
1

The Changing Face of Software
ArchitectureArchitecture …

… and what that means for educators

David Garlan
12 March 2010

A Brief Personal History

 1987 PhD at CMU
 3 years at Tektronix developing a product line
 1990 joined faculty at CMU

 Began collaboration with Mary Shaw
 Became involved in the Master in Software

Engineering program
 1992 taught first course in Architectures for

Software Systems with Mary ShawSo t a e Syste s t a y S a
 1996 published book with Mary Shaw
 2003 published book with Paul Clements,

Len Bass, Judy Stafford, and others

12 March 2010

2

Acknowledgements

… Mary Shaw
… Tony Lattanze
… other co-instructors of Software Architecture

course
… members of the ABLE research group
… funders (NSF, DARPA, ARO, Siemens, and many

others)

12 March 2010

This Talk

 Software Architecture: past and present
 What is software architecture?
 Evolution of the field and its role in software engineering

 What should software engineers know about
software architecture?
 Elements of a course on software architecture
 Architectural thinking

 Emerging trends and Issues
 Architecture evolution

Architecture conformance Architecture conformance
 Frameworks, platforms, and ecologies
 Conway’s law revisited

 Some questions to ponder

12 March 2010

3

Examples of Software Architecture

12 March 2010
5

6
12 March 2010

4

12 March 2010
7

12 March 2010
8

5

12 March 2010
9

12 March 2010
10

6

12 March 2010
11

12 March 2010
12

7

The Challenge

 Turn Software Architecture into an engineering
di i lidiscipline
 from ad hoc definition to codified principles

 Develop systems “architecturally”
 build systems compositionally from parts
 assure that the system conforms to the architecture and

has the desired properties

13

 use standard integration architectures
 reuse codified architectural design expertise
 reduce costs through product-lines

12 March 2010

The Big Problem

Requirements

???

How to bridge
the gap
between
requirements

d l ti ?

14

Implementations

and solutions?

12 March 2010

8

One Possible Answer

Requirements

A Miracle Happens!

- Ad hoc
- Requires gurus
- Unpredictable

15

Implementations

- Costly

12 March 2010

The Role of Software Architecture

R i t

- High level of
system design

- System-level
abstractions

- Reuse design Software Architecture

Requirements

16

Implementations

g
idioms

12 March 2010

9

What is Software Architecture?

 There are many definitions in the literature
 CMU’s Software Engineering Institute’s web site on g g

software architecture lists over 80 of them.

 The definition we like is this:

The software architecture of a computing
system is the set of structures needed to
reason about the system which comprise

17

reason about the system, which comprise
software elements, relations among them

and properties of both.

12 March 2010

Issues Addressed by Software
Architecture - 1

 Gross decomposition of a system into parts
 often using rich abstractions for component

interaction (or system “glue”)
 often using common design patterns/styles

 Emergent system properties
 performance, throughput, latencies
 reliability, security, fault tolerance, evolvability

18

 Rationale
 justifying architectural decisions

 Envelope of allowed change
 “load-bearing walls”

12 March 2010

10

Software Architecture in Context

2000I d d li

Model-driven development
Component-based Systems

Service-oriented arch
Cloud computing arch

2000

1980

1970

1990

Programming-
in-the-large

Programming-
in-the-world

Software architecture

Programming-in-the-large

Software development environments

Integrated product lines

Information hiding

Inheritance
Abstract data types objects

Packages
Pipes and filters

Object-oriented Patterns

19

1950

1970

1960
Programming-
any-which-way

Programming
-in-the-small

NATO SE conference

Subroutines

Separate compilation

12 March 2010

Evolution of the Field of Software
Architecture – 1980’s

 Informal use of box and line diagramsg
 Ad hoc application of architectural expertise
 Diverse, uncodified use of architectural

patterns and styles
 No identified “architect” on most projects

20
12 March 2010

11

1990’s

 Recognition of the value of architects in
software development organizations

 Processes requiring architectural design
reviews & explicit architectural documentation

