INFERCHI Y3

24-29 April 1993

Marquise: Creating Complete User Interfaces
by Demonstration

Brad A. Myers

Richard G. McDaniel

David S. Kosbie

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
{bam, richm, koz}@cs.cmu.edu

ABSTRACT

Marquise is a new interactive tool that allows virtually all
of the user interfaces of graphical editors to be created by
demonstration without programming. A ‘‘graphical
editor’’ allows the user to create and manipulate graphical
objects with a mouse. This is a very large class of
programs and includes drawing programs like MacDraw,
graph layout editors like MacProject, visual language
editors, and many CAD/CAM programs. The primary in-
novation in Marquise is to allow the designer to
demonstrate the overall behavior of the interface. To im-
plement this, the Marquise framework contains knowledge
about palettes for creating and specifying properties of ob-
jects, and about operations such as selecting, moving, and
deleting objects. The interactive tool uses the framework
to allow the designer to demonstrate most of the end user’s
actions without programming, which means that Marquise
can be used by non-programmers.

KEYWORDS: User Interface Software, User Interface
Management Systems, Interface Builders, Demonstrational
Interfaces, Garnet.

INTRODUCTION

One important goal of the Gamet project [6] is to allow
user interface designers who are not programmers to design
and implement the look and feel of user interfaces. The
Marquise tool is the newest addition to the Garnet environ-
ment, and it ties together all the previous tools, while sup-
porting, for the first time, interactive specification of the
entire user interface.

In particular, Marquise allows the overall graphical ap-
pearance of the interface to be drawn, and the behaviors for
object creation, selection and manipulation 0 be
demonstrated.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1993 ACM 0-89791-575-5/93/0004/0293...$1.50

Unlike many previous tools which concentrate on widgets,
Marquise is aimed mostly at the main drawing window of
graphical editors where the user creates and manipulates
graphical objects with a mouse. For example, with Mar-
quise you can demonstrate how the rubber banding will
appear as you move the mouse, rather than having this as a
hard-wired, unchangeable component. Another important
capability in Marquise is demonstrating the modes of the
interface. Although ‘‘mode-free’’ interfaces are often
touted, all modern graphical interfaces are in fact highly
moded. For example, in most drawing tools such as
Macintosh MacDraw, a palette controls whether the next
mouse click will select an object, insert a text string, or
draw a rectangle, circle, polygon, etc. Other modes include
the current colors, line styles, and arrowhead styles for the
objects that will be created. Marquise provides an intuitive,
demonstrational method for specifying the modes that con-
trol and are affected by an operation.

With Marquise, we have concentrated on providing com-
plete control of when and how the behaviors are initiated.
The primary innovations in Marquise are: (1) the use of
special icons to represent the mouse positions while
demonstrating the behavior, so the designer can then
demonstrate what happens at those locations, (2) sophis-
ticated control over the locations where those events should
take place to begin and end behaviors, (3) a ‘‘mode win-
dow’’ to make explicit the modes of the interface that con-
trol the behaviors and values, (4) the formalization of
‘“‘palettes’” to control modes and object properties, and (5)
the ability to interactively specify the attributes for built-in
layout operations and objects.

Marquise stands for Mostly Automated, Remarkably Quick
User Interface Software Environment. (A ‘‘marquise’ is a
gem having the shape of a short, pointed oval with many
facets.) Marquise is part of the Garnet system, which is a
comprehensive user interface development environment
written in Lisp for the X window system.!

The Gamet system is available by anonymous FTP. Although Mar-
quise is not yet ready for distribution as this paper is being written, you
can get the toolkit, the Gilt interface builder, and Lapidary. Send mail to
Garnet@cs.cmu. edu for information.

293

24

-29 April 1993

INFERCHI 93

294

RELATED WORK

Previous design tools have shown that it is possible to in-
teractively specify the graphical appearance and behavior
of limited parts of an application’s user interface. For ex-
ample, many interface builders, such as the NeXT Interface
Builder, UIMX for Motif, Druid [8], and Gilt [7], allow the
designer to interactively specify the placement of widgets.
Peridot [3] allows new widgets to be created interactively
without programming, and Lapidary [4] allows application-
specific graphical objects to be demonstrated. Marquise
goes beyond these tools since it supports creating, editing,
and deleting of objects at run time, and allows the overall
behavior to be defined. DEMO [10] used the idea of
demonstrating the end-user’s actions that start a behavior
(called the “‘stimulus’’) and then demonstrating the
response to that stimulus. DEMO II{1] added sophis-
ticated techniques for inferring constraints to control how
objects are placed or moved. Marquise uses the stimulus-
response idea, here called “‘train’’ and ‘‘show,”” but con-
centrates on which high-level actions are appropriate and
the context of the stimulus.

