
Figure 1:
A font selection dialog box being created in Gilt. When

the Standard Font radio button is pressed, the

Font Name field is disabled (grey), and when the

Other Font radio button is selected, the three sets of

buttons under Standard Font (for the family, face

and size of the font) become disabled.

ner as with other interface builders. Next, the designer
gives meaningful names to the widgets (e.g., the
Bold/ Italic radio buttons are called “face”).

The default value of a set of radio buttons is the string label

of the selected button. We will now override this and make
the value of the Standard Font branch instead be the
appropriate font object. To do this, we bring up the Gilt
window in Figure 2-a. When it is brought up, it initially

shows that the resulting exported value from the widget is
the same as the widget’s value. To get the appropriate font
object, we need to call the Gilt function get-standard-

font, so we choose this from a menu. This inserts the
function call into the filter expression. The procedure
should be passed the values of the three sets of widgets
under Standard Font, Therefore, we select the three
widget sets and hit the Use-Value-of-Object button

in the window, This inserts references to all the selected
objects into the filter expression, resulting in Figure 2-b.
The references are inserted in the order the objects were
selected. These references will be to the filtered values of
the widgets, which so far are the same as the default values:
the string names of the labels. However, Gilt knows that
get-standard-font expeas Lisp keywords as ar-
guments rather than strings (a “keyword” is an atom
prefixed by a colon, such as : bold). Therefore, Gilt can
tell that there is a mismatch, so it tries to determine a pos-
sible transformation. Another Exported Value

Cent rol window pops up for each of the selected
widgets, and the designer can check that the inferred trans-
formations are correct (Figure 2-c). If not, the designer can
give additional examples or explicitly edit the generated
code. In this example, however, the system guesses all

cases correctly, so the designer simply hits “OK” on all of
the windows. This will assert constraints so that the fil-
tered values of the widgets will be keywords, as required.

Now, the vahte for the other branch must be set. The
designer selects the Other Font radio button and brings

up the Exported Value Control window for it. fly

selecting the get -f ont -f rem-file function from a

(a)

(b)

Iirlri.... “--”--‘------
Exported Value Cent rol for “Standard Font: “

Om Exported Val w Cent rol for “FAMILY”

r
““ SXport ed Value Cent rol for “FACE”

‘3 ,i “w Exported Value Cent ml for ‘SIZE”

r Ontilter-$ Jalw : “Medl”m” / ?.IIY..I .s.?!s??.:

:, ,.
..

. . riltex +r-si.n :
U., wlue of Object

~
.8

. .

~

‘~ (Gilt :Mak@-K*YWOrd (w : self :“,l”. } 1

(c)

Figure 2:
(a) The Gilt window that allows the designer to control

how vafues for widgets are filtered. Many of the fields

are filled in by Gilt as the designer demonstrates the

desired behavior. The unfiltered Value shows

the vatue as currently provided by the widget before any

filtering. The Filter Expression is the Lisp ex-

pression to filter the value. The designer can hit the

Use Va lU e of Object button to insert a reference
to the vahre of a selected object. The default filter

simply copies the originaf vahse. The Resulting

Filtered Value field shows the final vahte after

the filtering. This field can be edited to show the

transformation for the current widget by example. (b)
shows the filter expression after a function has been

selected from a menu and the widget references have

been filled in. (c) shows the additional windows that

appear to confirm the transformations that are inferred

for the widgets that are referenced in (b).

November 11-13, 1991 UIST’91 213

Figure 3:
This window allows the designer to specify the handling

of error values. When Other Font’s filtered value k
NIL, the first error string is printed, and when Other

Font is the special value : NOT–FONT, the second

string is printed. The Use Value of Object but-
ton is used to insert a reference to a selected object,

here, the value of the Font Name widget, which con-

tains the current file name. The Another Error
Check button causes another If value is and

‘Error String pair to appear.

