
Key-Value Stores

Michael Kaminsky

David Andersen, Bin Fan, Jason Franklin, Hyeontaek Lim,
Amar Phanishayee, Lawrence Tan, Vijay Vasudevan

Carnegie Mellon University
Advanced Cloud Computing (15-719)

February 27, 2017

What is a Key-Value store?

• At the simplest level:
val = GET(key)

PUT(key, val)

Request

Response

Client
(web/application server)

Server

What is a Key-Value store?

• Can have more complicated interfaces
• DELETE()

• INCREMENT()

• COMPARE_AND_SET()

• Range Queries

• MultiGET(), MultiPUT()

• UPSERT(key, lambda…)

• …

Where are KV stores used?

• Everywhere!
• Amazon – Dynamo  ElastiCache (memcached/redis)

• Facebook – memcached

• Google – LevelDB

• Twitter

Rendering a page requires hundreds of KV queries!

Multiple-node KV-store

Request

Response

Geographically distributed KV-store

Data Center 1

Data Center 2

What do keys look like?

• Plain text “kaminsky”

• Hashed 0x6337dfad…

• What are the tradeoffs?
• Plain text keys provide

• Potential for range queries

• Sorted vs unsorted

• Hash keys provide:
• Potentially smaller/fixed-size keys

• Load balancing

What do values look like?

• Usually opaque blob (e.g., memcached)
• Fixed vs. variable-length
• Could consider having serialized objs; client manipulates

• Might have limited semantic meaning
• E.g., for INCREMENT()
• E.g., in Redis, values can be lists, sets, tables, etc.

• How big are KV Pairs?
• Usually small: 64 bytes, 1K, etc.
• Overhead matters

How do KV stores fit into the
landscape?
• Typical file systems

• Hierarchical directory structure

• Aimed at much bigger objects (e.g., files)

• Often, allow modifications of partial objects

• Relational Databases (RDBMS)
• More sophisticated data model; schemas

• Interface: SQL, joins, etc.

• Cross-key operations, locking, transactions, secondary indices

• Other data models / NoSQL data stores
• Document-oriented (e.g., CouchDB, MongoDB)

• Column-store (e.g., BigTable, Cassandra, HBase)

• Provide more capability as the expense of complexity/performance

The lines are very blurry

Today’s Focus

• Values are opaque blob

• Small objects

• High throughput / low latency
• Comes from: simplicity and specialization

• Using three examples
• An in-memory KV cache: Memcached

• An on-flash KV storage: FAWN-DS

• A (local area) distributed KV storage: FAWN-KV

Single-node KV – considerations

Unordered
(hash table)

Ordered
(tree)

Cache (eviction) Memcached [DRAM]

Durable Store FAWN-DS [Flash]
RAMCloud [DRAM->disk]
Dynamo [disk]

LevelDB [disk]
Masstree [DRAM->disk]

Key Order
Storage Semantics

• DRAM: Low latency/high throughput (SLOs); smaller capacity; high cost/byte

• Disk: Persistence; large capacity; low cost/byte

• Flash: between DRAM and Disk; different kind of beast

• Next Gen NVM (e.g., PCM): between DRAM and Flash. Coming soon… ?

Example: Memcached

• Very popular single node, in-memory KV store
• Originally developed for LiveJournal

• YouTube, Reddit, Facebook, Twitter, Wikipedia, …

• Often used to cache database queries
• Key = hash of the SQL

Val = data returned from
backend RDBMS

• Or, e.g., online status:
• Key = username

Value = available, busy, …

webserver

database

1. GET()

3. PUT()

memcached

2. on miss,
SELECT()

Typical Memcached use cases

• Often used for small objects (FB[Atikoglu12])
• 90% keys < 31 bytes

• Some apps only use 2-byte values

• Tens of millions of queries per second for
large memcached clusters (FB[Nishtala13])

• Read-mostly workloads

Memcached Design

• Core index data structure:

Large area of
memory where all of
the Key-Value pairs
are actually stored

K V

K V

K V K V

K V

Hash table
with chaining

Memcached Memory Management

• Core index data structure:
Slab 1 (100b)

Slab 2 (128b)

Slab 3 (256b)

Slab 4 (1MB)

Slab-based Memory Allocation:
avoid allocation overhead,

reduce fragmentation, re-use memory

K V

K V

K V K V

K V

Hash table
with chaining

Memcached Eviction

• Core index data structure:
Slab 1 (100b)

