Softwar e Agent Evolution in Adaptive Agent Oriented
Software Architecture

Guogiang Zhong, Babak Haodjat, Tarek Helmy and Makoto Amamiya
Department of Intelli gent Systems
Kyushu University
Kasuga-shi, Fukuoka (816-8580), Japan
{zhong bobby, helmy, amamiya} @al.is.kyushu-u.acjp

Abstract

Adaptive Agent Oriented Software Architedure
(AAOSA) isanew dynamic goproach to software
design based on multi -agent oriented architedure.
Since the optimal agent organizaion is different
from one ewironment to ancther, we proposed a
distributed learning pdicy that is used in AAOSA
for the purpose of agent organizational evolution.
Knowing when and hav to communicae and
coordinate with aher agents is an important
efficiency and reliability question. In this paper,
we propose the use of online feedbad from
users to motivate the leaning whenever necessary,
and show that distributing the evolution process
over individual agent in AAOSA s efficient and
reasonable.

Keywords: multi-agent, distributed leaning, software
agent evolution

I ntroduction

In this paper, we ae interested in leaning techniques
that allow agentsin Adaptive Agent Oriented Software
Architedure (AAOSA) to improve their performance
by leaning from past run-time experience and wsers
ontline feedbadk. AAOSA is a multi-agent oriented
software methodology that proposes the brek-up of
complex software into a mmunity of simpler,
independent, collaborating, adaptive, message-driven
agents (Hodjat, B. 1998). According to the dynamic
nature of environment, effedive aordination strategies
will be very important for AAOSA agents which work
together to solve the problem that any individual agent
is unable to do it aone. Due to their “open” operating
environment where the mnfiguration and capabiliti es
of other agents and computational resources could
change dynamicdly (Les=r, V. R. 1998), leaning
within a multi-agent based system is, in general, very
hard (Parkes, D.C. 1997). Leaning from reinforcement
is a promising approach for creaing intelli gent agents
(Tan, M. 1993) because it allows agent to lean which

of its adions is desirable based on the exploration
experience of its environment. It may take a long
sequence of adions before finally arrive & a state with
highreward (Kadbing, L. P. 1996).

Note that intelligent behavior is emergent from the
cooperation of agents because the agents community
can acomplish more and better than any one of the
agents. We dso show that distributing the learning over
a hyper-structure of more simple sub-domains is less
complex and more feasible than centralized leaning.
Leaning can involve alot of things, such as, aaqyuiring
strategies for communication or coordination of agents,
deteding relationship of agents, constructing new
models or agents for new task, and so on. Currently, we
propose that learning in an AAOSA agent system can
be made on two separate layers concurrently:

¢ Leaning d agent organizaionand

¢ Leaning d locd agent capabiliti es.

Each layer makes dedsions respedively and involves
different processes and gals. For example, the
organizaional layer makes dedsions that are of long-
term reward, whil e the locd layer try to choose ations
that maximizeimmediate reward.

In the following sedions, we will first briefly re-
introduce our framework for AAOSA methodology,
and then describe the proposed leaning policies in a
domain-independent way. After giving out some
examples, we conclude with a look at our future work
diredion.

Overview of AAOSA

AAOSA isanew approach to software design based on
multi-agent oriented architedure. In this approad,
agents can be considered as adaptively communicating
concurrent modules divided into a white box module
resporsible for communicaions and leaning, and a
bladk box module responsible for the independent
spedalized proceses. To reg the benefits of
distribution and enhance its leaning abiliti es, eath

agent is kept smplein its resporsibiliti es and limited in
the dedsionsit needs to make.

AAOSA agents are not centralized, the overal task is
identified and suitably decomposed by the whole
AAOSA agents network. The bregk up of problem into
sub-domains is the responsibility of the designer who
shoud also define the interpretation pdicies for each
agent. By dang so, AAOSA agents in the hyper-
structure can be resporsible for a certain input, and
provide the necessary coordination between them to
achieve desired ouput. Figure 1 shows the typicd
structure of an AAOSA agent.

