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Failure-resilient, scalable, and secure read-write access to shared information by mobile and static
users over wireless and wired networks is a fundamental computing challenge. In this article, we
describe how the Coda file system has evolved to meet this challenge through the development
of mechanisms for server replication, disconnected operation, adaptive use of weak connectivity,
isolation-only transactions, translucent caching, and opportunistic exploitation of hardware surro-
gates. For each mechanism, the article explains how usage experience with it led to the insights for
another mechanism. It also shows how Coda has been influenced by the work of other researchers
and by industry. The article closes with a discussion of the technical and nontechnical lessons that
can be learned from the evolution of the system.
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1. INTRODUCTION

Coda is best known today as a system that enables mobile file access through
its support for disconnected and weakly connected operation. It may therefore
come as a surprise that support for mobility was not one of the original goals of
Coda. The very concept of mobile computing bordered on science fiction when
Coda was first conceived in early 1987. Today, mobile information access is not
only feasible but is beginning to be regarded as indispensable. Key elements of
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Coda’s design are being brought into mainstream commercial practice through
their adoption in the IntelliMirror component of Windows 2000 [Gray 1997;
Short 1997]. While much still remains to be done, both Coda and mobile com-
puting have clearly come a long way.

How did this transformation occur? What were the key events in our work,
as well as that of others, that made this shift possible? What is the level of
consensus in the research community in this field? What are the open questions?
Whither Coda?

This article answers such questions through a narrative account of the evo-
lution of the Coda File System. It describes how the work of other researchers
as well as hardware and software developments in industry influenced us. It
also shows how our understanding of the core issues in mobile computing grew
and matured with the development of Coda. The paper concludes with a dis-
cussion of the technical and nontechnical lessons that can be learned from the
evolution of the system.

2. ORIGIN AND BACKGROUND

Coda began as an epilogue to the Andrew File System (AFS) [Howard et al.
1988; Satyanarayanan 1990]. As a principal architect and implementor of AFS,
I had the opportunity to witness first-hand the power of a highly scalable, lo-
cation transparent distributed file system to unite the large user community
at the Carnegie Mellon campus. By providing an easy-to-use information shar-
ing backbone, a community-wide namespace with effective access control, and
upward compatibility with existing applications, AFS soon became a firmly
entrenched component of our computing environment.

Unfortunately, AFS and similar systems are vulnerable to server and net-
work failures. In taking advantage of the benefits of these systems, clients
typically become dependent on files cached from servers. A server or net-
work failure renders these files inaccessible, leaving clients crippled for the
duration of the failure. In a large enough system, unplanned outages of
servers and network segments are practically impossible to avoid. Together,
these considerations augur ill for the growth of a distributed file system. Our
extensive experience with AFS confirmed that these concerns were indeed
justified—failures did occur, and they did cause significant inconvenience to our
user community.

An obvious question follows: Can the virtues of AFS be preserved, while
alleviating its vulnerability to failures? We initiated the Coda project in early
1987 with the goal of answering this question [Satyanarayanan et al. 1987].
At that time, high data availability was a feature supported only by an exotic
(and hence expensive) breed of systems such as Tandem [Bartlett et al. 1988],
Stratus [Harrison and Schmitt 1987], and Auragen [Borg et al. 1989] that relied
extensively on proprietary hardware. In contrast, our goal was to build a system
with high data availability relying solely on commodity hardware and widely
accepted software standards.

The name “Coda” was chosen to reflect its usage in classical music, as
“something that serves to round out, conclude or summarize and that has
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interest of its own” [Webster’s Ninth New Collegiate Dictionary 1988].1 Our
expectation was that Coda would have a research life of at most a couple of
years. Little did we suspect that a decade and a half later the system would
still be generating a considerable amount of interest and activity, and that its
cumulative research contributions would overshadow those of AFS!

To bound the scope of our effort, we began by preserving the basic design
choices of AFS in all areas other than high availability. Surprisingly, this archi-
tectural inheritance has proven to be robust and durable over a long evolution,
and a shift in focus from high availability to mobility. The most salient aspects
of Coda’s AFS heritage [Howard et al. 1988; Satyanarayanan et al. 1990] are
the following:

—Use of the client-server model, with a small number of trusted servers that
are the custodians of data, and a much larger number of untrusted clients
that use these data.

—A location transparent file name space that completely hides the identities
of individual servers, and allows easy redistribution of data across new or
existing servers.

—Aggressive use of whole-file caching by clients on their local disks, with a
further level of block-level caching in their main memory buffer caches.

—The organization of data into volumes to facilitate system administration.
Each volume is a partial subtree of the total name space, and its point of
attachment in the name space is identical at all clients.

—An access list model of protection, combined with an authentication mech-
anism that is integrated with the remote procedure call package used for
communication between clients and servers.

—A user-level implementation strategy that strives to minimize kernel modi-
fications. The bulk of the implementation complexity at the client is encap-
sulated into a user-level cache manager called Venus.

—Callback-based cache coherence, whereby a server remembers what objects
have been cached by a client, and notifies it when another client updates one
of those objects. This eliminates the need for clients to validate cached objects
before using them, thus improving performance and scalability.

3. SERVER REPLICATION: 1987–1991

3.1 Related Work

Replication is the fundamental technique for ensuring data availability during
failures. Research on replication techniques had already been in progress for
many years when we began work on Coda. As early as 1979, Gifford [1979] had
described a replication technique known as weighted voting. Herlihy [1986]
later developed a more general approach known as quorum consensus. Many

1It was later observed that “CODA” can also be viewed as an acronym for “constant data availability.”
This was, however, an afterthought and not the original reason for the choice of name.
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other researchers such as Paris [1986], Long [1990], and El Abbadi [El Abbadi
and Toueg 1989], were active in the field in the mid to late 1980s.

There were two characteristics common to most of this work: the research
tended to concentrate on algorithm design, with little attention to practical is-
sues such as scalability, usability, or system integration; and second, pessimistic
replica control strategies dominated the research agenda. Such strategies pre-
serve consistency of data even at the cost of denying access to replicas in some
network partitions. The specific consistency guarantee is one-copy serializabil-
ity: for any sequence of read and write operations on a replicated object, the
sequence of values it assumes is identical to what it would assume if it were
not replicated.

3.1.1 Optimistic Replication. In contrast to pessimistic strategies, opti-
mistic replica control strategies trade consistency for availability. They permit
reads and writes in any partition with a replica [Davidson et al. 1985]. Stale
reads and conflicting writes are inherent risks in these strategies. The classic
approach to coping with these risks is to ignore stale reads, and to detect and
resolve conflicting writes after their occurrence.

We rejected pessimistic replica control because it placed unacceptable limits
on data availability. The strengths and weaknesses of optimistic replication
better matched our design goals. The dominant influence on our choice was the
low degree of write-sharing typical of many user workloads. This implied that
an optimistic strategy was likely to lead to relatively few update conflicts. An
optimistic strategy was also consistent with our overall goal of providing the
highest possible availability of data.

Once we had decided to use optimistic replication, we looked for examples
of previous work from which we could benefit. By 1987 there was a substantial
body of published research pertaining to optimistic replication in databases.
However, little of that work directly applied to Coda. The atomic transaction
concept, so central to cleanup after failure in a database, simply did not exist
in a UNIX file system. The vector clock abstraction for reasoning about opti-
mistic replication [Babaoglu and Marzullo 1993; Fidge 1988] had not yet been
developed.

3.1.2 LOCUS. The only previous work directly relevant to Coda was
LOCUS [Popek et al. 1981; Walker et al. 1983]. This distributed system, built
at UCLA in the early 1980s, had pioneered the use of optimistic replication in
a UNIX file system. The published research accomplishments of LOCUS, such
as identification of version vectors [Parker et al. 1983] as an accurate and effi-
cient technique for detecting update conficts, led us to believe that the hardest
problems in optimistic replication had been solved.