Slab 2 (128b)

Slab 3 (256b)

Slab 4 (1MB)

Slab-based Memory Allocation:
avoid allocation overhead,

reduce fragmentation, re-use memory

K V

K V

K V K V

K V

K V

K V

K V K V

K V

LRU header

Hash table
with chaining

Doubly-linked list
(for each slab)

Problems with Memcached design

• Single-node scalability and performance
• Poor use of multiple threads

• Global locks serialize access to hash table and LRU list
• Every read updates the LRU list

• Lots of sequential pointer chasing

• Space overhead – affects # items stored & cost
• 56-byte header per object

• Including 3 pointers and 1 refcount

• For a 100B object, overhead > 50%

• Poor hash table occupancy

MemC3 [Fan, NSDI’13]

• Core hash table uses optimistic cuckoo hashing
• Higher concurrency:

• single-writer/multi-reader
• Lookups can be parallelized

• Better memory efficiency:
• No pointers
• 95% hash table occupancy

• CLOCK-based eviction (approximates LRU)
• Better space efficiency and concurrency

Further reading about
single-node KV stores:

• Concurrent Cuckoo Hashing [Li, EuroSys’14]
• MICA [Lim, NSDI’14/ISCA’15]
• Masstree [Mao, EuroSys’12]
• HERD [Kalia, SIGCOMM’14]

Multi-node Memcached Clusters

Clients route requests through
a request redirector/load balancer

“Shard” keys across
servers

• Can aggregate queries
for multi-GET/PUT

• Can cache results

Clients talk directly to
memcached servers

Single-node KV – considerations

Unordered
(hash table)

Ordered
(tree)

Cache (eviction) Memcached [DRAM]
(flash-based memcached)

Durable Store FAWN-DS [Flash]
RAMCloud [DRAM->disk]

Dynamo/S3 [disk]

LevelDB [disk]
Masstree [DRAM->disk]

Key Order
Storage Semantics

What changes when moving from cache to store?

What changes when moving from DRAM to flash?

Comparison of storage
technologies
• DRAM, Flash, and Disk are very different and

interestingly different

DRAM NAND Flash/SSD Disk

Sequential Read 10 GB/s 500 MB/s 100 MB/s

Sequential Write 10 GB/s 315 MB/s 100 MB/s

Random Read 10s millions/s 35,000 IOPS 150 IOPS

Random Write 10s millions/s 300-8,600 IOPS 150 IOPS

Durability volatile persistent persistent

Lifetime infinite 1-10K write cycles infinite

Numbers from around
FAWN-DS era SSD

Fast Random-Reads
Slow(er) Random-Writes

“Newer” PCIe3.0 SSD

2800 MB/s

1900 MB/s

460,000 IOPS

90,000 IOPS

Flash erase blocks

• NAND flash has limited Program/Erase (P/E) cycles
• All SSDs use a Flash Translation Layer (FTL) to mitigate
• Wear-leveling

• NAND flash cannot overwrite existing data
• Must be erased first

• Erasing is inefficient
• NAND flash is organized into erase blocks
• Usually 128KB – 512KB
• Must erase a whole block before re-writing

(but you can write in pages; e.g., 512B, 4KB)

• What does this all mean for KV-stores…

What if we just write hash table to
flash directly in-place?
• Example: if you write 1MB as 1KB blocks, randomly to flash:

• With raw flash:

• Each write requires reading 128KB into buffer, changing 1KB, and
writing out 128KB. That’s a write amplification of 128x

• Thus, to write 1MB, you have to write 128MB.

• Also, very bad for durability

• FTL helps a little

• Solution: log-structured writes

…123 45

FAWN-DS: external KV store
[Andersen, SOSP’09]

Inserted entries
are appended

On-flash log

Memory

Flash

(Older) (Newer)

In-memory hash table

FAWN-DS: GET()

Memory

KeyFrag Index

160-bit key (SHA-1)

KeyFrag Offset Valid
6 bytes

• KeyFrag != Key
Potential collisions!

• Low probability of
multiple Flash reads

i

2i

Equal?

Inserted entries
are appended

Flash

(Older) (Newer)

Key Length Data

Variable length

Log:

Equal?