White Box Interpreter
] Learning and
Information Base M Un Learning
h
lep) Reward
Feedback
Temporary ¢ r
Storage of Performer
Problems g
Ambiguity Agents
Resolver b
L)
——
Interpretation Known
Policy Agents
Black Box

Figure 1: AAOSA Agent Structure

In an AAOSA agent, as Figure 1 shown, white box
contains dandard data structures and models for
communicaions, interpretations, and leaning provided
by AAOSA, while bladk box contains agent-spedfied
communicaions, interpretations, and processes defined
by the designer. Note that agent’s knowledge aout its
environment is gored in an information base mnsisted
of “temporary storage of problem,” “interpretation
pdicy” and “known agents’. “Temporary storage of
problems’ is used to kegp arecord of agent problem-
solving pocess “Interpretation policy” is used
whenever agent tries to interpret input from other
agents or users. The interpretation criteria may be the
messge ontent but is not limited to it. Processhistory,
probabiliti es and ouside information (e.g., interadion
with ather agents) are examples that can be used by
agent as interpretation pdicy. If an agent is unable to
interpret a particular input by itself, it may consult
other agents. These aents are cdled down-chain
agents relative to the requesting agents, which are
cdled up-chain agents. “Known agents’ is used to store
the addresses of down-chain and up-chain agents.

The performer module aduates other modules in the
agent based on the messge performatives receved

from other agents. Each message is comprised o a
messge ntent, a performative that spedfies what
shoud be dore with that content. The designer can add
agent-spedfic performatives in sub-domains to
fadlitate speda communicdions between agents.
AAOSA framework provides a set of predefined
general performatives by which the wordination of
agents can be managed. (SeeTable 1)

Register Agents make each other aware of their existence.
Advertise An agent declares it can handle certain input.
Un-Advertise | An agent requests not to receive input from

another agent.

This-Is-Yours

An agent announces another agent as
responsible for handling certain input.

An agent that can not interpret a particular

Is-This- input requests interpretation from down-chain
Yours?
agents.
Agent requests another agent to backtrack to a
Restore state before processing took place on certain
input.
N Down-chain agent has failed to interpret input
Not-Mine sent down with an Is-This-Yours? Performative.
Down-chain agent has encourtered an ambiguity in
Maybe-Mine interpreting input sent down with an Is-This-Yours?
Performative.
It-1s-Mine Down—chain agent'has been s.;ccessful in interpretﬁng
inpu sent down with an Is-This-Yours? Performative.
Commit Agent requests immediate resporse, beit partial, to

inpu sent down with an Is-This-Yours? Performative.

A new interpretation pdicy is suggested to an agent that
Learn will result in the sender agent being interpreted as
resporsible for certain inpu.

An interpretation pdicy that resultsin the sender agent

Un-Learn being interpreted as resporsible for certain input is
revoked.
e Alternative processor interpretation is requested for
Dissatisfied inpu that has already been processed.
Forget- A previous request is canceed and Remove any
Problem temporary storage of interpretation results.

Table 1: AAOSA Predefined Performatives

Ambiguiti es occur when an agent has not been able to
interpret the message cntent belonging to it (This-Is-
Yours) based onitsinterpretation pdicies, and

¢ Either more than one agent consulted with claimiit,
¢ Or, none of the agents consulted with claim it.

The resolution o ambiguity is particularly important in
AAOSA because it provides a way by which agents
can change their behavior and read to urexpeded input.
In the next sedion, we demonstrate that trying to
resolve ambiguity (or conflict) is one of the main tasks
of learning.

Within an AAOSA agent system, we know that
generating a solution to inpu problem is not a
straightforward combination of agents locd sub-
problem solving processs. Rather, this processcan be
an incremental process involving coordination among
agents. Coordination among agents can be explicit or
implicit. As an explicit way, the agents interad and
exchange information a perform adions to benefit
other agents, while implicitly cooperative ajents
perform adions that are a part of their own goal-
seeking processand will also affed the other agents in

beneficial ways (Lessr, V. R. 1998). Appropriate
communicaion is necessary to efficiently manage the
interdependencies among agent adivities. Otherwise,
inappropriate cmmunication can prevent the system
from generating optimal solution (or even no solution
at dal), and waste mnsiderable resources on useless
adivities. In oather words, an agent must take
ressonable dedsions about when to choose a best-
resporse strategy gven its current knowledge, and
when to deviate and gather more information about the
preferences of the other agents. We will discuss how
this task can be done through leaning in the following
sedion.