Change my Enable for “Font Name”

Set .nabl e W1th: tia~&

F.xpr.asslon:
Use Value of Object ~

(if (gv OTHER-FONT : selected)

Figure 4:
The Gih window that allows the designer to specify that

the enable property of a widget depends on other

widgets. When the Express ion returns NIL, the

widget is shown ‘ ‘greyed-out. ”

menu, then selecting the Font Name widget, and finally
hitting the Use Value of Object button, the designer

can specify the appropriate dependencies. Since
get - font - f rem-file expects a string, no further
transformations are needed. If the font is not found, the
get – f ont -f rem– f i le function returns error values, so
the Error Check window is used to specify the handling
of this (Figure 3). The designer types the appropriate error
return values and response strings into this window.

Next, the value of the entire dialog box is specified as the
value of the pair of radio-buttons Standard Font and
Other Font, and now the dialog box will return a single
value, computed based on the settings of the widgets.

Finally, the designer needs to specify when the various

widgets should be disabled (greyed out). First, the designer
selects the Font Name text field, and then brings up the
Change my Enable window (see Figure 4). Note that
this window has the same general form as the Value Con-
trol window, but simply controls a different property of the
widgets (the enable flag rather than the value). Next, the

designer selects the Other Font radio button and hits
the use value of Object button. This makes the
Font Name enabled (not grey) when Other Font k

chosen. Similarly, the family, face and size buttons under
Standard Font are enabled when Standard Font

is selected.

4. Filtering
Each widget in Garnet will always first compute its default.
value, which is then assigned to the widget’s slot (instance
variable) called : VA LUE.2 This value can then be filtered
to derive the value seen by application programs, which is
set into the slot called : FILTERED-VALUE. This is im-
plemented as a constraint that sets the value of the
: FILTERED-VALUE slot whenever the value of the
: VALUE slot changes. The default constraint simply

copies the value. Experience has shown that most filter
expressions are rather short, often only one or two lines.
Sometimes, it will lx necessary to have longer, complex
transformations or access to application-specific
functionality and data. Here, a conventional text editor
would be used to create a function which will then be
called by the filter expression entered with Gilt. However,
the function will be independent of the particular widgets
used since Gilt provides transformations of the arguments
and return values from the function,

As was shown in the example, Gilt provides a number of
ways to specify the appropriate filtering of data and control
in the user interface, so the application code is independent
of the particular widgets used and the label strings shown
to the user. All of these transformations use the same,

standard Cent rol windows shown in the previous ex-
amples. The following sections show how the various
tasks that require call-backs in other toolkits are performed
in Gilt.

4.1 Preparing Data for Applications
Many call-backs in widgets simply filter the output value to
convert it to a form needed by the application program.
For example, for Figure 1, you might need as many as 13
different call-backs in other toolkits to generate the single
font value to be returned. In Gilt, the value of the dialog

box is available in a variable, without requiring a call-back.

Unlike most toolkits, Garnet provides values for groups of
widgets. For example, the default value of a radio button
set is the name of the radio button that is selected, or NIL if
none are. For a set of check boxes (that allows multiple
selections), the value is a list of the selected buttons. The
innovation in Gilt is that the designer can specify alter-
native vatues for widgets. In the example, the value of the
pair of radio buttons Standard Font/Other Font
will be a font object.

Many of the desired transformations of the values can be
achieved by simple type conversions: from strings to
keywords, atoms, numbers, etc. Therefore, Gilt provides a

2A11 slot names in Garnet start with a colon.

214 UIST’91 Hilton Head, South Carolina

number of built-in data transformations:

● String to Lisp atom (e.g. “Bold” to ‘ BOLD).
. String to Lisp keyword (e.g. “Bold” to : BOLD).

● String to index of item in the set of buttons (e.g. “Bold”

to o).
● String to number (e.g. “ 10” to 10).
● Integer range to a different integer or float range.

Similar transformations would be appropriate for a builder
generating other computer languages, like C or Pascal,
which might automatically create enumerated types, sets,
bit vectors, or named constants,

Gilt tries to automatically pick the appropriate transfor-
mation. There are two techniques used to guess what is
appropriate.