 Use of product lines, commercial architectural
standards, component integration frameworks

 Codification of vocabulary, notations & tools
for architectural design

21

for architectural design
 Books/courses on software architecture

12 March 2010

2000’s

 Incorporation of architectural notions into
mainstream design languages and tools (e gmainstream design languages and tools (e.g.,
UML-2)

 Methods based on architectural design and
refinement (e.g., Model-Driven Design)

 Some architecture analysis tools
 Architectural standards for Enterprise

22

 Architectural standards for Enterprise
Systems (e.g., RM-ODP, TOGAF)

 Architectural frameworks (e.g., SOA)

12 March 2010

12

This Talk

 Software Architecture: past and present
 What is software architecture?
 Evolution of the field and its role in software engineering

 What should software engineers know about
software architecture?
 Elements of a course on software architecture
 Architectural thinking

 Emerging trends and Issues
 Architecture evolution

Architecture conformance Architecture conformance
 Frameworks, platforms, and ecologies
 Conway’s law revisited

 Some questions to ponder

12 March 2010

What should software engineers
know? -1

 General Concepts
Wh t i ft hit t What is software architecture

 Basic concepts: views, styles, patterns

 Principles of Architecting
 Understanding architectural requirements
 Architecture styles and tactics

P d t li d i t ti f k

24

 Product lines and integration frameworks
 From architecture to code

12 March 2010

13

What should software engineers
know? -2

 Architecture in Practice
 Evaluating architectural designs
 Handling architectural problems
 Documenting a software architecture
 Presenting an architecture to others
 Architecture for X (security, usability,

reliability etc)

25

reliability, etc.)

12 March 2010

Architectural Thinking - 1

An engineering mindset

26

Source: “The Google File System”
Sanjay Ghemawat, Howard
Gobioff, and Shun-Tak Leung

12 March 2010

14

Different issues for architecture & programs

Architectural Thinking - 2

Architecture Programs
interactions among parts implementations of parts
structural properties computational properties
declarative operational
mostly static mostly dynamic

27

system-level performance algorithmic performance
outside module boundary inside module boundary

12 March 2010

Architectural Thinking - 3

Product lines, platforms, and styles

Generic
Component
Integration
Standards

Domain-Spec
Component
Integration
Standards

Generic
Styles

Generic Style
Specializations

Product Line
Frameworks

Data Flow
Call-Return

...

Pipes & Filters
Process Control

...

CORBA
COM

JavaBeans

Tektronix Oscilloscopes
Xerox Network Scanning

Arch

EJB
HLA

...

12 March 2010

... ...
Domain-Specificity

15

Architectural Thinking - 4

Percent of Project Schedule Devoted to Initial
Architecture and Risk Resolution
Percent of Project Schedule Devoted to Initial
Architecture and Risk Resolution
Percent of Project Schedule Devoted to Initial
Architecture and Risk Resolution

Knowing how much architecture is enough

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

P
er

ce
n

t
o

f
T

im
e

A
d

d
e

d

to
 O

ve
ra

ll
S

ch
e

d
u

le

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

P
er

ce
n

t
o

f
T

im
e

A
d

d
e

d

to
 O

ve
ra

ll
S

ch
e

d
u

le

29

Source: “Using Risk to
Balance Agility and
Discipline: A Quantitative
Analysis,” Barry Boehm.

12 March 2010

Architectural Thinking - 5

Old styles never die …
they just adapt to new technologies

C id d fl hiConsider data-flow architectures
 In a Data Flow system

 the design is dominated by orderly motion of data from
process to process

 the pattern of data flow is explicit

 Structural elements: data transformers & data channels

P i d l Processing model: availability of data controls the
computation

12 March 2010

16

In the early days: Batch Sequential

Data transfer

Program

Validate
tape

Sort Report
report

Update
tape tape tape

tape

12 March 2010

Later: Pipes and Filters

Pipe

Filter

Frame
Collection

Major Frame
Decom

Time Tag
FrameCollection Decom

Minor Frame
Decom

Measurement
units

Frame

Apply
coefficients

Display Data Record Data

12 March 2010

17

Example: Apache

Source: Apache Modeling Project: Bernhard Gröne, Andreas Knöpfel, Rudolf
Kugel, Oliver Schmidt
http://www.fmc-
modeling.org/category/projects/apache/amp/Apache_Modeling_Project.html