Some previous systems have provided frameworks to help
code graphical editors. Unidraw [9] and many graph
editors (e.g., [2]) provide a standard set of built-in opera-
tions as methods, and the designer writes code to override
these methods for the specific application. However, none
of these other systems allow new behaviors to be defined
by demonstration.

USER INTERFACE

The basic windows for Marquise are shown in Figure 1.
There is a palette of objects that can be drawn, some
palettes for controlling the properties of those objects, and
a set of commands in a menubar. In all conventional inter-
face builders there are two modes: Build and Run, where in
Build mode the designer constructs the interface, and in
Run mode it is tested. Marquise adds two additional modes
to demonstrate behaviors: Train and Show. Train mode is
used to demonstrate what the end user will do, and Show
mode is used to demonstrate the system’s response to that
action. A different mouse cursor for each mode insures
that the designer always knows what the current mode is.

In Build mode, the static parts of the interface are drawn.
For example, the designer might add to the window some
widgets that should always be visible. Lines could be
added as decorations. Many applications contain palettes
that show which objects can be created, or that show
various values for a property (like color, line-style, etc.).
These palettes are drawn with Marquise in Build mode. In
Run mode, the interface can be exercised to see how it will
operate for the end user.

In Train mode, the designer operates the mouse and
keyboard in the same way the end user would, and then
goes into Show mode to demonstrate what the system’s
response should be. While in Train mode, the end-user
behaviors are operational, but in addition, the keystrokes
and mouse movements are saved. In Show mode, the
designer can create and edit objects exactly the same as in

Figure 1:

The main Marquise windows: the basic object palette on
the left, the main work area, and the palette for controll-
ing the color and halftones for filling-styles and line-
styles at the bottom. The designer is creating an inter-
face with a ‘‘create palette’” at the top containing two
types of nodes and two types of links. The node at the
lower right of the work window is selected. The Mar-
quise commands are in the menubar at the top. The
*‘Constraints’” menu allows graphical constraints to be
specified. The ‘‘Behaviors’ menu allows objects to be
declared as palettes, and displays the mode and feed-
back windows.

Ry Ry Re Rt

@

Ry ki

e k"*

(b) (©)
Figure 2:

(a) The icons that show where the mouse was pressed,
moved to, released, clicked (pressed and released in the
same place), double-clicked, and double clicked and
released. (b) In Train mode, the designer pressed the
mouse down and moved, and then in Show mode, drew
a dotted line as the interim feedback. (c) Going back to
Train mode, the designer released the mouse button, and
in Show mode, deleted the dotted line and drow a solid
line.

Build mode, except that the operations are remembered so
they can be attached to the events demonstrated in Train
mode.

As an example, here is how the designer would
demonstrate that when the mouse button goes down, a
feedback dotted line should be drawn which foliows the
mouse, and then when the button is released, the dotted line
should be erased and a real line drawn. First, the designer
would go into Train mode, press down the mouse button,

INFERCHI 93

24 -29 April 1993

Behavior Name: | Creating-A-Line
Objects:

it The obiect |Dashed Linel is an instance of LINE-2212 with
A properties:

Slot iline-style is

Placement is Iconstant' ¥ndl = Mouse Down Point

End2 = Mouse Move Point |Edit Placementl

The object |Line| is an instance of LINE-2212 with properties:

Kedd Placement is |ccnstant Endl = Mouse Down Point

End2 = Mouse Up Point JEdit Placement

Events and Actions:

The relevant mode(s) are:

Create~Palette-1 has value

with {no modifier
The Work Window

mouse button is
specific

As the mouse 1s moved over the

The Work Window
show |internalf object JDashed Line

When the button is lifted over the |specif1c| lobjectl
The Work Window

Create object ILineI

When the

over the

specific

lI

l

II

Figure 3:

The feedback window for behaviors. At the top is a
pull-down menu of commands, then the name of the
behavior, then the objects that participate in the be-
havior, and finally the events and actions. Pushing on
the buttons displays a popup window of the other pos-
sible choices. Changing the option at the beginning of a
“‘sentence’” will change the options available for the
rest of the sentence. An entire section of the window
can be selected and cut, copied, etc.

and move away from the initial press. Without releasing
the mouse button, the designer would change to Show
mode. The window will now contain two icons which
show where the mouse was pressed and to where it was
moved. Now in Show mode, the designer draws a dotted
line between the icons (Figure 2-b). Marquise infers that a
dotted line should be created on the down press and one
end should follow the mouse as it moves. Then the desig-
ner presses the mouse button somewhere on the back-
ground and switches to Train mode with the mouse button
still down, so the mouse release can be demonsuated. Be-
cause this second demonstration does not include a down-
press, the original down-press icon is retained. Next, in
Show mode, the designer deletes the dotted line and draws
a solid line from the initial down press icon to the final
button release icon (Figure 2-c). This entire behavior takes
less than 30 seconds to demonstrate, and very few new

concepts or commands are necessary, since the designer
already knows how to draw and delete objects in the editor.

If the mouse had been pressed and released in the same
place, then a click icon would be displayed instead of the
down, move and up icons. Double-clicking or double-
clicking followed by a move are also supported. To allow
modes to be changed while mouse buttons are being held
down and while the mouse is at a particular place, keyboard
accelerator keys are used to change modes.

Marquise generalizes from the designer’s example actions
to create the user interface. Any system that tries to
generalize will sometimes guess wrong. Various
mechanisms have been explored in other systems to show
the user what has been guessed, so that users can verify and
correct the inferences. Older systems, such as Peridot
[3] and Druid [8], required the user to confirm each in-
ference, which can be disrupting and annoying. In Mar-
quise, a feedback window (Figure 3) shows the inferred
operation. The labels and buttons can be read as a sen-
tence, and the buttons can be pressed to pop up a list of
other alternatives and change the values. Since Marquise
appears to guess correctly most of the time, Marquise ap-
plies the inferred property immediately, and allows the
designer to verify or change it afterwards in the feedback
window.

ENVIRONMENT

Marquise makes heavy use of many features of Garnet.
Garnet uses a retained object model and a prototype-
instance object system. This means that there is an object
in memory for every object on the screen, and that any
object can be used as the prototype to make a copy or
instance. Since all Garnet objects are represented the same
way, there is a single mechanism for copying and creating
objects, whether they are simple rectangles or aggregates
containing many components. Therefore, Marquise can al-
ways generate appropriate code to create items for run
time, without having to know the types of the objects the
designer has drawn.

Implementing the behaviors that are demonstrated is quite
straightforward once they have been determined because
Marquise can create instances of ‘‘interactor’’ objects
[5] and fill in the appropriate attributes. Each interactor
implements a particular kind of behavior, such as selection,
creation, moving, etc., and contains attributes to support
most of the popular interaction styles.

The object system supports constraints, which are relation-
ships that are declared once and maintained by the system.
Constraints are used to maintain the relationships among
the graphical objects in Marquise. Constraints can also be
used to connect application data to Marquise-generated in-
terfaces, or else application-specific call-back procedures
can be invoked when a behavior is completed.

Garnet contains a number of other high-level interactive
tools, such as the Lapidary tool for creating individual
widgets or objects, the Gilt tool for editing dialog boxes,

295

24 -29 April 1993

INFERCHI 93

the Jade tool for automatically creating dialog boxes, and
the C32 spreadsheet system for specifying complex con-
straints. Because all the tools use the same data structures
and file format for describing objects, Marquise does not
have to re-implement the functionality already provided by
those tools—it can concentrate on the global behavior. The
designer can have more than one tool operating at the same
time, and use whichever is appropriate for the current part
of the task.

FRAMEWORK

Marquise is able to construct the interface from the
demonstrations because it has built-in knowledge of the
kinds of operations that are common in graphical editors.
This knowledge is part of the underlying Marquise
framework that supports the interactive front end. The
operations include: creating an object of the type in a
palette, selecting objects, directly manipulating the size and
shape with the mouse, specifying properties of objects
(color, font, etc.) with a palette or property sheet, miscel-
laneous editing operations (deleting, duplicating, etc.), and
application-specific commands.