First, the designer can type an example value into the
Resulting Filtered Value field at the bottom of
the Exported value Control window (Figure 2-a).
In this case, Gilt will try to guess a transformation that will
convert the current unfiltered value into the specified value,
using the above rules. If none of the built-in trartsfor-
mations is appropriate, then Gilt creates a case statement.
The designer can then operate the widget to put it into
different states (and therefore to change the unfiltered
value), and type the desired filtered value for each case.
This allows arbitrary transformations (e.g., converting the
German “Fettdruck” or the French “Gras” to

: BOLD). The resulting code for the filter is shown in the
Filter Expression window.

The seeond option is used when the designer enters a pro-
cedure into the filter expression, and then selects a widget
to supply the value to a parameter of the procedure. Here,
Gilt tries to find an appropriate transformation so that the
widget value will be filtered into the required type of the
parameter. This is the technique used in the example. A
Value Control window will pop up to confirm each
transformation, and also to request the designer to specify
the transformation if Gilt cannot infer it.

A number of standard procedures are provided in a pop-up
menu, so the designer can often select a procedure for the
filter expression rather than typing it. The provided
routines will transform a string into a file pointer, a string
into a font pointer, numbers or a string into a color,
keywords into a font, etc. If one of these is selected from
the menu, the appropriate code is entered into the F i It e r

Expression field. Because these routines take abstract
values as parameters, and return a value of the appropriate
type (such as a font object), the implementation of the

routines is entirely independent of the widgets. In fact,

standard, built-in routines, such as the Lisp function
probe-file, can bc used in many cases.

Gilt can execute the filter expressions, including any
procedures entered by the designer, by using the Lisp inter-
preter. Therefore, when Gilt is put in “run-mode” the

actions will happen just as they will for the end user. Gilt
first checks to make sure that all procedures are defined, in
case the designer has entered an application-specific proce-
dure that is not implemented yet. In this situation, Gilt

Figure 5:
The color selection dialog box created using Gilt

(naturally, this is in color on the screen). There are a

number of dependencies among the widgets that were

defined by demonstration. If one of the color buttons on

the left is selected, the sliders adjust to the appropriate

position for that color. If the sliders are moved, the

highlight in the color buttons (here shown around

Mot i f –orange), goes to the appropriate color or

goes off. The rectangle in the upper center always
shows the current color. The filtered value of the rec-

tangle is its color, and the value of the dialog box is
defined as the filtered value of the rectangle.

requests the designer to give an example of the value the
function would return.

Sometimes, the value of a widget might be computed based
on the values of multiple other widgets. In the example of
section 3, the value of the Standard Font radio button
k computed based on the values of three sets of buttons.
The default expression creates a list out of the values, but
by editing the filter expression, it is easy to create a reeord
or structure instead of a list, or to process the values in
various ways, In Figure 2-b, the get-standard-font
routine is called on the values of three widgets to return a

single font object.

Gilt allows decorations to be added to the dialog boxes,
such as rectangles, lines and labels. These normally do not
have a value, but they can be given one using a value

Cent rol window. For example, the rectangle at the up-
per center of Figure 5 shows the current selected color.
The vaItte of this rectangle should be its color. To achieve
this, the designer can type (gv : self : COLOR) into
the Filter Express ion field.3 To make this a little
easier, the designer can choose the desired field of the
seleeted object from a pop-up menu.

The user can check that the filter expression is achieving
the desired result in two ways. First, the interface can be

exercised to test the code. Second, the Filter
Expression field shows the Lisp code that is being used,

3gv stands for “get value” and it looks in tbe specified object for the

specified slot.

November 11-13, 1991- UIST’91 215

In the future, we will be investigating other techniques for
showing the transformations that will be usable by non-
programmers. For example, the filter expressions might
use normal arithmetic expressions, or we might create a
special graphical programming language.

4.2 Error Handling
Call-back procedures in other toolki~ are often used to
check for error values, especially in text input fields. Gilt
provides a standard error-filtering mechanism that min-
imizes the connections betwexm the error checking code
and the widgets. The designer can bring up the Error

Check window (Figure 3), and type a value into the if-

value-is field. If the filtered value for the widget is
ever equal to the if-value-is value, then an error has
occurred. If the Error St ring field contains a string,
then a error dialog box is popped-up showing that string.
The string can embed references to other widgets using the
Use-Value–of–Object button, for example, to show
the incorrect value. Alternatively, if the Error String

field contains an expression or function call, then it is ex-

ecuted.