General Learning Policies

AAOSA agents use leaning to improve their overall
performance By leaning, for example, agents can find
ways to solve unforeseen problems, exploit faster and
more robust ways for those known problems, as well as
adapt to dfferent users preferences. To get greder
flexibility, leaning in AAOSA is incorporated on the
architedure and dstributed over the multi-agent
structure, rather than introduced one particular agent
resporsible for learning. In fad, leaning can be viewed
as an integral part of AAOSA, and each agent is
resporsible for choosing the proper strategy for itself in
different problem instances. Each agent has arolein its
own agent community. The main problem here is that
an agent has to ded with its limited view of the
interadions between its own adivities and those of
other agents (Nagendra Prasad, M. V. 1997).
Reinforcement leaning is propcsed to resolve this
problem, becaise it enables agent to lean behavior
through trial-and-error interadion with a dynamic
environment (e.g., an AAOSA agent society).

As areinforcement-leaning agent, agent’s diagnasis of
history plays a central role in its sledion d reward-
maximizing adions. In AAOSA, eat agent keegds a
record of its problem-solving process in “temporary
storage of problems’. While leaning, performance
criteria ae used, which combine both locd and non-
locd perspedive to analyze gyent previous experience
Furthermore, these performance criteria will be
changed due to emerging conditions that an agent’s
view of the global situation will be more reasonable
and adaptive. Some performance criteria ae domain-
independent whil e some of them are domain-dependent.
From the system’s paint of view, the following criteria
are usually considered, such as computational resource,
efficiency, communication cost, ambiguity, user
satisfadion, and so on. Designer can also add aher
domain-dependent criteria. The past experience will be
analyzed based on performance criteria. The result of
this analysis will be used to effedively deted and
diagnose the cuse of agent inappropriate behavior.

Finally, we can formulate leaning pdiciesfor AAOSA
agent as following:

It will try to choose the best action given a past
history, actions of the other agents in the system, and
performance criteria.

From ead agent point of view, all dedsions made from
leaning can be gplied either inside the ayent or over
the system’s dructure. Therefore, learning can be
considered on two layers sparately: leaning inside
agent and leaning over the agent structure.

Learning Inside Agent

Since no agent will be alded or removed, leaning in
this layer is used to improve the agent's own
spedalized performance by choosing adions to
maximize its own reinforcement. The performance
criteria mncerned on this layer are mostly locd and
short-term. Learning in this layer can modify the
interpretation rules or relevant agents addresses. By
doing so, we can enhancethe agent’slocd capabiliti es,
improve coordination strategies, resolve ambiguities
and so on. When a new interpretation rule is leaned by
an agent, it should sent “Un-Lean” messge to ather
agents. By doing so, the potential ambiguities can be
avoided becaise there is only one agent will claim “It-
IsMine” based on the new leaned interpretation

policy.

Learning Over the Agent Structure

There is no centralized control enforced ower the
AAOSA agent network. Agents will introduce
themselves and their abilities to ore ancther at the
beginning or during exeaution. Therefore, one of the
major feaures of AAOSA is that agents can be alded
to or removed from the application at runtime. This
fedure makes AAOSA agent system evolutionary. That
means, social structures and mechanisms can be
dynamicdly reasoned and changed. The performance
criteria and adions concerned at this level are mostly
nonlocd and longterm. Leaning in this layer can
make the dedsion to split too complicated agent into
simpler ones, or join redundant agents to form more
efficient one. We cdl them merge and split function
respedively, and this two fundamental functions can be
used to achieve a balance between the degree of
generalization (merge) and spedali zdion (split) of the
overall agent community. Whenever merge or split
function is done, it is necessry to send “Forget-
Problem” messages to relevant agents to remove the
corresponding problem records gored in “temporary
storage of problems’. Otherwise, the reinforcement
leaning will still use the old records of problem, and
chocse a1 incorred adion. Both ambiguity and
efficiency play important roles in making this balance.
It must be noted that resolving ambiguity will i mprove
system’s efficiency by deaeased the communication
cost. In fad, resolving ambiguity is a useful and

primary method to deaease the communication buden
of coordinating agents' adivitiesin an AAOSA system.