FAWN-DS Design Advantages

• Flash friendly:
• GET() – Random reads

• PUT() – Append (sequential write)

• Minimize I/O
• Low prob. of multiple flash reads / GET()

• Memory efficient
• “Only” 12 bytes per entry (assuming 50% load factor)

• Modern external KV-stores use < 1 byte/index entry

FAWN-DS Design Advantages

• Reconstruction
• On-flash Log contains all information to reconstruct index

• FAWN-DS periodically checkpoints index and pointer to
end of log to flash to speed recovery

• Other operations
• Delete: Write a Delete Entry to Log and clear the Valid Bit

• Store (PUT): Append to Log and update Hash Index entry

• Compact: garbage collect old entries

• Split/Merge: needed for FAWN-KV…coming soon

Related systems–durable store

• SILT [Lim, SOSP’11]

• Enables very memory-efficient index: just a few bits/key
with only a single flash read to retrieve value

• Combines several KV stores into one system

• Keep data sorted on disk (by hash of key)

• LevelDB
• From Google

• Buffer and batch writes to disk (not flash)

• Keeps on-disk data sorted by key; allows range queries

• Lots of follow-on work (e.g., RocksDB from Facebook)

FAWN-KV: a distributed KV store

Distributed Hash Table
(DHT)

Hash of key determines server
via consistent hashing

• Front-end Node Manager
Manages node membership
•Caches responses
• Prevents hot spots

Consistent Hashing & DHTs

Node B is responsible
for keys in range (H,B]

H

G

F

D

C

B

160-bit circular ID space for Nodes and Keys

key10

key133

key9924

ID = 10000

ID = 0

FAWN-KV Join

H

G

F

D

C

B

A

• Node additions, failures require transfer of key-ranges
• Log-structured FAWN-DS design makes this particularly efficient

Node A is responsible
for keys in range (H,A]

Node B is responsible
for keys in range (H,B]

(A,B]

FAWN-KV design choices

• DHT allows nodes to join/leave (e.g., failure)
without global data movement (no “re-hashing”)
• Need enough nodes to ensure good load balance

• Can compensate with virtual nodes

• Log-structure allows for fast fail-over via sequential
reads and writes; minimize time key range is locked

Nodes stream data range

B

A • Background operations sequential
• Continue to meet SLO

• Stream from B to A

• Concurrent Inserts,
Minimizes locking

• Compact Datastore

Data in original range
Data in new range

FAWN-KV performance

Drop of only
~2000 queries/sec

FAWN-KV Chain Replication

• Chain Replication (“primary-backup”)
• Three copies of data on successive nodes in ring

• Insert at head, read from tail

• Strong Consistency: Don’t return to client until all
replicas have a copy

H A B

Head Middle Tail

PUT()
GET()

Every node is part of three chains

H

G

F

D

C

B

A
Node B is
tail for R1

A B C

H A B

B C D

Node B is middle for R2

Node B is
head for R3

R1

R2

R3

Other design choices – replication

• Quorums
• Write and read sets must overlap (R + W > N)

• Ex. Amazon’s Dynamo
• “Sloppy quorums”

• Things get tricky when there are failures

• Paxos
• Replicated State Machine

• Popular recently

• Relatively complex protocol; lots of corner cases

The “original” FAWN cluster

500 MHz CPU 256 MB DRAM
4 GB CompactFlash 4 W

Metrics

• Power
• See rest of FAWN paper

• Throughput

• Latency…

Latency

• Can affect user-facing response times—this matters
• Total round trip to user needs to be 100s of milliseconds

• Amazon: every 100ms of latency cost them 1% in sales

• Google: extra .5 seconds in search page generation time
dropped traffic by 20%

• A lot of that is used up by browser-to-data center delay

• Median vs. 99%
• Effect of fan-out (from Jeff Dean):

Server with 1 ms avg. but 1 sec 99%ile latency
• touch 1 of these: 1% of requests take ≥1 sec

• touch 100 of these: 63% of requests take ≥1 sec

Future topics

• Network protocols
• Memcached, thrifty, protobufs, …
• Batching: multiGET() and multiPUT()
• RDMA vs. Ethernet: HERD [Kalia, SIGCOMM’14]

• Load Balancing
• [Fan, SOCC’11], [Li, NSDI’16]

• Geo-replication—KV stores across the wide area
• See COPS/Eiger [Lloyd, SOSP’11/NSDI’13]

• Building transactional systems on top of KV stores
• FaRM [Dragojević, SOSP’15], Spanner [Corbett, OSDI’12],

FaSST [OSDI’16]