Alternatively, an expression using the value of the widget

can be entered into the if-value-is field, which should
return T if an error should be reported. For example, to
report an error if an input number is odd, the designer could
simply enter (oddp (gv : self

: FILTERED-VALUE)) . If the filter expression itself
returns an error message string, then the i f –value –is

might just test if the filtered value is a string, and the
Error String would just be (gv : self

: FILTERED–VALUE) .

There can be multiple if–value-is and Error

String pairs, which would be useful, for example, for a
font finding routine that returned different values to tell if

the file was not found, or if the file was not a valid font, as
in Figure 3. The get-font-from-file filter will
return a font, or NIL if the file is not found, or
: NOT-FONT if the file is found, but it is not a font.

4.3 Preparing Data to be Shown to the User
Most toolkits require that the designer create additional
procedures to set the widgets based on application-specific
data. For example, when many dialog boxes are made
visible, the values of some widgets should be set to a par-
ticular value, If a widget should ahvay$ have the same
value when the dialog box appears, then the designer can
simply supply this value by example, as in other interface
builders like Druid [12]. However, it is very common for
the initial values for widgets to depend on application-
supplied data. For example, when the font dialog box is
made visible by an application, it should reflect the font of
the selected object, or if there is no object selected, then the
current global default. The next sections discuss how Gilt
allows this to be specified easily.

4.3.1 Defining Parameters to the Dialog Box
When a window is designed in Gilt, parameters to the win-
dow can be specified, along with an example current value

Figure 6:
The Gilt window to cause the displayed value of a
widget to change based on other widgets. Here, the

Standard Font/Other Font radio buttons of

Figure 1 are set based on the value of the parameter.

The designer only had to select the is-a-standard-

font procedure from a menu, the rest of the expression
was entered by Gilt as the widgets in Figure 1 were

operated.

for the parameter. If an application wants to display a
window designed in Gilt, it can simply ca114

(Show-Dialog dialog-name paraml param2 . . .)

For example, the font dialog box of Figure 1 would take a
single font object as a parameter. Thus, the application
causes the dialog box to appear while still being independ-
ent of how the parameters are used to set the widgets.

For “modal” dialog boxes (that require the user to say OK
or CANCEL before doing other operations), the
Show-Dialog routine will return the value of the dialog
box. The designer can specify the value of the dialog box
using a Value Cent rol window, as was shown in the
example. For non-modal dialog boxes, Show-Dialog

will return immediately, and the designer can attach a call-
back prccedttre to the OK button. Of course, this call-back
will be passed the filtered value of the window, so it will be
independent of the widgets that are used in the window to
enter the value.

4.3.2 Using the Parameters
To set the value of a widget based on the parameters, the
designer uses the Change my Value window (see

Figure 6). The primary difference from the Value

Cent rol window shown earlier is that here we are chang-
ing the value shown to the user, rather than simply filtering
the value returned by the widget. However, this window is
very similar to the Value Cent rol window, and the in-
terface to the designer is essentially the same.

The result of the expression should be an appropriate value
for the widget. For example, Figure 6 calculates the string

4~ a language that does not support functions with a variable nmnber of

arguments, a Gilt-like budder could create a different
show – <d i a 1 og - n a me > routine for each window designed.

216 UIST’91 Hilton Head, South Carolina

Copying C32::Linel’S :X1 ?50

C32::Linel’s :Yl

M :s.,,” cmrted to:=

m’ ~lH converted to: -1

(a)

Copying User: :R1’s :Left to

Gilt: :Line9’s

u “’” ‘~’’t’d ‘0’ El

a “m C-””’ ‘“’B

la ‘:?11111! CWYS<H4’WI to: “’’”::::

: Y1

El n:llEISHT converted to: .Y2

(b)

Figure 7:

This dialog box (which uses the Garnet widget set in-

stead of the Motif widget set used by theother figuresin

this paper), repeats the check box, the label and the text

type-infield. Thecontrolling expression for(a) might

be((T :LEFT :TOP) (T :WIDTH :HEIGHT)),
where the T controls the radio button, the second ele-

ment is used in the label, and the third is used as the

default forthetext input field. Theusercanthentum

on and off the desired slots using the check boxes, or

typeanewname.

name of the branch of the radio button to be selected. Of
course, designers can simply type in the appropriate code,
but Gilt provides demonstrational techniques to make this
easier. The designer can operate the widgets to put them
into theappropriate state, and then give the expression that
will determine when that state is to be used. For example,
for the font dialog box, the designer could select the
Standard Font/Other Font widget, and bring up a
Change my value window (Figure 6). Then, the
Standard Font radio button would be pressed, and the
designer could hit the use Value of parameter but-
ton. Then, the designer would have to edit the expression
to return T when the font was a standard font using the
is-a-standard-font procedure. By default, the

other value of the radio buttons will be used otherwise, so
nothing is needed for that case. Next, the designer would
bring up Change my Value windows for the other
widgets, such as Font Name, and write expressions to
extract the appropriate information from the font object
parameter.

4.3.3 Dynamic Creation of Widgets
Sometimes, a parameter might specify the number of
widgets that need to be created. In this case, the designer
can show by example the set of widgets to be replicated,
select them, and bring up a Replicate Control win-
dow, which is similar to the Change my Value win-

dow. The expression in this window is expected to return
an integer to tell how many copies of the widgets are
desired. Alternatively, the expression can return a list of
values, in which case, the number of copies depends on the
length of the list. Here, each copy is assigned the ap-
propriate element from the list. For example, in Figure 7,
the application might supply as a parameter to the dialog
box a list of slot names to control how many times the
check box, the label and the text input field are repeated.

4.4 Internal Control
In other toolkits, another set of call-back procedures are

often needed to control the setting of the value or other
property of one widget based on the value of another, or to
bring up a new dialog box when a button is pressed. The
next sections discuss how Gilt allows these to be specified
using filter expressions.

4.4.1 Value Dependencies
Sometimes,when a widget is operated, this should cause a
different widget to change its value. For example, when
the user hits on a color button in Figure 5, the sliders
should move to show the appropriate vahtes for that color.
Gilt provides a convenient mechanism for specifying this
using the same Change my Value window as for
having a widget’s value depend on a parameter (Figure 6).

The designer selects the widget that should change (for

example, the red slider of Figure 5), and brings up a
Change my Value window. Next, the widget that it
should depend on (here, the color button set) is selected,
and the Use-Value-of –Ob ject button is hit. This will
generate the expression

(gv Color-buttons : FILTERED-VALUE)

but for the red slider, only the red component of the color
should be used, so the designer would edit the expression to
be

(gv Color-buttons : FILTERED-VALUE :RED)

Now, whenever the color buttons are operated, the red
slider will be set correctly. The other two sliders would be
fixed similarly.

Sometimes, widgets may need to be replicated based on the
value of another widget. In the Xerox Star and Viewpoint,
menus only show legal values, rather than greying out il-
legal values. For example, in a font-choice dialog box, if
different fonts have different sizes available, the com-
ponents in the menu of sizes must be dynamically changed.
The Repli cat e Cent rol window discussed in section

4.3.3 is used to control this.

4.4.2 Specifying Other Dependencies
The previous sections discussed how the value of a widget
can be controlled. In many cases, however, other
properties of widgets may need to be set, such as whether it
is enabled or not (greyed-out). This is handled in a uniform
way, using a window similar to the Change my Value
window. The designer selects the widget to controlled,
specifies the desired property from a menu, and the ap-
propriate window is brought up.