Since leaning in eeach level involves different goals
and processs, it is easy for agent to dedde on which
level the leaning shodd be implemented. In the next
two sedions, we will show that the AAOSA agent
system can reah a high-speed goa with the
combination of locd learning and aganizaional
leaning mechanisms.

Example 1. Agent CapabilitiesLearning

With the use of AAOSA, the design d adaptive user
interfaces will be decentralized and become an
individual affair, mostly driven by the personalized
information. The long-term customization of user
interfaces will be gained from numerous dared
experiences between agents and wser. An agent can
aquire its competence from user’s indired or dired
feedbadk. For example, indired feedbad is provided
when user ignores the ayent’s suggested adion, while

direa feadback can be get from user-supplied examples.

Finaly, the agent also can ask advice from other agents
that may have more experience with the same task
(Bradshaw, J. M. 1997). Using a simple example, we
show that thistask can be done by incremental leaning
of agent capabiliti esin an AAO SA agent system.

Map View Port

View-port
Output

Figure 2: AAOSA agent community for Map Viewing

Figure 2 shows a small part of agent community based
on AAOSA, which is designed for map viewing. A
sample of a @ntradiction resolution processis given
out as following:

1) User inputs “move it closer”
a) “Move it closer” is sent to agent Map View Port.

b) Agent Map View Port in turn sends message
down to Magnification community and Shifting
community

c) Both agent Magnification and agent Shifting
claim “It-Is-Mine” to agent Map View Port.

d) Agent Map View Port announces a contradiction
by sending out a “Maybe-Mine” message.
2) System asks user:
“Do you mean magnification or shifting?”
3) User responds with “Magnification”.
a) Agent Map View Port learns that “move it closer”

belongs to the Magnification community
b) Agent Map View Port sends “move it closer” to
the agent Magnification with “This-Is-Yours”

c) Agent Magnification interprets “move it closer”,
sends a “This-Is-Mine”, and the map is magnified.

In this example, ambiguity occurs within step 1,
becaise both agent Magnification and agent Shifting
claim “It-IssMin€” to the input “move it closer”. Then,
the system asks user to give out his intention in step 2,
and gets the dired feedback from user in step 3. That is,
“move it closer” means “magnificdion”. Leaning is
dorein agent Magnification by two steps:

¢ Add rew interpretation pdicy spedfied to input
as“moveit closer”.

¢ Sent Un-Lean message to agent Shifting, so that
agent Shifting nolonger claims “It-1s-Ming” to the
inpu “moveit closer”.

Example 2: Organizational L earning

AAOSA can be used as a new approach of relational
database retrieving. One of the significant fedures is
that query optimizaion can be done by AAOSA agent
hyper-structure optimizaion. As $own in Figure 3,
agent Flight and agent Flight-Fare represent two tables
respedively. Each of them has threedown-chain agents,
which represent three dtributes of the table
respedively. Agent Flight-ID is sared by agent Flight
and agent Flight-Fare, becaise Flight-ID is the
primary key between table “Fight” and “ Flight-Fare”.

Figure 3: AAOSA agent community for Query DB

This initial structure is optimal for queries involved
only one table, becaise messages can be sent and
interpreted among agents withou contradiction.
Unfortunately, it is not optimal for queries involved
both tables, because both agent Flight and agent Flight-
Fare clam “It-IsMine’ to the aent Query when
queries come in. Therefore, this ambiguity information
will be stored in the “temporary storage of problems’
of agent Query, and wsed as the information source for
reinforcement leaning. Therefore, agent Query can
indicate that high communication cost occurs between
its two down-chain agents. Since this kind of
contradion can na be resolved by locd agent leaning,
agent Query deddes to merge its relevant down-chain
agent Flight and agent Flight-Fare, asfigure 4 shows.