Modes

It is very common in user interfaces for different behaviors
to result from the same action, determined either by the
location of the initiating event or by the value of a global
mode variable. As an example of the first case, in
MacProject II for the Macintosh, pressing the mouse button
down will start text editing (if inside a box), select a box (if
at its edge), create a new box (if in the background), draw a
link between two boxes (if pressed in one box and released
in another), grow a box (if pressed on a selection handle),
or draw a link and create a box (if pressed in one box and
released outside). Designers specify these differences in
Marquise by demonstrating the different operations. Mar-
quise notices what objects are underneath the demonstrated
events (including the mouse release), so it can distinguish
the correct times to use the different behaviors. The object
being used is shown in the feedback window, and the but-
tons there can be used to edit the choice.

In other cases, the selection of the behavior is determined
by the value of a global mode variable, which is set by a
palette or an external application program. To make these
modes explicit and visible, Marquise provides a mode
window, shown in Figure 4, which lists each mode variable
and its current value. The values displayed will change as
the interface is operated, and the designer can directly edit
the values for user modes. When the value has a fixed list
of choices, these are available in a pull-down menu. To
make an interaction dependent on whether a mode has the
current value, it is only necessary to click on the check box
next to the mode name before demonstrating the behavior.
When a user action causes a mode to change, this can be
demonstrated by simply editing the value in the mode win-
dow while in Show mode.

The combination of the icons and mode window make the
control of the behaviors explicit and direct. In contrast,
DEMO II {1] uses multiple examples to determine in which

296

situations the operations should occur, which we feel will
be more prone to errors.

Palettes

One of the important innovations in the Marquise
framework is the formalization of a palette, which is a list
of options, usually presented graphically. Each palette con-
trols a single value or mode. Since palettes are conven-
tional interaction techniques internally (i.e., they are
usually a list of buttons), their internal behavior (how the
user changes the current selection and what feedback
shows the selected objects) can be easily specified using
Lapidary or Marquise. The innovation here is the
automatic connection of the palette to the rest of the inter-
face.

Marquise identifies two main classes of palettes: create
palettes and property palettes. A create palette contains the
different kinds of objects that can be created. For example,
the create palette for MacDraw II contains a selection ar-
row, strings, lines, rectangles, rounded-rectangles, ovals,
arcs, curves, polygons, and text fields. A create palette for
a CAD/CAM program for circuit boards might have a long
list of different IC types, plus wires, pads, etc.

System Modes:

The Created Object DASHED-LINE-4102

| H The selected Object NIL

User Modes:

Q] create Palette 1 :LINE

Line Style Palette | Solid

Color Palette Blue
AAAAA User Mode :FRIENDLY
Figure 4:

The mode window showing the defined modes and their
current values. The designer can click on the check box
at the left of a row to indicate that the next action
depends on the mode having the specified value.
Modes based on palettes change as the palette is
operated. Applications can also directly set a mode, and
one of the actions resulting from a behavior might be a
mode change.

A property palette contains the different values for a single
property. MacDraw II has a property palette for the filling
style at the top of the window, and property palettes for the
line style, font size, font style, etc. in pull-down menus.
Marquise supports palettes which are not always visible,
and a palette can even be a subset of the items in a different
widget (e.g., a section of a pull-down menu). In addition,
the list of choices can be dynamically changing, for ex-
ample, if the application has commands to read new
libraries or to edit the palette itself.

INFERGHI 93

24-29 April 1993

There are two important distinctions between the two types
of palettes. First, the create palette usually enables dif-
ferent interaction techniques. For example, the selection
arrow enables selection, the rectangle enables dragging out
new rectangles, and the text string enables clicking to start
entering text. A property palette is assumed to only set
values of properties and not to control interaction
techniques.2 ' Note that a create palette can enable various
kinds of behaviors, such as selecting and deleting, and not
just creating. The second difference between the two types
of palettes is that Marquise assumes that objects cannot
change type, so that sclections in the create palette cannot
affect the selected objects. However, clicking in property
palettes usually changes the value of that property for the
selected objects.