Unfortunately, this belief proved to be misplaced. As our design progressed,
we realized that the very different architectural assumptions of Coda precluded
direct use of solutions from LOCUS. For example, LOCUS was based on a peer-
to-peer architecture whereas Coda was based on a client-server architecture.
LOCUS assumed that the system and network were small and homogeneous.
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Hence, it was reasonable to assume that nodes could rapidly converge on a
consistent network topology after failure and recovery events. In contrast, Coda
was being designed for a much larger and more heterogeneous environment
where timely consensus on network topology could not be assumed. The sys-
tem had to operate correctly even when different parts of the system had very
different notions of what was up and what was down. Scalability, in terms of
number of clients that can be effectively supported by a server, was a major
design consideration in Coda but not in LOCUS. Finally, LOCUS did not fully
address the problem of conflict detection and resolution.

In the end, the design of Coda borrowed little from LOCUS. The only real
similarity was at a high level of abstraction: Coda and LOCUS both used opti-
mistic replication. At the next level of detail, they diverged completely.

3.2 Replica Control

The unit of replication in Coda is a volume. A replicated volume consists of
several physical volume replicas that are managed as one logical entity by
the system. Individual replicas are not normally visible to users or application
programs. All they see is an ordinary file system mounted at /coda.This illusion
is created by the Venus cache manager on the client. Venus intercepts all file
references to /coda, discovers which servers hold replicas of a volume, fetches
file and directory data as necessary from those servers, and manages cache
copies of this data using files in the local file system as containers. Logically,
Venus is part of the client operating system. However, as discussed later in
Section 9, the actual implementation of Venus resides outside the kernel.

The set of servers that contain replicas of a volume constitutes its volume
storage group (VSG). For every volume from which it has cached data, Venus
keeps track of the subset of the VSG that is currently accessible. This subset is
called the accessible volume storage group (AVSG). Depending on their network
connectivity, different clients may have different AVSGs for the same volume at a
given instant. Venus performs periodic probes, typically once every 10 minutes,
to detect shrinking or enlargement of AVSGs. Shrinking may also be detected
sooner, as a side effect of attempting a server operation.

Coda integrates server replication with caching using a variant of the read-
one, write-all strategy. As Figures 1 and 2 show, this can be characterized as
read-one-data, read-all-status, write-all.

3.2.1 Read Protocol. In the common case of a cache hit on data known
to be valid because of an outstanding callback, Venus avoids contacting the
servers altogether. To service a cache miss, Venus obtains data from one ran-
domly selected member of its AVSG known as the preferred server (PS); it also
collects version information from the other servers in the AVSG. Venus uses this
information to verify that accessible replicas are identical. If the replicas are in
conflict, the system call that triggered the cache miss is aborted. If some repli-
cas are stale, they are brought up to date and the fetch operation is restarted.
A callback is established with each AVSG member as a side effect of fetching or
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Fig. 1. Servicing a cache miss: the events that follow from a cache miss at the client. Both data
and status are fetched from Server 1, which is the preferred server. Only status is fetched from
Servers 2 and 3. The calls to all three servers occur in parallel.

Fig. 2. The two phases of the Coda update protocol. In the first phase, COP1, the three servers are
sent new status and data in parallel. In the later asynchronous phase, COP2, the update set is sent
to these servers. COP2 also occurs in parallel and may be piggybacked on the next COP1.

validating data. This does not require any communication beyond that shown
in Figure 1.

3.2.2 Update Protocol. When a file is closed after modification it is trans-
ferred in parallel to all members of the AVSG, as shown in Figure 2. Operations
that update directories, such as creating a new directory or removing a file, are
also written through to all AVSG members. Coda checks for replica divergence
before and after update operations. The protocol for an update consists of two
phases, COP1 and COP2, where COP stands for “Coda optimistic protocol.” COP1

performs the semantic part of the operation, such as transferring file contents,
making a directory entry, or changing an access list. COP2 distributes a data
structure called the update set that summarizes Venus’s knowledge of which
servers successfully performed the earlier COP1 operation. In the common case
of no failures occurring during the protocol, the state of all AVSG members moves
forward in lock step.

This update protocol differs from a classical two-phase commit in that it
avoids blocking. If a server or network failure occurs during the protocol, the
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client times out and conservatively assumes that servers from which it has
yet to receive a reply were not updated. Similarly, if a server times out on a
COP2, it assumes that no other server received the earlier COP1. In both cases,
system invariants guarantee that the worst outcome is a false conflict that will
be detected when connectivity is restored; under no circumstances are updates
ever lost.

Two protocol optimizations are used to improve performance. First, latency
is reduced by Venus returning control to the user after completion of COP1 and
performing the COP2 asynchronously. Second, network and server CPU load are
reduced by piggybacking the asynchronous COP2 messages on subsequent COP1

calls to the same VSG. As a further optimization, Venus contacts AVSG members
using a parallel remote procedure call mechanism [Satyanarayanan and Siegel
1990]. The original version of this mechanism was capable of exploiting support
for multicast; measurements showed that this support reduced network load
but did not lower latency. To restore this functionality, the implementation
needs to be upgraded to the current Multicast IP standard.

3.2.3 Consistency Model. Coda’s consistency model can be informally de-
scribed using the concept of accessible universe. In the absence of failures, the
accessible universe is the entire collection of servers and clients in the system.
In the presence of failures, the accessible universe of a client is the subset of
servers to which it is connected, and the subset of clients to which those servers
are connected.

At any instant of time, an open on a file at a client sees the result of the
most recent close on that file in the client’s accessible universe. A close after
updates results in immediate visibility of those updates to any future open in
the accessible universe, and eventual visibility in the entire universe. In other
words, Coda offers one-copy serializability at open-close granularity in the
accessible universe.

In the limiting case of an isolated client, its accessible universe shrinks to
just itself. The above consistency model holds even in this degenerate case
because of support for disconnected operation, as discussed in the next section.
A formal specification of this unified consistency model for server replication
and disconnected operation is presented in an earlier paper [Satyanarayanan
et al. 1990].

3.2.4 Fault-Tolerance. The correctness of the update protocol requires
each AVSG member to ensure the atomicity and permanence of local updates to
metadata by COP1. Coda initially used Camelot [Eppinger et al. 1991] to provide
transactional support for critical server data structures. Unsatisfactory expe-
rience with Camelot led us to reimplement the small subset of its functionality
that was relevant to Coda in a lightweight programming library called RVM.
Since RVM has been described elsewhere [Satyanarayanan et al. 1993b], we
just give a brief overview here.

RVM implements the abstraction of recoverable virtual memory [Eppinger
1989]. Updates to data structures in RVM-backed regions of a server’s address
space are guaranteed to be atomic and permanent. The programming interface
is simple: begin transaction initiates a transaction; set range informs RVM
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that a certain area of virtual memory is about to be modified; end transaction
commits a transaction; and abort transaction aborts it. By default, a success-
ful commit guarantees permanence. To reduce commit latency, an application
can use a no-flush or “lazy” transaction. Such an application must explicitly
force RVM’s write-ahead log from time to time to ensure permanence.

Although designed specifically for server replication, RVM has been success-
fully used for many other purposes on both clients and servers. Its simple design
and minimal demands on the operating system have eased the task of port-
ing Coda across a wide range of platforms. RVM has also proved surprisingly
versatile in non-Coda applications. Examples include: concurrent language-
based garbage collection [O’Toole et al. 1993], transactional distributed shared
memory [Feeley et al. 1994], persistent Java [Jordan 1996], and persistent-
memory transactional support [Lowell and Chen 1997].

4. DISCONNECTED OPERATION: 1988–1993

Even with optimistic replica control, server replication cannot help if all servers
in a VSG crash or if a network failure isolates a client. This concern nagged
us from the very beginning of Coda’s design, and grew in significance as its
implementation progressed. We often experienced correlated server crashes due
to software bugs. We also encountered network isolation caused by overloaded
or faulty routers or bridges. These observations, together with the publication
of Gray’s [1986] paper identifying operator error as the leading cause of failures
in high availability systems, convinced us that server replication alone was not
going to be adequate as a mechanism for high availability in Coda. We had to
find some way to reduce the dependence of a client on the network and servers.

