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Abstract

Adaptive Agent Oriented Software Architecture
(AAOSA) is a new dynamic approach to software
design based on multi -agent oriented architecture.
Since the optimal agent organization is different
from one environment to another, we proposed a
distributed learning policy that is used in AAOSA
for the purpose of agent organizational evolution.
Knowing when and how to communicate and
coordinate with other agents is an important
efficiency and reliabilit y question. In this paper,
we propose the use of on-line feedback from
users to motivate the learning whenever necessary,
and show that distributing the evolution process
over individual agent in AAOSA is efficient and
reasonable.
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Introduction

In this paper, we are interested in learning techniques
that allow agents in Adaptive Agent Oriented Software
Architecture (AAOSA) to improve their performance
by learning from past run-time experience and users ’
on-line feedback. AAOSA is a multi -agent oriented
software methodology that proposes the break-up of
complex software into a community of simpler,
independent, collaborating, adaptive, message-driven
agents (Hodjat, B. 1998). According to the dynamic
nature of environment, effective coordination strategies
will be very important for AAOSA agents which work
together to solve the problem that any individual agent
is unable to do it alone. Due to their  “open ”  operating
environment where the configuration and capabiliti es
of other agents and computational resources could
change dynamically (Lesser, V. R. 1998), learning
within a multi -agent based system is, in general, very
hard (Parkes, D.C. 1997). Learning from reinforcement
is a promising approach for creating intelli gent agents
(Tan, M. 1993) because it allows agent to learn which

of its actions is desirable based on the exploration
experience of its environment. It may take a long
sequence of actions before finally arrive at a state with
high reward (Kaelbing, L. P. 1996).

Note that intelli gent behavior is emergent from the
cooperation of agents because the agents community
can accomplish more and better than any one of the
agents. We also show that distributing the learning over
a hyper-structure of more simple sub-domains is less
complex and more feasible than centralized learning.
Learning can involve a lot of things, such as, acquiring
strategies for communication or coordination of agents,
detecting relationship of agents, constructing new
models or agents for new task, and so on. Currently, we
propose that learning in an AAOSA agent system can
be made on two separate layers concurrently:

♦ Learning of agent organization and
♦ Learning of local agent capabiliti es.

Each layer makes decisions respectively and involves
different processes and goals. For example, the
organizational layer makes decisions that are of long-
term reward, while the local layer try to choose actions
that maximize immediate reward.

In the following sections, we will first briefly re-
introduce our framework for AAOSA methodology,
and then describe the proposed learning policies in a
domain-independent way. After giving out some
examples, we conclude with a look at our future work
direction.

Overview of AAOSA

AAOSA is a new approach to software design based on
multi -agent oriented architecture. In this approach,
agents can be considered as adaptively communicating
concurrent modules divided into a white box module
responsible for communications and learning, and a
black box module responsible for the independent
specialized processes. To reap the benefits of
distribution and enhance its learning abiliti es, each
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agent is kept simple in its responsibiliti es and limited in
the decisions it needs to make.

AAOSA agents are not centralized, the overall task is
identified and suitably decomposed by the whole
AAOSA agents network. The break up of problem into
sub-domains is the responsibilit y of the designer who
should also define the interpretation policies for each
agent. By doing so, AAOSA agents in the hyper-
structure can be responsible for a certain input, and
provide the necessary coordination between them to
achieve desired output. Figure 1 shows the typical
structure of an AAOSA agent.

Figure 1: AAOSA Agent Structure

In an AAOSA agent, as Figure 1 shown, white box
contains standard data structures and models for
communications, interpretations, and learning provided
by AAOSA, while black box contains agent-specified
communications, interpretations, and processes defined
by the designer. Note that agent ’s knowledge about its
environment is stored in an information base consisted
of  “ temporary storage of problem, ”   “ interpretation
policy ”  and  “known agents ” .  “Temporary storage of
problems ”  is used to keep a record of agent problem-
solving process.  “ Interpretation policy ”  is used
whenever agent tries to interpret input from other
agents or users. The interpretation criteria may be the
message content but is not limited to it. Process history,
probabiliti es and outside information (e.g., interaction
with other agents) are examples that can be used by
agent as interpretation policy. If an agent is unable to
interpret a particular input by itself, it may consult
other agents. These agents are called down-chain
agents relative to the requesting agents, which are
called up-chain agents.  “Known agents ”  is used to store
the addresses of down-chain and up-chain agents.