Create Palettes. To make a create palette, the designer
only needs to draw the set of objects using Marquise or
Lapidary, select them, and declare them to be a create
palette using a menu command. Marquise will then add a
row to the mode window (Figure 4) showing the palette
and its current value. The designer would select the new
row in the mode window, click on each item in the palette
to put the system into the appropriate mode, and
demonstrate the desired behavior.

The create palette has some additional attributes which
control common features found in graphical editors. Some
of these can be demonstrated, and the rest are specified in
dialog boxes.

e In some palettes, when the user clicks on an item, that
sets up a mode so that the next operation will create the
kind of object represented by that item. This was shown
in the example above, and is the way that MacDraw
works. In other cases, clicking in the palette causes the
object to be created immediately (e.g., at the current
mouse position for a popup menu of choices, or at a
computed place if the objects are laid out automatically
by the system). Other times, objects are dragged off the
palette.

After an object is created, some applications select the
newly-created object, some leave the selection un-
changed, others add the new object to the selection set (if
objects were selected before the create), and yet others
clear the selection.

Sometimes, after the object is created, the mode of the
create palette will change. For example, in MacDraw I,
after creating a rectangle, the mode changes back to
selection (the arrow). However, if you double-click on
the palette, the mode does not change after creation. In
the original MacDraw, all object creation modes changed
back to selection except for text strings.

Property Palettes. Property palettes allow the user to con-
trol the value of properties of objects. Typically, the same
palette is used for specifying the global default value used

2This restriction could be lifted in the future if it becomes onerous, but
it is consistent with the behavior of all editors we have studied.

for newly-created objects, and for changing the property of
selected objects. The same palette might also be used to
show the value for the selected object.

To create a property palette, the designer only needs to
draw a set of objects representing the different values (for
example, the line-style items of Figure 5), and declare them
to be a property palette. Marquise then checks whether a
single property seems to change in each element (as it does
in Figure 5 and in most graphical property palettes), and if
s0, proposes this as the property to use. Alternatively, the
user can specify the name of the property and the value for
each item of the palette.

.,." ’
o ’
y , / /
g 4
& ’

Figure 5:
After drawing this picture, the designer would select the
lines, and declare them to be a property palette. Mar-
quise would notice that the line-style changes, and
would create an appropriate palette description.

Each primitive Garnet object describes which properties are
relevant to it, and the designer can add additional properties
for application-specific objects. Therefore, Marquise can
automatically guess which properties are probably relevant
to each type of object that is created. These guesses are
reflected in the feedback and mode windows (Figures 3 and
4), and if Marquise guesses wrong, then the designer can
adjust the values.

Some attributes for property palettes provided by Marquise
are:

e Whether setting the property of a particular (selected)
object also changes the global default used when a new
object is created.

o If an object is selected that does not have the property
represented by the palette (e.g., if the palette is for the
font property and a line is selected), whether the palette
goes inactive (greyed out) or not. When there are mul-
tiple objects selected, whether the palette is valid if at
least one of the objects has this property, or only when all
of the objects have this property.

e When an object is selected, whether the palette shows the
value of that object. If more than one object is selected,
then the palette might show the value only if all objects
have the same value, pick the value of one of the objects
to show, show the global default value, or just be cleared
to show no value.

o If the palette does not echo the value of the property
when the selection changes, then the newly selecied ob-
ject might get the current value of the property (as op-
posed to requiring another click in the palette after
changing the selection).

Positions of new objects
Once Marquise knows which object to create, there is then

297

24 -29 April 1993

INFERCHI 93

the question of where and how to create it. There are two
possibilities: the position is computed automatically, or is
specified by the user with the mouse.

Automatic Layout. Garnet has built-in routines for list,
table, tree, and graph layout. These automatically place the
nodes, rather than requiring the user to specify a location.
Each type of layout has a set of methods for creating and
deleting nodes, and Marquise allows the designer to
demonstrate how these methods are invoked and how their
attributes are specified. Many previous systems have al-
lowed a designer to build custom graph layout applications
by writing code, but Marquise is the first to allow the look
of the nodes to be drawn and the editing behaviors (creat-
ing, deleting, editing labels, etc.) to be demonstrated inter-
actively.

First, the designer specifies which kind of layout is
desired.3 Next, the designer draws pictures to show the
graphics for the nodes (and the graphics for the arcs for
trees and graphs). If these have complex internal structure,
then the Lapidary tool will be useful for drawing them.
The built-in layout algorithms have many attributes that
control the display, and some of these can be demonstrated
(e.g., the spacing and direction). The rest are specified in a
dialog box.