Early in 1988, it dawned on us that the caching we were already implement-
ing for performance reasons could also be exploited to improve availability.
Successful cache management by Venus implies that the current working set
of files is already present on the client, and can be used to service client read
requests without contacting servers. For updates, Venus would have to sup-
press propagation to servers and instead remember these updates for future
propagation. This promised to be a simple approach to improving availability
in precisely those circumstances where server replication was ineffective. We
named this mode of use disconnected operation because it is a temporary devi-
ation from normal operation by a client of a shared data repository.

The absence of communication with servers during disconnected operation
meant that some reads might be stale and that some updates might be in conflict
with updates elsewhere in the system. But we had already accepted these risks
by using optimistic replica control for server replication. Although they might
occur more frequently because of disconnected operation, these risks did not
represent a fundamentally new complication in our design.

4.1 Relevance to Mobile Computing

By coincidence, our formulation of the concept of disconnected operation hap-
pened at about the time portable computers were starting to be used by the
general public. These early portables had many limitations: they were large
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and bulky, or they had miniscule CPU, memory, and disk capacity compared
to desktops. Yet, we found it instructive to observe how the owner of such a
portable managed data from a shared file system like AFS or NFS. In prepa-
ration for a trip, she would identify files of interest and download them from
the shared file system into the local name space. Upon her return, she would
copy modified files back into the shared file system. As we observed this usage
pattern, we realized that the user was effectively performing manual caching,
with writeback upon reconnection—in other words, she was using a manual
implementation of disconnected operation.

We realized that system support for disconnected operation could substan-
tially simplify the use of portable clients. Users would not have to use a different
name space while isolated, nor would they have to manually propagate changes
upon reconnection. Furthermore, detection of update conflicts and possibly their
resolution could be automated. Thus portable machines are a champion appli-
cation for disconnected operation. It is from this point that the association
between Coda and mobile computing began. This association soon enriched
Coda’s original focus on high availability and forced us to think seriously about
the broader implications of mobility for information access.

The use of portable machines also gave us another insight. The fact that
people are able to operate for extended periods in isolation suggests that they
are competent at predicting their future file access needs. This, in turn, sug-
gests that it is reasonable to seek user assistance in augmenting the cache
management policy for disconnected operation. Hence Coda’s cache manage-
ment mechanism relies on a traditional LRU policy by default, but is able to
incorporate user advice when available.

In the Coda model of disconnected operation, involuntary disconnections
caused by failures are no different from voluntary disconnections caused by de-
liberate unplugging of a portable computer. A single mechanism is able to cope
with both types of disconnection. Of course, user expectations and the extent
of user cooperation may be different in the two cases. Both forms of disconnec-
tion are relevant to mobile computing based on wireless networks. Involuntary
disconnections can occur due to signal propagation limitations arising from
terrain or moving obstacles, or from limited coverage. Voluntary disconnec-
tions can occur because a user turns off his transceiver to conserve battery life
or, in a military application, to preserve radio silence.

4.2 Relationship to Server Replication

As the numerous benefits of disconnected operation became apparent, we began
to question the value of server replication. If disconnected operation is feasi-
ble, why is server replication needed at all? Why pay for additional hardware
and suffer a more complex update protocol if high availability can be achieved
through disconnected operation? Wrestling with these questions clarified our
thinking and helped guide further development of Coda. We realized that server
replication and disconnected operation were complementary mechanisms, each
of whose strengths could alleviate the weaknesses of the other. These strengths
and weaknesses are direct consequences of the client-server model.
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Systems like Coda make very different assumptions about clients and
servers. Clients are like appliances: they can be turned off at will and may
be unattended for long periods of time. They have limited disk storage capacity,
their software and hardware may be tampered with, and their owners may not
be diligent about backing up the local disks. Servers are typically like public
utilities: they have much greater disk capacity, they are physically secure, and
they are monitored and administered by professional staff.

It is therefore appropriate to distinguish between first-class replicas on
servers, and second-class replicas (i.e., cache copies) on clients. First-class repli-
cas are of higher quality: they are more persistent, widely known, secure,
available, complete, and accurate. Second-class replicas, in contrast, are in-
ferior along all these dimensions. The effort needed to preserve the quality of
first-class replicas typically results in greater performance degradation than
with second-class replicas. From the viewpoint of system scalability, first-class
replication is more expensive in hardware cost and performance degradation.
However, it increases the chances of unanticipated data accesses being serviced
even in the presence of failures.

Only by periodic revalidation with respect to a first-class replica can a second-
class replica be useful. The function of a cache coherence protocol is to combine
the performance and scalability advantages of a second-class replica with the
quality of a first class replica. As discussed in Section 3.2.3, a single consistency
model unites server replication and disconnected operation in Coda.

When disconnected, the quality of the second-class replica may be degraded
because the first-class replica upon which it is contingent is inaccessible. The
longer the client is disconnected, the greater the potential for degradation.
Whereas server replication preserves the quality of data in the face of failures,
disconnected operation sacrifices quality for availability. Whether to use server
replication is thus a trade-off between quality and cost. Since Coda supports
nonreplicated volumes, an installation can choose to rely solely on disconnected
operation for high availability.

4.3 Implementation

Although simple as an abstraction, disconnected operation turns out to be non-
trivial to implement. To support disconnected operation, Venus operates in one
of three states: hoarding, emulating, and reintegrating, as shown in Figure 3.
Venus is normally in the hoarding state, relying on servers but always alert for
possible disconnection. Upon disconnection, Venus enters the emulating state
and remains there for the duration of disconnection. Upon reconnection, Venus
enters the reintegrating state, resynchronizes its cache with servers, and then
reverts to the hoarding state.

4.3.1 Hoarding. The key function of the hoarding state is to prepare for
disconnection by ensuring that critical objects are cached. Venus combines im-
plicit and explicit sources of information into a priority-based cache manage-
ment algorithm. The implicit information consists of recent reference history,
as in LRU caching algorithms. Explicit information takes the form of a per-
client hoard database (HDB), whose entries are pathnames identifying objects
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Fig. 3. State transitions for disconnected operation.

of interest to the user at that client. A simple frontend program allows a user
to update the HDB directly or via command scripts called hoard profiles. Venus
periodically reevaluates which objects merit retention in the cache via a process
known as hoard walking. Hoard profiles may be constructed manually or using
tools such as SEER [Kuenning and Popek 1997].

4.3.2 Emulating. While disconnected, Venus services file system requests
by relying solely on the contents of its cache. Since cache misses cannot be
serviced or masked, they appear as failures to application programs and users.
The persistence of changes made while disconnected is achieved via a persistent
operation log called the client modification log (CML).

Venus implements a number of optimizations to reduce the size of the CML.
Before a log record is appended to the CML, Venus checks if it cancels or overrides
the effect of earlier records. For example, consider an editor that implements the
save operation by creating a new empty file, copying data into it from memory,
deleting the current version of the file, and renaming the new file. In terms
of CML operations, this translates to create and store, followed by an unlink
when the file is superseded. In this case, all three CML records and the data
associated with the store can be eliminated. Both trace-driven simulations and
measurements of Coda in actual use confirm the importance of log optimizations
[Noble and Satyanarayanan 1994; Satyanarayanan et al. 1993a].

4.3.3 Reintegrating. Reintegration is performed independently for each
volume. During reintegration, Venus propagates changes made in the emu-
lation state and updates its cache to reflect current server state. Propagation
is accomplished in two steps. In the first step, the CML of the volume is shipped
to the AVSG, and examined there for correctness and consistency. If this check is
successful, the servers perform the updates specified in the CML. For store oper-
ations, empty shadow files are created. Their contents are obtained by servers
in the second step of reintegration, called backfetching. Further implementa-
tion details on disconnected operation can be found in earlier Coda papers
[Kistler and Satyanarayanan 1992; Satyanarayanan et al. 1993a].
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5. CONFLICT RESOLUTION: 1988–1995

A consequence of using optimistic replication in Coda is the possibility of con-
flicts arising from updates to partitioned replicas of the same file or directory
by two different clients during periods of network failure. The replicas can be
server replicas or, in the case of disconnected operation, a cache copy and a
server replica. Early in the design of Coda, we established the principles for
coping with this problem.

