables very memory-efficient index: just a few bits/key
with only a single flash read to retrieve value

* Combines several KV stores into one system
* Keep data sorted on disk (by hash of key)

* LevelDB
* From Google
» Buffer and batch writes to disk (not flash)
* Keeps on-disk data sorted by key; allows range queries
* Lots of follow-on work (e.g., RocksDB from Facebook)

FAWN-KV: a distributed KV store

Hash of key determines server
via consistent hashing

* Front-end Node Manager e
Manages node membership
* Caches responses Distributed Hash Table

* Prevents hot spots (DHT)

Consistent Hashing & DHTs

160-bit circular ID space for Nodes and Keys

key 1o
keyss

k€Y g924

FAWN-KV Join

Node A is responsible
for keys in range (H,A]

Node B is responsible

for keys in range {H;8}
(A,B]

* Node additions, failures require transfer of key-ranges
e Log-structured FAWN-DS design makes this particularly efficient

FAWN-KV design choices

* DHT allows nodes to join/leave (e.g., failure)
without global data movement (no “re-hashing”)
* Need enough nodes to ensure good load balance
e Can compensate with virtual nodes

* Log-structure allows for fast fail-over via sequential
reads and writes; minimize time key range is locked

Nodes stream data range

Data in original range e Stream from B to A

Data in new range

* Concurrent Inserts,

Minimizes lockin
g

* Compact Datastore

@ * Background operations sequential
* Continue to meet SLO

FAWN-KV performance

Queries per second

35000
30000
25000
20000
15000
10000
5000
0

f—

\

[Max LoadI

| Join started

Drop of only
~2000 queries/sec

Join complete

W

0

100

200

300
Time (in seconds)

400

500

600

FAWN-KV Chain Replication

* Chain Replication (“primary-backup”)
* Three copies of data on successive nodes in ring
* Insert at head, read from tail

e Strong Consistency: Don’t return to client until all
replicas have a copy

Head Middle Tail

PUT() GET()

Every node is part of three chains

R1 m NodeBls

Node B is middle for R2

Node Bis
head for R3

Other design choices — replication

* Quorums
* Write and read sets must overlap (R+ W > N)

* Ex. Amazon’s Dynamo
* “Sloppy quorums”
* Things get tricky when there are failures

* Paxos
* Replicated State Machine
e Popular recently
* Relatively complex protocol; lots of corner cases

The “original” FAWN cluster

500 MHz CPU 256 MB DRAM
4 GB CompactFlash 4 W

Metrics

* Power
* See rest of FAWN paper

* Throughput
* Latency...

Latency

* Can affect user-facing response times—this matters
e Total round trip to user needs to be 100s of milliseconds
* Amazon: every 100ms of latency cost them 1% in sales

* Google: extra .5 seconds in search page generation time
dropped traffic by 20%

* Alot of that is used up by browser-to-data center delay

* Median vs. 99%

 Effect of fan-out (from Jeff Dean):
Server with 1 ms avg. but 1 sec 99%ile latency
* touch 1 of these: 1% of requests take >1 sec
* touch 100 of these: 63% of requests take 21 sec

Future topics

* Network protocols
 Memcached, thrifty, protobufs, ...
e Batching: multiGET() and multiPUT()
* RDMA vs. Ethernet: HERD [Kalia, SIGCOMM’14]

* Load Balancing
e [Fan, SOCC’11], [Li, NSDI'16]

* Geo-replication—KV stores across the wide area
* See COPS/Eiger [Lloyd, SOSP’11/NSDI’13]

e Building transactional systems on top of KV stores

* FaRM [Dragojevic¢, SOSP’15], Spanner [Corbett, OSDI'12],
FaSST [OSDI’16]