The performer module actuates other modules in the
agent based on the message performatives received

from other agents. Each message is comprised of a
message content, a performative that specifies what
should be done with that content. The designer can add
agent-specific performatives in sub-domains to
facilit ate special communications between agents.
AAOSA framework provides a set of predefined
general performatives by which the coordination of
agents can be managed. (See Table 1)
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Maybe-Mine
Down-chain agent has encountered an ambiguity in
interpreting input sent down with an Is-This-Yours?
Performative.

It-Is-Mine Down-chain agent has been successful in interpreting
input sent down with an Is-This-Yours? Performative.

Commit Agent requests immediate response, be it partial, to
input sent down with an Is-This-Yours? Performative.

Learn
A new interpretation policy is suggested to an agent that
will result in the sender agent being interpreted as
responsible for certain input.

Un-Learn
An interpretation policy that results in the sender agent
being interpreted as responsible for certain input is
revoked.

Dissatisfied Alternative process or interpretation is requested for
input that has already been processed.

Forget-
Problem

A previous request is canceled and Remove any
temporary storage of interpretation results.

Table 1: AAOSA Predefined Performatives

Ambiguities occur when an agent has not been able to
interpret the message content belonging to it (This-Is-
Yours) based on its interpretation policies, and

♦ Either more than one agent consulted with claim it,
♦ Or, none of the agents consulted with claim it.

The resolution of ambiguity is particularly important in
AAOSA because it provides a way by which agents
can change their behavior and react to unexpected input.
In the next section, we demonstrate that trying to
resolve ambiguity (or conflict) is one of the main tasks
of learning.

Within an AAOSA agent system, we know that
generating a solution to input problem is not a
straightforward combination of agents ’  local sub-
problem solving processes. Rather, this process can be
an incremental process involving coordination among
agents. Coordination among agents can be explicit or
implicit. As an explicit way, the agents interact and
exchange information or perform actions to benefit
other agents, while implicitly cooperative agents
perform actions that are a part of their own goal-
seeking process and will also affect the other agents in
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beneficial ways (Lesser, V. R. 1998). Appropriate
communication is necessary to efficiently manage the
interdependencies among agent activities. Otherwise,
inappropriate communication can prevent the system
from generating optimal solution (or even no solution
at all ), and waste considerable resources on useless
activities. In other words, an agent must take
reasonable decisions about when to choose a best-
response strategy given its current knowledge, and
when to deviate and gather more information about the
preferences of the other agents. We will discuss how
this task can be done through learning in the following
section.

General Learning Policies

AAOSA agents use learning to improve their overall
performance. By learning, for example, agents can find
ways to solve unforeseen problems, exploit faster and
more robust ways for those known problems, as well as
adapt to different users ’  preferences. To get greater
flexibilit y, learning in AAOSA is incorporated on the
architecture and distributed over the multi -agent
structure, rather than introduced one particular agent
responsible for learning. In fact, learning can be viewed
as an integral part of AAOSA, and each agent is
responsible for choosing the proper strategy for itself in
different problem instances. Each agent has a role in its
own agent community. The main problem here is that
an agent has to deal with its limited view of the
interactions between its own activities and those of
other agents (Nagendra Prasad, M. V. 1997).
Reinforcement learning is proposed to resolve this
problem, because it enables agent to learn behavior
through trial-and-error interaction with a dynamic
environment (e.g., an AAOSA agent society).