—No updates should ever be lost without explicit user approval. It is unaccept-
able to fail to detect a conflict or to silently ignore one.

—The common case of no conflicts should be fast. In other words, conflict detec-
tion and handling should have a minimal impact on mainline processing.

—Conflicts are ultimately an application-specific concept. For example, unsyn-
chronized updates to a file representing a shared checkbook or an appoint-
ment calendar may, or may not, conflict depending on the specifics of the
updates. It is therefore necessary to seek application assistance when resolv-
ing conflicts.

—The buck stops with the user. The goal of automating conflict resolution is only
to reduce the frequency with which the user has to intervene. It is therefore
acceptable to limit the complexity of automated resolution mechanisms by
passing the problem up to the user.

5.1 Balancing Speed and Power

Our overall design based on these principles is a hybrid between a purely
syntactic approach to conflict detection and handling, and a purely semantic
one [Davidson et al. 1985]. Syntactic approaches tend to be simple and efficient
because they use version information to verify one-copy serializability of par-
titioned updates. However, they are weak in their ability to resolve conflicts
because they lack application-specific knowledge. Conversely, a purely seman-
tic approach such as that of Bayou [Terry et al. 1995] can be powerful but tends
to have greater overhead. Coda’s approach is to use a syntactic mechanism to
confirm the absence of conflicts. Only when this mechanism indicates a possible
conflict is a semantic mechanism invoked. This hybrid strategy achieves good
performance in the normal case, without sacrificing potency in the exception
case.

The server replication protocols described in Section 3.2 maintain and vali-
date version information across accessible server replicas. Similarly, the version
checks during the hoarding and reintegration phases of disconnected operation
maintain and validate version information between client and server replicas.
Together these constitute the syntactic component of Coda’s conflict handling
approach. If a server detects violation of one-copy serializability on a client
operation, it returns a distinct error code. It is the client’s responsibility to
then trigger an appropriate semantic conflict resolution mechanism. Different
semantic mechanisms are used for directory and file resolution.
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5.2 Log-Based Directory Resolution

Resolution of directory conflicts is handled entirely by Coda, with no
application-specific assistance. There are two reasons for this design decision:
first, a directory is a system-defined data type and it is therefore natural to
delegate its resolution to the system; and second, a directory plays a structural
role in a hierarchical file system, with resolution errors in a directory possibly
leading to loss of entire subtrees rooted at that directory. By retaining complete
control over directory resolution, Coda can better ensure that critical system
invariants are preserved. The semantic component of directory resolution
is encapsulated into a module called the resolution subsystem on servers.
Venus plays no role in directory resolution other than triggering the resolution
subsystem.

There are two distinct cases of directory resolution: one after disconnected
operation, and the other during connected operation. The first case is simple:
each server tries to apply the CML sent by Venus during reintegration to its
directory replica, reconciling conflicts as it proceeds. If this attempt reveals an
unresolvable conflict, the reintegration of the directory fails and the client’s
cached copy of the directory is marked in conflict. This conflict is not visible to
any other client.

The second case, resolving directory conflicts across divergent server replicas,
uses a log-based strategy. Every server replica of a volume is associated with a
data structure in RVM known as its resolution log. Conceptually, a resolution
log contains the entire list of directory mutating operations on a replica since
its creation. In practice, of course, logs are of finite length and only the tail
is preserved. The size of the log is specified when creating a volume, but can
be later adjusted by a system administrator. By associating a resolution log
with each volume, Coda ensures that logs are fully self-contained with respect
to the information needed to resolve a set of mutually dependent directory
conflicts. This is because operands of system calls in Coda may span directories,
but not a volume boundary. We have found this small incompatibility with
POSIX semantics an acceptable price for the simplification it enables in the
implementation.

5.2.1 Log Growth and Truncation. When a server receives a directory up-
date from a client, it commits a log entry for the update as part of its COP1

actions. If the later COP2 phase indicates that all VSG members participated suc-
cessfully in this update, the log entry is deleted since it will never be required
in any future resolution. Thus, a volume’s resolution log is almost empty when
there are no failures; it only contains entries for recent updates still awaiting a
COP2. Only if the wait for a COP2 times out does the log start to grow. In that case,
truncation of log entries occurs upon future completion of a successful directory
resolution involving all VSG members.

In rare cases, a failure may last so long that a resolution log becomes full.
A system administrator typically responds to this situation by extending the
log. The alternative response is to allow the log to wrap. In that case, Coda
loses the ability to transparently resolve those directories whose log entries
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are overwritten; users will have to manually repair them. Trace-driven
simulations [Kumar and Satyanarayanan 1993a], as well as measurements
from Coda servers in actual use [Noble and Satyanarayanan 1994] confirm that
log growth is modest and easily accommodated by typical server configurations.

5.2.2 Resolution Protocol. The resolution protocol is coordinator-driven,
with one server in the AVSG acting as coordinator and the others as subordinates.
If this protocol detects unresolvable updates on different replicas, all server
replicas of the directory are marked in conflict.

The protocol has several phases. The first phase locks volume replicas. The
second phase consists of the coordinator collecting resolution logs from the sub-
ordinates and merging them with its own. The third phase consists of dis-
tributing the merged logs, inferring missed updates at each replica, and apply-
ing those updates. The final phase unlocks replicas and verifies success. The
protocol is designed to be resilient to subordinate, coordinator, and network
failures. It is also idempotent, thus ensuring that reattempting a failed resolu-
tion is safe. These issues are discussed further in an earlier paper [Kumar and
Satyanarayanan 1993a].

5.2.3 Merits of Log-Based Approach. In hindsight, the use of an explicit
resolution log at each server has proved to be an excellent design decision. In an
early phase of Coda’s design, we seriously examined an approach that avoided
an explicit log by inferring missing updates from the final states of directory
replicas. Unfortunately, the need to disambiguate between removals and cre-
ations complicates this strategy. If only one of two replicas contains an entry
A, how does one decide if A was created in the first replica or deleted from the
second? Since A can be the root of an entire subtree, this ambiguity can cascade
to many levels. The only robust solution is to preserve a vestige of each deleted
object in the form of a ghost entry. Systems such as Ficus [Guy 1987, 1990; Guy
and Popek 1990] that use this approach have to perform distributed garbage
collection in order to purge ghosts. The complexity of distributed garbage col-
lection in the face of server and network failures deterred us from using this
approach.

Maintaining an explicit log eliminates all doubt: we record history rather
than trying to guess it. Reclaiming log space occurs automatically, as side
effects of Coda’s update and resolution protocols. The space overhead for dis-
ambiguation is concentrated in a single per-volume data structure rather than
being dispersed. When free space becomes critically low on a server, allowing a
resolution log to wrap offers a trivial way to allow continued use of the system.
Overall, we have found the simplicity and flexibility of a log-based approach
compelling.

5.3 Application-Specific File Resolution

To support semantic resolution of files, Coda provides a framework for installing
and invoking customized pieces of code called application-specific resolvers
(ASRs). Each ASR encapsulates knowledge that is specific to its application, in-
cluding details of its file formats. In contrast to directory resolution, where the
bulk of the machinery resides on servers, ASRs are executed entirely on clients.
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The main reason for this is to preserve the security model of Coda: allowing
arbitrary ASRs to execute on servers would have violated Coda’s basic assump-
tion that servers run only trusted software. Executing ASRs on clients has two
other benefits: it enhances scalability because no resources are consumed on
servers; and it avoids code duplication because much of the supporting machin-
ery needed to execute an ASR is already present at clients but not at servers.

Logically, the Coda ASR mechanism can be viewed as comprising distinct
parts: one part responsible for invoking an ASR when needed, a second part per-
taining to selection of the correct ASR, and a third part responsible for overseeing
the execution of an ASR. The mechanism works as follows. When Venus detects
a syntactic conflict on a file, it searches for an ASR using rules specified by the
user. If an ASR is found, it is executed on the client. The system call that trig-
gered resolution is blocked while the ASR is executing. If the ASR is successful,
the updated file is propagated to servers; the blocked system call then proceeds
normally. In all other cases, the file is marked in conflict and a system call error
is returned.