Flight & Flight-Fare

\

Figure 4: AAOSA agent community after merging

By merging two agents into a new agent “Flight &
Flight-Fare,” we can extend its capabiliti es. The new
merged agent will take not only the resporsibility
inherent from its predecesors but the responsibility for
the joint queries. So far, this agent community works
better for queriesinvolved asingle table or both.

However, this is not the end o evolutionary process
but a new start point. Suppose that we have a lot of
gueries on table Flight or both tables. Then, agent
“Flight & Flight-Fare” has a heavy task load. Having a
heavy task load is a problem of inefficiency. Unlike the
ambiguity, the inefficiency is a relative term that is
depended on agent’s performance criteria, or user’s
reward. In this example, we suppcse that either the
system has a high requirement on efficiency or the user
gives out the reward that indicaes this inefficient
problem. Then, ead agent in the system will try to
analyze its gored experience information to check the
exeaution time of input queries. It is easy to know that
agent “Flight & Flight-Fare” beames the boattlened
of the whole ggent system. Oncethe problem agent has
been found, it is naturally to make the dedsion to split
itself. Theresult is siown in Figure 5.

Figure 5: AAOSA agent community after splitting

Now, agent Flight takes a part of resporsibiliti es
broken down from its predeces=or, so that agent Flight
is resporsible for those queries on table Flight. Thus,
agent “Flight & Flight-Fare” is responsible for thase
gueries on table Flight-Fare or both tables. We can see
that query tasks are adtually distributed after splitti ng,
and system beaomes more dficient.

Conclusion & Future Work

This paper discussed the mechanism of software agent
evolutionin AAOSA by use of reinforcement leaning.
In this approach, AAOSA agent can be viewed as a

dynamic entity which can adapt and change its
strategies by itself as the environment evolves. By
distributing leaning task to individual AAOSA agent,
the system becomes more flexible and adaptive. We
also mentioned that the separation of the organizational
leaning from locd agent leaning can make the
leaning mechanism simpler but more efficient. Two
examples of using the proposed leaning method for
AAOSA agent are dso introduced. The result
demonstrates that the proposed learning tedchniques can
help an AAOSA agent system to reach a desirable goal
with high flexibility and efficiency. However, there are
a lot of works remained for further study. We plan to
implement and evaluate the proposed leaning method
in a pradicd application d AAOSA. We dso want to
add confidencefadors with interpretation policiesin an
AAOSA agent, and wse reinforcement leaning to
modify those confidence fadors on-line. All of these
are diredion o our future work.

Reference

Bradshaw, J. M. 1997. An introduction to software
agents. Software Agents. AAAI/MIT Press (pp. 3-46)

Deder, K. S. and Lessr, V. R. 1995 Designing a
family of coordination agorithms. In Proceedings of
the First International Conference on Multiagent
Systems

Hodat, B., Savoie C. J. and Amamiya, M. 1998.
Adaptive aent oriented software achitedure. Pacific
Rim International Conference on Artificial Intelligence.
(pp. 33-48)

Kadbing, L. P, Littman, M. L. and Moore, A. W. 1996.
Reinforcement Leaning: A Survey. Journal of
Artificial Intelligent Research. No.4 (pp. 2347-285)

Lessr, V. R. 1998 Refledions on nature of multi-agent
coordination and its implications for an agent
architedure. Autonomous agents and multi-agent
system. Kluwer Academic Publishers, 1. (pp.89-111)

Parkes, D. C. and Ungar, L. H. 1997. Leaning and
Adaption in Multiagent systems. AAAI-97 Workshop on
Multiagent Learning.

Nagendra Prasad, M V and Leszr, V. R. 1997.
Leaning problem solving control in cooperative multi-
agent systems. AAAI-97 Wbrkshop on Multiagent
Learning.

Tan, M. 1993, Multi-agent reinforcement leaning:
independent vs. cooperative agents. In Proceedings of
10th International Conference on Machine Learning.
(pp-330-337)