12 March 2010

Today: Yahoo! Pipes

12 March 2010

18

This Talk

 Software Architecture: past and present
 What is software architecture?
 Evolution of the field and its role in software engineering

 What should software engineers know about
software architecture?
 Elements of a course on software architecture
 Architectural thinking

 Emerging trends and Issues
 Architecture evolution

Architecture conformance Architecture conformance
 Frameworks, platforms, and ecologies
 Conway’s law revisited

 Some questions to ponder

12 March 2010

Issue 1: Architecture Evolution

 Context: Increasingly, businesses must evolve
their architectures

F om A to C th o gh a se ies of inc emental From A to C, through a series of incremental
architectures B, B’, B’’

 E.g., migrate batch-oriented systems to web-based
interactive system; or migrate client-server system
to service-oriented architecture (SOA).

 Issue: How do we approach this problem in a
principled way?principled way?
 Can we leverage past evolution histories?

 How does this problem link to project planning, cost
estimation, work assignments, etc?

12 March 2010

19

Issue 2: Architecture Conformance

 Context: We would like to make sure
that the implementation conforms to
architecture (and vice versa)

Architecture

Codearchitecture (and vice versa)
 This is the Achilles Heal of software architecture

 Issue: What does it really mean to
“conform” and how would we evaluate
its satisfaction?

Code

Architecture

Code

Architecture

Requirements

12 March 2010

Architecture

Code

Code

Software Architecture

Issue 3: Frameworks, Platforms, and Ecologies

 Context: We have been building on top of
platforms and using software frameworks
for most of the history of softwarefor most of the history of software
engineering
 This introduces an upward constraint on the

architecture
 The nature of such platforms has evolved

 Issue: What is the nature of modern
platforms and how should architecture

Software Architecture

Requirements

accommodate those?
 Reflects a historical migration of architectural

concerns
 Needs to be rethought in the presence of the Internet

12 March 2010

Code

20

Structure of the Mainframe
Computer Industry

Reprinted from
The Economist,
Feb 27, 1993

12 March 2010

New Structure of the Computer Industry

“New” computer industry

DISTRIBUTION
Computer dealer

Value-
Added
reseller

APPLICATIONS
Spreadsheets
Word processors
Graphics
Database

OPERATING
SYSTEMS
SOFTWARE

COMPUTER

Lotus 1-2-3 Microsoft Excel
Borland’s
Quattro

Spreadsheets

MS-DOS

Novell Netware Banyan OtherIBM

Windows Apple

UnixOS/2

Client
Server

O h I l b d l C Apple

Other

Reprinted from The Economist, Feb 27, 1993

PLATFORMS

PROCESSOR

IBM Other Intel-based personal Computers Apple
Macintosh

Intel x86 Motorola
68K

Source: Intel

12 March 2010

21

Issue 4: Conway’s Law Revisited

 Context: Conway’s “law” says that the
structure of a software system reflects the
structure of the organization that built itstructure of the organization that built it.

 Issue: What does this say about architecture?
 Particularly an issue when we don’t build everything

ourselves
 Is organization-architecture conformance an attribute that

we should pay attention to?

12 March 2010

Some questions to ponder (for educators)

 Can we really teach people to be great architects?
 .. If not can we teach them to be better architects?

What is the role of domain knowledge? What is the role of domain knowledge?
 .. Are we wasting our time teaching students general

architectural principles?

 What kinds of assignments can get to the heart of
the matter?
 .. See workshops later today.

Where are the great exemplars? Where are the great exemplars?
 .. Perhaps Grady Booch has the answer.

 What can we learn from Google and Amazon?
 .. Architectures for the new age?

12 March 2010