November 11-13, 1991 UIST’91 217

4.4.2.1 Enabling
One of the most common dependencies is to enable widgets
based on other widgets. As shown in the example of sec-
tion 3, the designer can operate a widget to have the ap-
propriate value, then enable or disable the dependent
widget, and Gilt will fill in the values for the Change my

Enable (F@re 4). In trying to guess appropriate control
expressions for dependent slots, Gilt knows about check
boxes and radio buttons being on or off, text fields being
empty or having a value, and numbers being zero or non-
zero. In addition, if the Change my Enable window is
for a set of selectable items (such as a menu or a panel of
buttons), the controlling widget can return a list of values,
each element of which controls an item. For example, in
Figure 8, the menu of font sizes will have a Change My

Enable expression that computes the list of valid font

sizes based on the selected font in the left menu. Although

an application function k needed, the function will be inde-

pendent of the particular widgets used, since it will take a
font object and return a list of valid sizes. Gilt will
automatically create an expression to enable the items that
correspond to the values in the list and disable the others.

4.4.2.2 Other Properties
All the other properties of widgets can be controlled in the
same way as enabling. Widgets can be made to be visible
and invisible by bringing up a Change my Visible

window. Most widgets also have additional properties

which can be set, such as their color or font. To change the
color of an object, the Change my Color window is
used. For example, to change the color of the red slider
based on the value it returns, the designer could simply
select the red slider, bring up the Change my Color
window, select the slider again, hit the Use-Value-of–

Object button, and then edit the expression to be5
(Make-Color (gv : self : FILTERED-VALUE)

o o)

Using~ the dependency control on various properties is also

useful for decorations such as rectangles and labels. For

example, the color of the rectangle in the center of Figure 5

can be made to depend on the three sliders in this way.

4.4.3 Sequencing of Dialogs
Another common internal control action that sometimes re-
quires call-backs is for a button to cause another dialog box
to appear. Gilt, like other interface builders, allows this to
be demonstrated, by simply operating the button, and
showing which dialog box shoul(t appear. However, unlike
other systems, Gilt also allows the initial values of widgets
in the sub-dialog to be set. Windows similar to the
Change my . . . windows appear that allow the values
of the parameters to the sub-dialog to be specified based on
the values of the parent dialog box. Gilt will automatically
create the code to call Show–Di al og in the appropriate

way. If the sub-dialog is modal (which is the usuat case),
then the value of the sub-dialog is assigned by default as

5The slider’s value is a number, but we need a color object for rfre color

property. Make –Col or is a standard routine drat takes numbers

representing dre red, green and blue vafrres and returns a color obiect.

Figure 8:
In these Motif-style menus, the various font sizes in the

menu on the right become enabled or disabled depend-

ing on the sizes available for the font that is selected in

the menu on the left.

the value of the button that caused the sub-dialog to be
displayed. Of course, the designer can control this using
the Value Control for the button.

If the sub-dialog is not modal, then the end user will be
allowed to operate widgets in both windows. Gilt supports
cross-window dependencies, so that a value in one dialog
box can depend on a value in another dialog box.

5. Editing and Saving
To edit the value of any of the filter expressions for a
widget, the designer can simply select the widget and bring
up the appropriate Cent rol. . . or Change my. . .

window. The designer can then edit the text of the expres-
sion. Alternatively, if the user demonstrates new transfor-
mations, these will replace the existing ones as appropriate.

Gilt provides a special feature to make it easier to convert
an interface to a different natural language. After a value
transformation has been specified, the next time the desig-
ner edits the displayed label names, Gilt will pop-up a
question to ask if the corresponding exported values should
change also. If the designer says “no”, then the value filter
function is automatically changed so that all the new label
strings will still produce the same old values, so any code
that uses the values will not need to be changed.

Other special features make editing the widgets easier. Gilt
provides a “Replace widget” command, which allows, for
example, a set of buttons to be replaced by a menu. As
many of the properties as possible are retained, including
the label names and the filter expressions. In addition, the
filter expressions can be copied from one widget to
another. FinaIly, because the more complex filter
procedures and application-specific call-backs are called
with abstract parameters (such as keywords), they usually
will not need to be changed when the widgets are edited.
We will be investigating other techniques for editing in the
future.

218 - - UIST’91 Hilton Head, South Carolina

As was mentioned previously, the expressions are im-
plemented as constraints attached to the appropriate
properties of objects. Garnet has a built-in mechanism for
saving any object as a Lisp code file, including all of its
constraints [10], and this is used by Gilt. Therefore, all the
filter expressions are output automatically along with the
user interface definition. Since the output is textual Lisp
code, it is possible for programmers to edit the file directly,
but we expect this to not be necessary.