Next, the designer demonstrates the creation behavior.
Using knowledge of the type of layout in use, Marquise
tries to determine if the new object should be placed in
some relation to a selected object, or globally with respect
to all objects. For example, in a directed-graph editor,
there might be commands for ‘“Add new child”’ and ‘‘Add
new parent.”” Marquise does not try to understand the
words in the command names. Instead, the designer would
go into Run mode and select a node, and then in Train
mode the designer would select the command. Finally, in
Show mode, the new object would be created with the cor-
rect relationship to the selected node.

In some cases, the new object’s position will not depend on
the selection, but rather on global properties. For example,
the new object might always go at the end of a list. In this
case, the designer would make sure that no objects are
selected before demonstrating the position of the new ob-
ject, and Marquise would try to determine the appropriate
place for the object. Alternatively, the position might
depend on some global mode, so the appropriate row of the
mode window would be selected before the demonstration.
Usually, the position will be obvious (e.g., first or last), but
if Marquise cannot guess it, then currently the designer will
have to write a Lisp function to compute the position, pos-
sibly based on values in the mode window.

User Layout. Most graphical editors, however, require the
user to explicitly specify the position of new objects. The

3Marquisc: cannot infer a new layout algorithm. For example, if a new
kind of graph layout is required, the designer has to program it in Lisp, but
it can then be used by Marquise-generated programs.

298

example of Figure 2 shows how the simple case of a new
line can be demonstrated in Marquise.

It is very common for the objects to be constrained in their
placement. Marquise has built-in knowledge about grid-
ding, so this can be easily used in an application. A more
interesting problem is attachment. For example, an arrow
connecting the boxes in Figure 6 might always be attached
to the centers of the boxes. In an earlier article [4], we
discussed how Lapidary allows the arrow prototype to be
defined interactively with parameters that refer to the ob-
jects to which it should be attached. Lapidary creates con-
straints that keep the arrows attached as the objects move.
Marquise allows the designer to interactively show how
those parameters are filled in based on the designer’s ac-
tions. For example, look back at Figure 1 where a creation
palette is being drawn. To demonstrate the arrow creation
mode, the designer would select the arrow in the create
palette while in Run mode. This will change the value
shown in the mode window for the create palette mode
(Figure 4). The designer would then click on the check box
next to this mode, which tells Marquise that the mode is
significant for the next operation.

Assume that the arrow was defined so that setting the from
and fo parameters with objects would cause the line to be
attached to those objects. In Train mode, the designer
would press down inside a rounded-rectangle, and drag out-
side. Then, in Show mode, the designer would create an
instance of the arrow with the shaft end inside the rounded-
rectangle and the arrow end at the k3 icon. Then, the
designer specifies that the rounded-rectangle corresponds
to the from parameter, and Marquise infers that it should
determine the parameter value based on where the mouse is
first depressed, and that the other end should follow the
mouse. Next, the designer demonstrates the mouse button-
up response by deleting the feedback line and creating a
new arrow between the two nodes. These nodes are
declared as the from and to parameters. In the future, we
will provide facilities for gravity so the designer could
specify that while the mouse is moving, the feedback
should jump to the attachment points of objects if they are
close enough.

Selection

One of the most important operations in a graphical editor
is selecting objects. Typically, the selected object will be
shown by changing its appearance (e.g., to reverse video)
or by showing ‘‘selection handles’” around it (Figure 6).
Marquise supports virtually any graphical response to show
the selection. The designer simply draws an example of the
selection graphics (or if the object itself changes, the desig-
ner draws the object first in its normal and then in its
selected state). If the standard Garnet selection widget is
desired, then it is only necessary to go into Show mode and
select an object. A special line of the mode window shows
which objects are selected, and this value can be edited to
show whether the interaction being demonstrated adds to
the selection set, removes from it, clears it, etc. This
provides a uniform, intuitive mechanism for specifying al-
most any selection behavior. The designer can also specify

INFERCHI "33

24-29 April 1993

Figure 6:
The arrows are constrained to be in the centers of the
boxes. Box 3 has ‘‘selection handles’’ around it, which
show that it is selected, and the user can click on white
handles to move it or black handles to grow it. The
formula that computes the labels was hand-coded using
C32.

whether a different form of feedback is used when there are
multiple selections (as in Macintosh PowerPoint and
MacProject II).