Many practical considerations complicate the implementation of this simple
concept. Users need to be able to control which ASR is invoked for a specific
application. Considerations of security imply the need to restrict the scope of
damage caused by an errant ASR. Since failures due to intermittent connectiv-
ity are common in wireless networks, ASR execution has to be atomic for easy
cleanup. The Coda ASR mechanism addresses these and other related concerns
by combining a rule-based approach to ASR selection with transactional encap-
sulation of ASR execution. Further details can be found in earlier publications
[Kumar 1994; Kumar and Satyanarayanan 1993b, 1995].

5.4 Conflict Representation

The process of conflict detection and resolution is transparent to users and
applications unless the semantic attempt to fix a conflict fails. In that case,
Coda prevents all further attempts to use or modify the object in conflict until
a manual repair is performed by a user. This ensures damage containment and
limits the incidental consequences of conflicting updates.

A vexing problem we faced early in the implementation of Coda was how to
represent an object in conflict, and how to notify a user of the need to repair
it. In a system primarily intended for interactive users, such as Windows or
Macintosh, the solution would be obvious: just pop up a dialog box on each at-
tempted access or on a timer. However, Coda was designed for an environment
where unattended programs are common. Relying on the presence of a human
user to receive alerts about conflicts is not acceptable. As an alternative, we con-
sidered generating a program exception when an object in conflict is accessed;
an application’s exception handler could then cope with the problem and even-
tually alert a user. Alas, the desire to support legacy applications eliminated
this approach as well.

The solution we finally converged on was to represent an object in conflict
as a dangling symbolic link, as shown in Figure 4(a). Even the most poorly
written legacy applications typically cope with failed attempts to open files.

ACM Transactions on Computer Systems, Vol. 20, No. 2, May 2002.



100 • M. Satyanarayanan

Fig. 4. Typical sequence of events in manual repair. (a) Directory listing in which the file
cevol99.bib is in conflict. This name appears to be a dangling symbolic link, whose value is the
file’s low-level Coda identifier. (b) Shows what happens to cevol99.bib while a repair session is
in progress. The dangling symbolic link now appears as a directory with one entry for each server
replica. The name of a replica is the name of the corresponding server. Note that the replica on
the server mozart has a different length and modification time from the other two replicas; this
is the result of concurrent updates by different clients while mozart was partitioned from verdi

and marais. (c) Final state of the directory after a successful repair by user ras, who had update
privileges on the directory. The file cevol99.bib now appears as a normal file.

By forcing an object in conflict to appear as a dangling symbolic link, Venus
prevents further accesses while preserving a visual reminder of the conflict in
the file name space for user attention. This provides out-of-band information
to the user without modifying the file system API. A purist may dislike this
solution, but it has worked well in practice.

5.5 Manual Repair

Once an object is marked in conflict, it remains in that state until a user repairs
it manually. The two different high availability mechanisms in Coda, server
replication and disconnected operation, can lead to different types of conflicts.
In the first case, a network partition can exist between two server replicas;
clients connected to the two replicas may make updates to the same file or
directory during the partition. This results in a server–server conflict. In the
second case, a disconnnected client may update an object that is also updated
on the servers by a connected client. This results in a local–global conflict.
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In the early years of Coda, server–server and local–global conflicts were han-
dled entirely differently. Based on usage experience, these mechanisms have
converged over time. However, some differences still remain. Most important,
server–server conflicts are visible to all clients, whereas a local–global conflict is
visible only to one client. This reflects the deep distinction Coda makes between
first- and second-class replicas.

To handle both types of conflicts, Coda today provides a repair tool that ex-
poses individual replicas of the conflicting object and allows normal nonmutat-
ing file system operations to be performed on them. This allows use of standard
tools such as ls, diff, and emacs. During a repair session, Venus creates the
illusion of an in-place explosion of an object into a read-only directory with a
subdirectory per replica. Once a repair is committed, Venus implodes the name
space and makes replicas invisible once again. Servers are not involved in the
repair process except at the end, when Venus performs a special server oper-
ation to commit the result. Figure 4 illustrates this sequence of events. For
purposes of access control, servers treat repair operations as updates; hence,
any user who can update objects in a directory can also repair those objects and
the directory.

Special considerations apply to local–global conflicts. First, the repair tool
provides the ability to examine and single-step a CML. This allows the user to
replay or discard each operation. Second, Venus keeps a volume in disconnected
state (even if physical connectivity has been restored) until all local–global
conflicts in it are repaired. This preserves a stable repair context when other
clients are using the volume.

5.6 Frequency of Conflicts

The use of optimistic replication in Coda was predicated on the assumption that
sequential and concurrent write sharing would be rare in anticipated work-
loads. Validating this assumption posed a dilemma. Only empirical data from
a large-scale deployment in extensive use could confirm that conflicts were
rare in practice. Since no previous file system using optimistic replication had
been deployed, we could only obtain such data by deploying Coda. On the other
hand, the effort to build a deployable system would be wasted if our assump-
tion proved wrong, and frequent conflicts rendered Coda unusable. We needed
greater confidence in our assumption before investing the resources to make
Coda deployable.

Our solution was based on the recognition that the intended workload for
Coda was similar to that of AFS, for which a large-scale deployment already
existed at Carnegie Mellon. We therefore instrumented AFS to record write-
sharing statistics and performed a worst-case analysis of the resulting data.
Based on nearly a year’s worth of data, our analysis showed that the probability
of two different users modifying the same object less than a day apart was
at most 0.0075 [Kistler and Satyanarayanan 1992]. Our experience with the
deployed Coda system has since confirmed that conflicts between users are
indeed rare. A substantially different usage pattern from ours may, of course,
result in more conflicts.
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6. WEAKLY CONNECTED OPERATION: 1993–1996

As originally conceived, Coda assumed LAN connectivity. Experience with dis-
connected operation led us to realize that non-LAN connectivity might be use-
ful. For example, a traveler with a Coda laptop often has modem access via
the phone in his hotel room. In addition, non-LAN wireless technologies have
been deployed in many cities. We have therefore extended Coda to exploit weak
connectivity in the form of intermittent or low-bandwidth networks.

Our goal was to use weak connectivity to alleviate the limitations of discon-
nected operation. A disconnected client faces many constraints. Its updates are
not visible to other clients and vice versa. Cache misses due to unanticipated
file accesses may impede progress. Until successful reintegration with servers,
updates are at risk from theft, loss, or damage of the client. Update conflicts
become more likely as the duration of disconnected operation increases. Finally,
cache and RVM space may be exhausted if disconnected operation is prolonged.

Our design is based on a few broad principles.

—Don’t punish strongly connected clients. It is unacceptable to degrade the
performance of strongly connected clients on account of weakly connected
clients. This precludes use of a broad range of cache write-back schemes in
which a server must synchronously contact a weakly connected client for
token revocation or data propagation.

—Don’t make life worse than when disconnected. Although a minor performance
penalty may be acceptable, a user is unlikely to tolerate substantial perfor-
mance degradation.

—Do it in the background if you can. As bandwidth decreases, network usage
should be moved into the background whenever possible. This typically im-
proves performance by degrading availability or consistency, lesser evils in
many cases.

Supporting weakly connected operation required two major changes to Coda:
first, we modified the cache coherence protocol to allow rapid revalidation of a
large cache after a period of disconnection; and second, we developed a mecha-
nism called trickle reintegration that is frugal in its use of network bandwidth
for update propagation.

Coda is now able to adapt transparently to variations in network bandwidth
spanning nearly four orders of magnitude, from a few Kb/s to 100 Mb/s. A user
is well insulated from this bandwidth variation and also from intermittent
connectivity. If the transfer of a large file is interrupted, the client and server
retain sufficient state to resume the transfer later.

6.1 Rapid Cache Validation

Cache coherence in Coda is based on callbacks. When a client is discon-
nected, it can no longer rely on callbacks. Upon reconnection, it must validate
all cached objects before use to detect updates at servers. The more aggres-
sively one hoards, the longer revalidation takes. This hurts in an intermittent
networking environment because there is little time left for servicing cache
misses or propagating updates before the next disconnection. Lazy revalidation
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avoids this problem, but fails to take advantage of the opportunity to improve
consistency.