As a reinforcement-learning agent, agent ’s diagnosis of
history plays a central role in its selection of reward-
maximizing actions. In AAOSA, each agent keeps a
record of its problem-solving process in  “ temporary
storage of problems ” . While learning, performance
criteria are used, which combine both local and non-
local perspective to analyze agent previous experience.
Furthermore, these performance criteria will be
changed due to emerging conditions so that an agent ’s
view of the global situation will be more reasonable
and adaptive. Some performance criteria are domain-
independent while some of them are domain-dependent.
From the system ’s point of view, the following criteria
are usually considered, such as computational resource,
efficiency, communication cost, ambiguity, user
satisfaction, and so on. Designer can also add other
domain-dependent criteria. The past experience will be
analyzed based on performance criteria. The result of
this analysis will be used to effectively detect and
diagnose the cause of agent inappropriate behavior.

Finally, we can formulate learning policies for AAOSA
agent as following:

It will try to choose the best action given a past
history, actions of the other agents in the system, and
performance criteria.

From each agent point of view, all decisions made from
learning can be applied either inside the agent or over
the system ’s structure. Therefore, learning can be
considered on two layers separately: learning inside
agent and learning over the agent structure.

Learning Inside Agent
Since no agent will be added or removed, learning in
this layer is used to improve the agent ’s own
specialized performance by choosing actions to
maximize its own reinforcement. The performance
criteria concerned on this layer are mostly local and
short-term. Learning in this layer can modify the
interpretation rules or relevant agents ’  addresses. By
doing so, we can enhance the agent ’s local capabiliti es,
improve coordination strategies, resolve ambiguities
and so on. When a new interpretation rule is learned by
an agent, it should sent  “Un-Learn ”  message to other
agents. By doing so, the potential ambiguities can be
avoided because there is only one agent will claim  “ It-
Is-Mine ”  based on the new learned interpretation
policy.

Learning Over the Agent Structure
There is no centralized control enforced over the
AAOSA agent network. Agents will i ntroduce
themselves and their abiliti es to one another at the
beginning or during execution. Therefore, one of the
major features of AAOSA is that agents can be added
to or removed from the application at runtime. This
feature makes AAOSA agent system evolutionary. That
means, social structures and mechanisms can be
dynamically reasoned and changed. The performance
criteria and actions concerned at this level are mostly
non-local and long-term. Learning in this layer can
make the decision to split too complicated agent into
simpler ones, or join redundant agents to form more
efficient one. We call them merge and split function
respectively, and this two fundamental functions can be
used to achieve a balance between the degree of
generalization (merge) and specialization (split ) of the
overall agent community. Whenever merge or split
function is done, it is necessary to send  “Forget-
Problem ”  messages to relevant agents to remove the
corresponding problem records stored in  “ temporary
storage of problems ” . Otherwise, the reinforcement
learning will still  use the old records of problem, and
choose an incorrect action. Both ambiguity and
efficiency play important roles in making this balance.
It must be noted that resolving ambiguity will i mprove
system ’s efficiency by decreased the communication
cost. In fact, resolving ambiguity is a useful and
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primary method to decrease the communication burden
of coordinating agents ’  activities in an AAOSA system.

Since learning in each level involves different goals
and processes, it is easy for agent to decide on which
level the learning should be implemented. In the next
two sections, we will show that the AAOSA agent
system can reach a high-speed goal with the
combination of local learning and organizational
learning mechanisms.

Example 1: Agent Capabilities Learning

With the use of AAOSA, the design of adaptive user
interfaces will be decentralized and become an
individual affair, mostly driven by the personalized
information. The long-term customization of user
interfaces will be gained from numerous shared
experiences between agents and user. An agent can
acquire its competence from user ’s indirect or direct
feedback. For example, indirect feedback is provided
when user ignores the agent ’s suggested action, while
direct feedback can be get from user-supplied examples.
Finally, the agent also can ask advice from other agents
that may have more experience with the same task
(Bradshaw, J. M. 1997). Using a simple example, we
show that this task can be done by incremental learning
of agent capabiliti es in an AAOSA agent system.

Figure 2: AAOSA agent community for Map Viewing

Figure 2 shows a small part of agent community based
on AAOSA, which is designed for map viewing. A
sample of a contradiction resolution process is given
out as following:
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In this example, ambiguity occurs within step 1,
because both 	 � � � �  Magnification and 	 � � � �  Shifting
claim  “ It-Is-Mine ”  to the input  “move it closer ” . Then,
the system asks user to give out his intention in step 2,
and gets the direct feedback from user in step 3. That is,
 “move it closer ”  means  “magnification ” . Learning is
done in agent Magnification by two steps:

♦ Add new interpretation policy specified to input
as  “move it closer ” .