Moving and Growing Objects

Demonstrating what commands cause objects to be moved
and grown works similarly to demonstrating how they are
created: first, the designer demonstrates in Train mode
what user action causes the interaction to start, and then in
Show mode, moves or grows the appropriate object. Since
the standard editing actions work in Show mode, the desig-
ner would just use the Marquise move-grow selection
handles to demonstrate the behavior. Of course, if other
objects are attached to the moved object with constraints,
they will also move.

One complication is that often the object that the mouse is
over is not the object that should be modified. For ex-
ample, with selection handles, the user clicks on a handle,
but wants to grow the object underneath. Marquise knows
about this special case, and if the object the designer moves
is attached by a constraint to the object clicked on, then this
is reflected in the generated behavior,

Other Properties of Objects

Many properties of objects are controlled by palettes, but
some are not. In some graphical editors, 2 menu command
or double-clicking on an object opens a property sheet or
dialog box with other properties. Marquise provides hooks
to pop up a property sheet or a dialog box created automati-
cally by Jade or interactively using Gilt. Of course, the
designer can specify which fields are presented.

Miscellaneous Editing Commands

Because Garnet uses a retained object model, there is a
standard format for all Garnet objects. Therefore, common
editing commands such as bringing objects to the top (un-
covered), sending to the bottom, cutting, copying, pasting,
deleting (clear), duplicating, and printing in PostScript, are
all provided. The designer simply demonstrates what ac-
tion causes it to occur, and then which operation is desired.
Note that unlike other frameworks that provide messages
that must be overridden by each application, the code
provided by Marquise for these operations can often be
used without change.

Semantic Actions

Naturally, many of the commands in a graphical editor will
invoke application-specific functions (sometimes called
‘‘semantic actions’’). Since these may involve arbitrary
computation, it is impossible for Marquise to infer these
from a demonstration. However, techniques like those
previously reported for Gilt [7] are used to allow the ap-
plication procedures to be independent of the way they are
invoked (from a button, menu, double-click, etc.) and
somewhat independent of the graphics. However, most
functions will want to walk through the graphical objects
computing values, so they will clearly have to look at the
graphical objects in the window.

If the result of the function is a change to the graphic ap-
pearance of nodes, then this can be specified demonstra-
tionally. For example, a ‘‘critical-path’’ command in a
graph editor might want all the nodes on the critical path to
turn red. The designer can bring up a property sheet on the
nodes, add an on-critical-path property,* and
demonstrate that the nodes are black when it is NIL and red
when it is T. Then, the critical-path function would only be
responsible for setting the on~critical-path value in
each node. This makes the application function more inde-
pendent of the graphical response to its actions.

Semantic feedback can often be provided in the same way.
For example, Marquise supports highlighting of only those
objects that an object is being dragged can legally be
dropped into, as in the Macintosh Finder. Here, a function
could be called to set a particular property of each object to
T or NIL. Then, the designer would demonstrate the ap-
propriate color change when the node is over an object
which has the value T for that property.

Similarly, if the application wants to control which mode is
in effect, it can simply change the value of one of the mode
variables, and the designer can demonstrate interactively
what this controls.

EDITING

An important aspect of an interactive builder is how to edit
the interfaces after they have been created. It is easy to edit

“The Garnet object system allows properties to be added to objects at
any time.

299

24-29 April 1993

INFERCHI 93

the graphics, since they can be directly manipulated in
Build mode. For the behaviors, the feedback window of
Figure 3 shows the properties. When in Train mode, the
feedback window continually shows the name and
properties of the behaviors being executed, so the designer
can determine which behaviors are associated with which
events. There are also commands to list all the behaviors,
or all those affecting a particular object.

CONCLUSION

One of the important questions for an interactive tool is
what is the range of interfaces that it can create. Unfor-
tunately, this is very difficult to quantify, except by ex-
ample. Using the Lapidary, Gilt and Marquise tools in
Gamet, it is possible without programming to create com-
plete user interfaces like those in Macintosh MacDraw,
MacDraw II, PowerPoint, and MacProject II (which are
surprisingly different), as well as applications with various
kinds of automatic layout for nodes. Later, we hope to
expand the range of Marquise to handle gestural interfaces
(the Garnet toolkit already supports gesture recognition),
and those with 3-D graphics. We also plan to add support
for animations, which will probably make possible the
demonstration of various visualizations and video games.
Another addition will be to support defining constraints
among objects directly in Marquise, probably using
demonstrational techniques similar to Peridot [3] or Druid

[81.