Our solution preserves correctness but greatly reduces reconnection latency.
It is based upon the observation that most cached objects are valid upon recon-
nection. Clients track server state at two levels of granularity: on individual
objects and on entire volumes. When an object is updated, the server incre-
ments both the version stamp of the object and that of its containing volume. A
client caches volume version stamps at the end of a hoard walk. Since all cached
objects are known to be valid at this point, mutual consistency of volume and
object state is achieved at negligible cost.

When connectivity is restored, the client first validates its volume stamps. If
a volume stamp is valid, so is every object cached from that volume. We batch
multiple volume stamps in a single RPC for even faster validation. If a volume
stamp is invalid, little can be inferred; objects from that volume must be checked
individually. Even then, performance is no worse than in the original scheme.

When a client obtains (or validates) a volume version stamp, a server es-
tablishes a volume callback as a side effect. This is in addition to (or instead
of) callbacks on individual objects. The server must break a client’s volume
callback when another client updates any object in that volume. Once broken,
a volume callback is reacquired only on the next hoard walk. In the interim,
the client must rely on object callbacks. Thus, volume callbacks improve speed
of validation at the cost of precision of invalidation, a good tradeoff for typi-
cal UNIX workloads [Baker et al. 1991; Mummert and Satyanarayanan 1996;
Ousterhout et al. 1985]. Our measurements show volume validation success
rates over 97%, each saving over 50 object validations [Mummert et al. 1995].

6.2 Trickle Reintegration

Trickle reintegration propagates updates to servers asynchronously. Support-
ing trickle reintegration required major modifications to Venus. As shown in
Figure 3, reintegration was a transient state. Since reintegration is now an
ongoing background process, the transient state has been replaced by a sta-
ble one called the write disconnected state. Figure 5 shows the new states and
transitions in Venus.

Our desire to avoid penalizing strongly connected clients implies that a
weakly connected client cannot prevent them from updating an object await-
ing reintegration. This situation results in a callback break for that object on
the weakly connected client. Consistent with our optimistic philosophy, Venus
ignores the callback break. When reintegration is attempted, a conflict may
occur. This is handled just as if the client had been disconnected.

As discussed in Section 4.3.2, log optimizations are critical to keeping the CML

compact. Trickle reintegration reduces their effectiveness because records may
be propagated before a canceling or overriding operation arrives. Our solution,
shown in Figure 6, is based on aging. A record is not eligible for reintegration
until it has spent a minimal amount of time, called the aging window (A), in
the CML. Based on trace-driven analysis, A has a default value of 600 seconds
[Mummert et al. 1995]. It would be a simple extension to make A adaptive
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Fig. 5. Per-volume states of Venus, as modified to handle weak connectivity. The state labeled
“Write Disconnected” replaces the “Reintegrating” state of Fig. 3. In this state, Venus relies on
trickle reintegration to propagate changes to servers. The transition from the emulating to the
write disconnected state occurs on any connection, regardless of strength. All outstanding updates
are reintegrated before the transition to the hoarding state occurs. Venus is in the hoarding state
when strongly connected, and in the emulating state when disconnected.

Fig. 6. Typical CML scenario while weakly connected. A is the aging window. The shaded records
in this figure are being reintegrated. They are protected from concurrent activity at the client by
the reintegration barrier. For store records, a shadow copy of the file is created.

based on bandwidth. Trickle reintegration is implemented as an atomic
operation, ensuring that a failure leaves behind no state that would hinder a
future retry.

To avoid saturating a slow network for an extended period, the reintegration
chunk size (C) is chosen so that its expected transmission time is 30 seconds.
This corresponds to C being 36 KB at 9.6 Kb/s, 240 KB at 64 Kb/s, and 7.7 MB at
2 Mb/s. Transfer of very large CMLs and files occurs as a series of fragments of
size C or less. If a failure occurs, file transfer is resumed after the last successful
fragment. The atomicity of a store record is preserved in spite of fragmenta-
tion because the server does not logically attempt its reintegration until it has
received the entire file.

7. ISOLATION-ONLY TRANSACTIONS: 1993–1996

Our early fears about optimistic replication centered on write/write conflicts.
The solutions described in Section 5 focused exclusively on such conflicts. We
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ignored read/write conflicts because they were a consistency hazard already
tolerated by users of timesharing file systems. Unfortunately, disconnected op-
eration widens the window of vulnerability to read/write conflicts and thus
increases the likelihood of their occurence.

To address this problem, we extended Coda with a mechanism called
Isolation-Only Transaction (IOT) [Lu and Satyanarayanan 1995; Lu 1996].
Unfortunately, the implementation proved much more complex than we had
anticipated. Furthermore, the rest of Coda diverged considerably during the
development of this mechanism. At this point, merging support for IOTs into
the mainline code would amount to a full reimplementation. Since we do not
have the resources for this, the IOT mechanism is only available today as a de-
funct experimental branch of Coda. Fortunately, our effort was not wasted from
a research perspective. Measurements of the IOT implementation [Lu 1996;
Lu and Satyanarayanan 1997] helped us confirm that demands on CPU, disk
space, and RVM space were modest enough that even a severely resource-
constrained Coda client could benefit from the improved consistency of IOTs.

7.1 Design and Implementation

The IOT mechanism focuses only on the isolation aspect of the classical
ACID transactional properties (atomicity, consistency, isolation, and durabil-
ity) [Eswaran et al. 1976; Gray and Reuter 1993]. IOTs can be viewed as a re-
alization of Kung and Robinson’s [1981] optimistic concurrency control (OCC)
model that has been customized for a mobile computing environment and ap-
plied to a distributed file system rather than a distributed database. A discon-
nected Coda client’s cache trivially satisfies the need for a private workspace for
storing results of uncommitted transactions in the OCC model, a requirement
that has historically limited the use of OCC.

IOTs are upward compatible with POSIX file system semantics. An IOT is
a flat sequence of POSIX file system calls bracketed by begin iot and end iot
system calls. The scope of an IOT includes all Coda objects accessed or modified
by the process that created it and its descendants. A special shell allows legacy
applications to be executed within IOTs.

The implementation of IOTs is almost entirely within Venus; little server
support is required. The results of executing an IOT are not visible on servers
until the IOT ends. If the client is disconnected, a completed IOT remains in
pending state. Upon reconnection, Venus first checks whether the IOT’s results
are consistent with current server state. If consistent, the IOT is committed.
Otherwise, it must be resolved using one of four options: automatic reexecution,
invocation of an ASR, abort, or manual repair. During resolution, access is
provided to both local (client) and global (server) states of objects. The local
state of an object is the value last seen by the IOT being resolved.

8. TRANSLUCENT CACHING: 1995–1998

An unquestioned assumption in Coda from its earliest days was that caching
be transparent to users. Indeed, transparency is one of the major attractions
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of caching as a mechanism: neither users nor applications are aware of it.
However, usage experience with weakly connected operation convinced us that
it was necessary to move away from this ideal. Unless users were alerted to the
transition to weak connectivity, we found that they were unpleasantly surprised
by long cache miss service times and by delayed propagation of updates.

Our solution was to make caching translucent [Ebling et al. 2002]. With
translucency, a user has peripheral awareness of her cache state but is not
overwhelmed with the details of cache management. By striking a good balance
between total transparency and full manual control, translucency offers a better
match between user expectations and system behavior. This balance can be
varied dynamically based on network connectivity.

Support for translucency was developed in two parts: we modified the han-
dling of cache misses to selectively involve the user; and we implemented a
GUI for Venus to compactly convey cache management information to the user.
These mechanisms are described in Sections 8.1 and 8.2. We also validated the
GUI through a usability study [Ebling 1998].

As in the case of IOTs, the mechanisms for translucency were implemented
in an experimental branch of Coda. Because the mainline code has evolved con-
siderably since this branch was created, retrofitting the changes for translu-
cency would amount to a full reimplementation. We have therefore deferred
this effort.