♦ Sent Un-Learn message to agent Shifting, so that
agent Shifting no longer claims  “ It-Is-Mine ”  to the
input  “move it closer ” .

Example 2: Organizational Learning

AAOSA can be used as a new approach of relational
database retrieving. One of the significant features is
that query optimization can be done by AAOSA agent
hyper-structure optimization. As shown in Figure 3,
agent Flight and agent Flight-Fare represent two tables
respectively. Each of them has three down-chain agents,
which represent three attributes of the table
respectively. Agent Flight-ID is shared by agent Flight
and agent Flight-Fare, because Flight-ID is the
primary key between table  “Flight ”  and  “Flight-Fare ” .

Figure 3: AAOSA agent community for Query DB

This initial structure is optimal for queries involved
only one table, because messages can be sent and
interpreted among agents without contradiction.
Unfortunately, it is not optimal for queries involved
both tables, because both agent Flight and agent Flight-
Fare claim  “ It-Is-Mine ”  to the agent Query when
queries come in. Therefore, this ambiguity information
will be stored in the  “ temporary storage of problems ”
of agent Query, and used as the information source for
reinforcement learning. Therefore, agent Query can
indicate that high communication cost occurs between
its two down-chain agents. Since this kind of
contraction can not be resolved by local agent learning,
agent Query decides to merge its relevant down-chain
agent Flight and agent Flight-Fare, as figure 4 shows.
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Figure 4: AAOSA agent community after merging

By merging two agents into a new agent  “Flight &
Flight-Fare, ”  we can extend its capabiliti es. The new
merged agent will t ake not only the responsibilit y
inherent from its predecessors but the responsibilit y for
the joint queries. So far, this agent community works
better for queries involved a single table or both.

However, this is not the end of evolutionary process,
but a new start point. Suppose that we have a lot of
queries on table Flight or both tables. Then, agent
 “Flight & Flight-Fare ”  has a heavy task load. Having a
heavy task load is a problem of inefficiency. Unlike the
ambiguity, the inefficiency is a relative term that is
depended on agent ’s performance criteria, or user ’s
reward. In this example, we suppose that either the
system has a high requirement on efficiency or the user
gives out the reward that indicates this inefficient
problem. Then, each agent in the system will t ry to
analyze its stored experience information to check the
execution time of input queries. It is easy to know that
agent  “Flight & Flight-Fare ”  becomes the bottleneck
of the whole agent system. Once the problem agent has
been found, it is naturally to make the decision to split
itself. The result is shown in Figure 5.

Figure 5: AAOSA agent community after splitti ng

Now, agent Flight takes a part of responsibiliti es
broken down from its predecessor, so that agent Flight
is responsible for those queries on table Flight. Thus,
agent  “Flight & Flight-Fare ”  is responsible for those
queries on table Flight-Fare or both tables. We can see
that query tasks are actually distributed after splitti ng,
and system becomes more efficient.

Conclusion & Future Work

This paper discussed the mechanism of software agent
evolution in AAOSA by use of reinforcement learning.
In this approach, AAOSA agent can be viewed as a

dynamic entity which can adapt and change its
strategies by itself as the environment evolves. By
distributing learning task to individual AAOSA agent,
the system becomes more flexible and adaptive. We
also mentioned that the separation of the organizational
learning from local agent learning can make the
learning mechanism simpler but more efficient. Two
examples of using the proposed learning method for
AAOSA agent are also introduced. The result
demonstrates that the proposed learning techniques can
help an AAOSA agent system to reach a desirable goal
with high flexibilit y and efficiency. However, there are
a lot of works remained for further study. We plan to
implement and evaluate the proposed learning method
in a practical application of AAOSA. We also want to
add confidence factors with interpretation policies in an
AAOSA agent, and use reinforcement learning to
modify those confidence factors on-line. All of these
are direction of our future work.
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