6. New Kinds of Widgets
The techniques that have been described are not limited to
only the built-in widgets in the Garnet toolkits. If the user
wants a new kind of widget, then it cm be created either by
coding it by hand or using the Lapidary design tool [7].
The new widget can then be dynamically loaded into the
Gilt palette, and used like any built-in widget.

All of the widgets in the Garnet toolkit are controlled
through the same protocol, which includes a specification
of what the properties of the widget are and the types of the
properties (string, boolean, integer, list, etc.). This allows

the appropriate Cent rol windows to be created. For cus-
tom widgets, the designer will need to conform to the stan-
dard protocol. Lapidary has built-in mechanisms to help

with this for widgets created using it. The inferencing of
the filter expressions is based on the type of the properties,
so the demonstrational techniques described in this paper
can be used for designer-created widgets as well. As an
example, the color selection buttons on the left of Figure 5
are not a standard widget, but were partially coded by hand
and then read into Gilt for the dependencies to be specified.

Another interesting feature is that a set of widgets can be
saved, along with their intcrdependencies defined in Gilt,
and used as a prototype in other interfaces. For example,
the Standard Font group from Figure 1 could be read
into the Gilt palette, and then placed in other dialog boxes.
Due to the prototype-instance object model in Garnet, no
extra mechanisms are needed in Gilt to support this.

7. Status and Future Work
An earlier version of Gilt has been released to all Garnet

users.6 The version described here has been mostly im-
plemented, and is expected to be finished and released in
the next few months.

In the future, in addition to releasing this version of Gilt for
general use, we would like to investigate combining some
of the features of Lapidary with Gilt, so that the designer
can specify constraints on the widgets, for example to make
decorations or the entire window grow if a widget gets
bigger. It has been suggested that a wiring diagram ap-
proach to specifying the interdepcndcncies among widgets
might be easier to use. We will investigate allowing the

designer to draw wires among the widgets to show the flow

6,fie Gamct ~Y~Lem is available for free from CMLJ, but You need ‘0

have a license. If you are interes!cd in using Gilt and Garnet, please

of values and enabling. This might also be helpful as a

debugging tool to show where the dependencies are. Other
debugging and maintenance aids will also be added, such
as browsers to show all the filter expressions, and the
procedures and global variables used in them. Finally, we
will add some of the demonstmtional techniques from
Peridot and Druid that neaten the display as widgets are

drawn.

8. Conclusion
The Gilt interface builder contains an number of innova-

tions that significantly improve the separation of applica-
tion code from toolkits. By identifying the most common
tasks that call-backs are used for, Gilt is able to supply
built-in mechanisms to handle them. Using a standard style
of window, the designer can enter short filter expressions.
Because many of the tasks involve straightforward tilter-
ing, Gilt can often infer appropriate transformations from
examples of the desired output or actions, Even when more
complex transformations are required, and which use
application-specific procedures, the application code is
completely independent of the actual widgets and the
names used in the user interface. Although Gilt is im-

plemented in Lisp, which makes the dynamic execution of
the entered code much easier, the general techniques are
appropriate for conventional compiled languages and for
interface builders for conventional toolkits. Therefore, the
techniques could be readily applied to today’s user inter-
face tools.

The mechanisms that are described here make it much
faster to build dialog boxes with interdependencies among
the widgets. However, we expect their main advantage to
be the improved maintainability of the resulting code. For
example, it should be much easier with Gilt than most other
interface builders to convert a user interface to a different
natural language or switch between different forms of
widgets (e.g., from menus to buttons), or even different
widget sets (e.g., from Motif to OpenLook). We will be
exploring the effects of these features as Gilt becomes
widely used by the Garnet community.

Acknowledgements
Andrew Mickish implemented the features described in this

article. Osamu Hashimoto also contributed to the design
and implementation of Gilt. Brad Vander Zanden, David
Kosbie, Andrew Mickish, Osamu Hashimoto, Bemita
Myers, and the referees provided useful comments on this
paper.