8.1 User Patience Model

In most cases, a user would rather be asked whether a file is important before
he is made to suffer a long fetch delay. However, just popping up a dialog box
on each cache miss is unsatisfactory. First, user reaction time can sometimes
exceed fetch delay. Second, cascaded misses can occur as embedded file refer-
ences in a newly fetched file are encountered. This leads to a flurry of user
interactions, which can be more annoying than modest fetch delays. Third, the
client may be unattended (for example, when a user starts a compilation and
leaves for lunch).

Coda’s solution is to suppress user interaction whenever it is reasonably
confident of the user’s response. The decision-making code is encapsulated in a
Venus procedure called the user patience model [Mummert et al. 1995] for ease
of experimentation and modification. This model balances two factors that in-
trude upon transparency. At low bandwidths, fetch delays annoy users more
than interaction; hence, users are given more control. As bandwidth rises, de-
lays shrink and the annoyance from interaction dominates; hence, more cases
are handled transparently. In the limit, at strong connectivity, cache misses are
fully transparent.

On a cache miss, Venus first invokes the model with the file name, current
bandwidth, and other system information as parameters. If the model suggests
that no user interaction is needed, the miss is serviced transparently. Other-
wise, Venus attempts to put up a dialog box and to block awaiting a response.
Venus will proceed with servicing the miss unless the user suppresses it by
responding positively within a timeout period.
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Fig. 7. User patience model. Each curve in this graph expresses patience threshold (τ ) as a function
of user-specified hoard priority P . Note that τ is given in terms of the largest file that can be fetched
at a given bandwidth. User interaction is suppressed and cache misses transparently handled in
the region below a curve. These curves correspond to τ = α + βeγp, with α = 6 seconds, β = 1,
γ = 0.01.

Designing and validating a user patience model is a challenging and open-
ended problem. We have implemented the simple model shown in Figure 7
to demonstrate our approach. This model is based on the conjecture that pa-
tience is similar to other human processes such as vision and hearing, whose
sensitivity is logarithmic [Cornsweet 1971]. Validating this model remains
future work.

8.2 Exposing Cache Management

We faced two challenges in exposing cache management: it is important to pro-
vide adequate detail without overwhelming the user, and the mechanism should
normally be unobtrusive, yet alert the user promptly when necessary. Our so-
lution is based on the design of dashboard information in automobiles. The de-
mands on the two interfaces are similar: a driver needs to be alerted promptly
to potential problems such as an overheated engine or a failed brakelight; but
the dashboard should not distract the driver from her focus on the road.

Figure 8 shows the GUI. The factors affecting cache management are grouped
into categories and the labels of these catergories are displayed in green, yellow,
or red corresponding to normal, warning, and alert states. This interface is
physically compact and occupies less than two square inches of screen area,
just a few percent of a typical laptop’s screen size. A user can obtain more
detail by clicking on a label.

9. PORT TO MICROSOFT WINDOWS: 1997–PRESENT

Although most of Coda’s evolution has taken place in UNIX, we have recently
succeeded in porting the Coda client code to Windows 95/98. This is notewor-
thy for two reasons. Our implementation preserves a single code base across
UNIX and Windows. This simplifies maintenance, minimizes divergence of
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Fig. 8. Indicator lights interface: the red light for “Tokens” indicates that authentication tokens
have expired, while the red light for “Space” indicates that some critical resource (such as RVM) is
full; the yellow light for “Network” indicates that connectivity is weak.

Fig. 9. Structural relationship between applications, the operating system, and Venus. File system
calls are routed to the MiniCache via a demultiplexing switch that is conceptually derived from
Sun Microsystem’s Vnode interface [Kleiman 1986]. The MiniCache directs calls such as open and
close to Venus, causing the application to be blocked until Venus responds. It routes I/O calls such
as read and write directly to the cache copy of a Coda file, avoiding Venus altogether. The results
of calls such as stat and readdir are cached by the MiniCache.

versions, and ensures that new Coda releases are available promptly in both
worlds. In addition, our implementation does not require access to Windows
source code.

The key to our success is the Coda client structure shown in Figure 9. This
structure was originally developed in 1990 for Mach [Steere et al. 1990]. It has
been refined over time as we have gained experience with porting Coda to many
different flavors of UNIX. The OS-dependent aspects of Coda fit into a small
module called the MiniCache, representing just a few percent of total code size.
The MiniCache intercepts file references from applications, translates them to
a standard representation, and redirects them to Venus. Venus encapsulates
the bulk of client complexity, and is written to a standard POSIX interface.
Since the implementation of the Win32 API on Windows 95/98 is nonreen-
trant [Braam et al. 1999a; Pietrek 1995; Schulman 1995], Venus runs as a
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Fig. 10. Update propagation using a surrogate.

DOS Virtual Machine Manager to avoid deadlock. Further details on the
Windows 95/98 port can be found in an earlier paper [Braam et al. 1999]. Re-
cently, we have also succeeded in porting Coda to Windows 2000.

10. EXPLOITING SURROGATES: 1997–PRESENT

A typical Coda user has a LAN-connected desktop that sits idle while the user
is traveling with a laptop. We have demonstrated that the desktop can be used
as a surrogate to speed reintegration from the laptop over a slow network. Our
approach, called operation shipping, is motivated by certain observations. First,
large files are often created or modified by user operations that can be easily
intercepted and compactly represented. Second, shipping and reexecuting those
operations is often much cheaper than sending large files over a weak network.
Our measurements of operation shipping in an experimental branch of Coda
show greatly reduced bandwidth usage: from a factor of three to nearly three
orders of magnitude [Lee et al. 1999; Lee 2000].

Figure 10 shows how operation shipping is implemented. The surrogate must
be of an appropriate machine type, provide an adequate level of security, and of-
fer an execution environment identical to that of the client. To propagate a file,
the weakly connected client ships the operation that generated the file to the
surrogate. The surrogate reexecutes the operation, validates the regenerated
file to ensure that it is identical to the original, and then propagates it to the
server. If the regenerated file does not match the original, the system falls back
to shipping the original from client to server over the slow connection. Val-
idation with fallback is essential for correctness. Our prototype uses 128-bit
MD5 fingerprints [Rivest 1992; Schneier 1996] for validation. Most of our expe-
rience has been with application-transparent logging, using a modified version
of the bash shell. To ensure fault-tolerance, the surrogate performs reexecution
as an atomic transaction by operating in the write-disconnected state.

Early experiments revealed that a surprising number of applications produce
slightly different output files upon reexecution. The most common cause is
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embedding timestamps or authoring information in output files. To cope with
this problem, we compute and ship a forward error correction (FEC) code with
the operation log [Houghton 1997]. If applying the FEC succeeds in eliminating
a reexecution discrepancy, the surrogate uses the corrected results. Only if the
FEC fails to correct the discrepancy is fallback needed.

We are now investigating whether a surrogate can help improve the servicing
of cache misses on a client. This could prove useful when the network topology of
Figure 10 is reversed: a client has a low-latency and high-bandwidth connection
to a surrogate that has a high-latency connection to a server. We are especially
interested in situations where the mobile client is so resource-starved that it is
unable to hoard all the data it might access.

Our approach is to prefetch a read-only snapshot of a Coda volume on a
surrogate in anticipation of a user’s arrival in its neighborhood. Cache misses
on that volume from the user’s handheld or wearable computer are serviced by
the surrogate. There is some loss of consistency, since the read-only snapshot
may be stale; but this may be acceptable for slowly changing data where mutual
consistency within a volume is more critical than currency. To allow use of
an untrusted machine as a surrogate, files in the read-only snapshot can be
encrypted and fingerprinted during the cloning process. The encryption keys
and fingerprints can be cached even when the corresponding data are much too
large. When servicing a cache miss, the client validates the data it receives by
decrypting them and verifying their fingerprints. We refer to this approach as
caching trust [Satyanarayanan 2000].

11. CONTINUING EVOLUTION

In spite of its maturity, Coda remains a vibrant source of new research ideas and
development activity. The previous sections have already described the work in
progress towards a Windows port and the use of surrogates. At Carnegie Mellon,
Coda serves as the mobile file access component of a new research project in
pervasive computing called Aura [Satyanarayanan 2001; Garlan et al. 2002].