Marquise is still under development. When it is more
robust, we will perform user-testing to see if the
demonstrations and feedback are understandable to both
non-programmers and programmers. After that, we will
release it for general use as part of the Garnet system. All
this will help show what kinds of behaviors it can capture,
and we will continually work to expand the range.

We believe that interactive, demonstrational creation of
user interfaces is easier, faster, and more fun than program-
ming. Many interactive builders have already shown that
dialog boxes and forms can be created interactively. Mar-
quise shows that direct manipulation techniques can be
used to generate the user interfaces of a much wider class
of graphical applications as well.

ACKNOWLEDGEMENTS

For help with this paper, we would like to thank Dario
Giuse, Brad Vander Zanden, Andrew Werth, and Bermita
Myers.

This research was sponsored by the Avionics Laboratory,
Wright Research and Development Center, Aeronautical
Systems Division (AFSC), U. S. Air Force, Wright-
Patterson AFB, OH 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597.

300

The views and conclusions contained in this document are
those of the authors and should not be interpreted as
representing the official policies, either expressed or im-
plied, of the U.S. Government.

REFERENCES

1. Gene L. Fisher, Dale E. Busse, and David A. Wolber.
Adding Rule-Based Reasoning to a Demonstrational Inter-
face Builder. ACM SIGGRAPH Symposium on User In-
terface Software and Technology, Proceedings UIST’92,
Monterey, CA, Nov., 1992, pp. 89-97.

2. Anthony Karrer and Walt Scacchi. Requirements for an
Extensible Object-Oriented Tree/Graph Editor. ACM SIG-
GRAPH Symposium on User Interface Software and Tech-
nology, Proceedings UIST 90, Snowbird, Utah, Oct., 1990,
pp. 84-91.

3. Brad A. Myers. Creating User Interfaces by
Demonstration. Academic Press, Boston, 1988.

4, Brad A. Myers, Brad Vander Zanden, and Roger

B. Dannenberg. Creating Graphical Interactive Application
Objects by Demonstration. ACM SIGGRAPH Symposium
on User Interface Software and Technology, Proceedings
UIST 89, Williamsburg, VA, Nov., 1989, pp. 95-104.

5. Brad A. Myers. Encapsulating Interactive Behaviors.
Human Factors in Computing Systems, Proceedings
SIGCHI’89, Austin, TX, April, 1989, pp. 319-324.

6. Brad A. Myers, Dario A. Giuse, Roger B. Dannenberg,
Brad Vander Zanden, David S. Kosbie, Edward Pervin,
Andrew Mickish, and Philippe Marchal. "Garnet: Com-
prehensive Support for Graphical, Highly-Interactive User
Interfaces”. IEEE Computer 23, 11 (Nov. 1990), 71-85.

7. Brad A. Myers. Separating Application Code from
Toolkits: Eliminating the Spaghetti of Call-Backs. ACM
SIGGRAPH Symposium on User Interface Software and
Technology, Proceedings UIST’91, Hilton Head, SC, Nov.,
1991, pp. 211-220.

8. Gurminder Singh, Chun Hong Kok, and Teng Ye Ngan.
Druid: A System for Demonstrational Rapid User Interface
Development. ACM SIGGRAPH Symposium on User In-
terface Software and Technology, Proceedings UIST’90,
Snowbird, Utah, Oct., 1990, pp. 167-177.

9. John M. Vlissides and Mark A. Linton. Unidraw: A
Framework for Building Domain-Specific Editors. ACM
SIGGRAPH Symposium on User Interface Software and
Technology, Proceedings UIST’89, Williamsburg, VA,
Nov., 1989, pp. 158-167.

10. David Wolber and Gene Fisher. A Demonstrational
Technique for Developing Interfaces with Dynamically
Created Objects. ACM SIGGRAPH Symposium on User
Interface Software and Technology, Proceedings UIST 91,
Hilton Head, SC, Nov., 1991, pp. 221-230.