This research was sponsored by the Avionics Lab, Wright
Research and Development Center, Aeronautical Systems
Division (AFSC), U. S. Air Force, Wright-Patterson AFB,
OH 45433-6543 under Contract F33615-90-C-1465, Arpa
Order No. 7597.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or im-
plied, of the U.S. Government.

contact tbe author or send electronic mait to qarnet @cs. cmu. edu.

November 11-13, 1991 UIST’91 219

References

1. Paul Barth. “An Object-Oriented Approach to Graphi-
cal Interfaces”. ACM Transactions on Graphics 5,2 (April
1986), 142-172.

2. Alan Borning. “The Programming Language Aspects of
Thinglab; a Constraint-Oriented Simulation Laboratory”.
ACM Transactions on Programming Languages and Sys-
tems 3,4 (Oct. 1981), 353-387.

3. Luca Cardelli. Building User Interfaces by Direct
Manipulation. ACM SIGGRAPH Symposium on User In-
terface Software and Technology, Proceedings UIST’88,
Banff, Alberta, Canada, Oct., 1988, pp. 152-166.

4. James D. Foley, Christina Gibbs, Won Chul Kim, and

Srdjan Kovacevic. A Knowledge-Based User Interface
Management System. Human Factors in Computing Sys-
tems, Proceedings SIGCHI’88, Washington, D. C., May,
1988, pp. 67-72.

5. Tyson R. Henry and Scott E. Hudson. Using Active
Data in a UIMS. ACM SIGGRAPH Symposium on User
Interface Software and Technology, Proceedings UIST’88,
Banff, Alberta, Canada, Oct., 1988, pp. 167-178.

6. Brad A. Myers. Crea[ing User Interfaces by
Demonstration. Academic Press, Boston, 1988.

7. Brad A. Myers, Brad Vander Zanden, and Roger
B. Dannenberg. Creating Graphical Interactive Application
Objects by Demonstration. ACM SIGGRAPH Symposium
on User Interface Software and Technology, Proceedings
UIST’89, Williamsburg, VA, Nov., 1989, pp. 95-104.

8. Brad A, Myers, Dario A. Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Ed Pervin, Andrew

Mickish, and Philippe Marchal. “Comprehensive Support

for Graphical, Highly-Interactive User Interfaces: The Gar-
net User Interface Development Environment”. IEEE
Computer 23, 11 (Nov. 1990), 71-85.

9. Brad A. Myers. Graphical Techniques in a Spreadsheet
for Specifying User Interfaces. Human Factors in Comput-
ing Systems, Proceedings SIGCHI’91, New Orleans, LA,
April, 1991, pp. 243-249.

10. Brad A. Myers and Brad Vander Zanden. “An En-
vironment for Rapid Creation of Interactive Design Tools”.
The Visual Computer; International Journal of Computer
Graphics (199 1), to appear.

11. Dan R. Olsen, Jr. A Programming Language Basis for

User Interface Management. Human Factors in Computing
Systems, Proceedings SIGCHI’89, Austin, TX, April,
1989, pp. 171-176.

12. Gurminder Singh, Chun Hong Kok, and Teng Ye
Ngan. Druid: A System for Demonstrational Rapid User
Interface Development. ACM SIGGRAPH Symposium on
User Interface Software and Technology, Proceedings
UIST’90, Snowbird, Utah, Oct., 1990, pp. 167-177.

13. SmethersBarnes, P.O. Box 639, Portland, Oregon
97207, Phone (503) 274-7179. Prototype 3.0.

14. Ivan E. Sutherland. Sketchpad: A Man-Machine

GraphicaJ Communication System. AFIPS Spring Joint
Computer Conference, 1963, pp. 329-346.

15. Brad Vander Zanden, Brad A. Myers, Dario Giuse and
Pedro Szekely. The Importance of Indirect References in
Constraint Models. ACM SIGGRAPH Symposium on
User Interface Software and Technology, Proceedings
UIST’91, Hilton Head, SC, Nov., 1991.

220 UIST’91 Hilton Head, South Carolina