Reengineering the code base is a major ongoing effort. This work spans many
activities: restructuring and rewriting for ease of maintenance; effecting ro-
bustness and usability improvements; developing debugging tools, regression
tests, and performance instrumentation; and improving the documentation of
external and internal details of the system. A task of particular importance is
improving the security engineering of Coda. Although its architecture has been
designed with security in mind, the implementation in this area is incomplete.
For example, support for strong encryption needs to be added to clients and
servers. Performance engineering is another important task that lies ahead.
Compared to a local file system, read performance is acceptable but write per-
formance is slow [Braam and Nelson 1999].

There has been growing interest in Coda in the Open Source commu-
nity. The number of source code downloads of successive Coda releases,
although an imperfect metric, confirms this. There were 22 downloads of
the sources of Coda release 5.3.1, published in mid-1999. This increased to
463 downloads for release 5.3.8, published in June 2000; 985 downloads for
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release 5.3.12, published in January 2001; and 1585 downloads for re-
lease 5.3.15, published in June 2001. The sites downloading Coda span a wide
range of Internet domains: US and international, commercial and noncommer-
cial. Popular talks and articles on Coda by authors not associated with the
development team are beginning to appear [LeBlanc 2000; Lymn 20001a,b].
In 1999, Coda received the Linuxworld Editor’s Award in the category
“File Management.”

Although the future is impossible to predict with certainty, all the signs
point to a long and healthy life for Coda. It appears to hold continued promise
as a tool for serious day-to-day use, as well as a convenient vehicle for ex-
perimental research in mobile computing and the emerging field of pervasive
computing.

12. LESSONS LEARNED

This section describes the major lessons that I have learned from the evolution
of Coda. Some are technical, and others blend technical and nontechnical con-
siderations. Generalizing from a single experience is subject to many obvious
limitations. My hope is that the designers of future systems will intelligently
combine these lessons with their own experience and understanding of specific
system context to arrive at good decisions.

In interpreting this material, one should keep in mind what kind of system
Coda represents. It is a system with ambitious and often-expanding function-
ality that was built in a university. Its primary goal was to validate a high-level
research hypothesis, but the validation required the system to be sufficiently
robust and complete to support a community of real users. This is in contrast
to a system developed as a commercial product, or primarily as a contribution
to the Open Source community.

12.1 Fear Not Optimistic Replication

Perhaps the most powerful lesson offered by the Coda experience is that opti-
mistic replication can be usable and effective in a distributed file system based
on the client–server model. When the Coda project began, it was very much an
open question whether a system permitting updates to any accessible replica
(including a cache copy) could be a usable storage repository. Skepticism often
greeted the early Coda talks: audiences were worried that frequent update con-
flicts would render the system unusable. LOCUS, the only previous file system
to have advocated optimistic replication, was often used to exemplify the fatal
shortcomings of the technique. The decision to avoid optimistic replication in a
commercial version of LOCUS [Popek and Walker 1985] was cited as damning
evidence that even proponents of the technique lacked faith in it.

Although supporting optimistic replication in Coda proved more difficult
than we had anticipated, the difficulties have been overcome. Coda now rep-
resents one viable approach to optimistic replication. Alternative approaches
have been demonstrated by systems such as Bayou [Demers et al. 1994; Terry
et al. 1995], Ficus [Guy 1987, 1990], and Lotus Notes [Collin 1997]. Commercial
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data reconciliation products such as IntelliSync for Windows 95/98 laptops and
HotSync for the PalmOS [Pogue 1998] are now widely used. Today, the use of
optimistic replica control in mobile computing environments is so common that
it is hard to remember that it was once controversial!

Of course, optimistic replication is not always applicable. Pessimistic replica
control techniques continue to be important for applications in which consis-
tency is paramount. The message to take away from our experience is that
one should not dismiss optimistic replication simply out of fear that it will be
too complex to be efficient or that it will hurt usability unacceptably. Only a
careful examination of the application context, balancing the negative impact
of lower consistency against the positive impact of higher availability, can de-
termine whether one should use pessimistic or optimistic replication. In many
real-world contexts, the enduring benefits of high availability easily outweigh
the occasional pain of having to cope with a conflict.

12.2 Real Systems Need Real Users

The impact of real use of Coda cannot be overstated. Earlier sections of this
paper have identified many instances where usage experience was instrumental
in motivating a new capability or an important design change. For example,
Section 3.2.4 mentioned how first-hand experience with Camelot in Coda led to
the design and implementation of RVM. Section 5 described how the handling
of conflicts was influenced by usage experience. The use of dangling symbolic
links to represent conflicts (Section 5.4), and the unification of techniques for
handling server–server and local–global conflicts (Section 5.5) both arose from
dissatisfaction with earlier approaches. It was usage experience that enabled
us to identify the mechanisms most valuable for weakly connected operation;
without it, we would not have recognized the need for rapid cache validation
(Section 6.1). Recognizing the need for translucent caching (Section 8) was also
a direct result of experience with weakly connected operation.

A small group of faculty and students began implementing Coda in early
1991. Since that time, a user community has been in continuous existence at
Carnegie Mellon. Its size has fluctuated over the years, ranging from about
40 users at its maximum to a handful at its minimum. A detailed empirical
study of this community’s use of Coda was reported in an earlier paper [Noble
and Satyanarayanan 1994]. The degree of dependence on Coda has at all
times been significant enough that we have had to pay careful attention to
robustness and correct operation. Over the last few years, Coda has also been
deployed outside Carnegie Mellon. The resulting usage feedback has further
helped in improving the system.

Gaining usage experience is not easy. It requires deployment of an experi-
mental system and the recruitment of a user community willing to brave the
pains of an immature system. This is an especially difficult challenge when
persistence is involved. A bug in a file system or database can result in lost
or corrupted data, possibly destroying many hours or days of work by a user.
Rebooting or power cycling does not fix the problem, as is often possible with
other experimental systems. Even supportive users will not entrust valuable
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data to an experimental file system unless they are confident that the develop-
ment team will do everything possible to promptly recover from crashes. Indeed,
there were many occasions early in the life of Coda when heroic rescue efforts
by the development team were necessary.

Sustaining the commitment and effort needed for deployment is particularly
difficult in an academic environment. The work is hard and the tangible re-
wards, such as publications, are few. It is not surprising that very few academic
research projects in the past decade have followed through to deployment. Yet,
as our experience has shown, the long-term benefits of deployment and use are
substantial. Coda would not be the system it is today without the hard-won
insights derived from real use.

12.3 Timing is Everything

Support for disconnected operation has proved to be the most influential aspect
of Coda. In hindsight, it is easy to see that this is largely due to lucky timing;
we happened to be at the right place and time with the right ideas. When first
described in October 1991, the concepts and terminology introduced by our work
addressed a problem whose importance was already beginning to be recognized
by the research community. Fortunately, there was no established or competing
viewpoint or system design that our ideas had to displace. Replication, the
classic approach to high availability, was not rejected by Coda; rather, it was
embraced in the form of server replication. Disconnected operation was offered
as an enhancement, not a substitute.

Timing also played a major role in associating Coda with mobile computing in
the public mind. The appearance of our 1991 paper coincided with the earliest
availability of portable machines that had sufficient resources to be credible
Coda clients yet weighed no more than six to eight pounds, the heaviest that
a user is typically willing to carry. Mobile computing along the lines advocated
by Coda thus became an immediate reality, not just a distant possibility. Today,
Coda and disconnected operation are most commonly associated with mobile
computing rather than the broader issues of high availability that motivated
them. Mobile computing has thus proved to be a “champion application” for
Coda: that is, an application domain where the merits of a new technology have
such overwhelming benefits that they overshadow the cost and inconvenience
of adopting untried technology and suffering its shortcomings until they are
overcome.

12.4 Beware the Long Software Tail

From a software engineering viewpoint, the evolution of Coda does not neatly
fit either of the best-known development models: the waterfall model or the
rapid prototyping model [Somerville 1989]. In hindsight, the best characteriza-
tion is pipelined development of capabilities. A “capability” represents a major
functional enhancement such as server replication, disconnected operation, or
log-based directory resolution. The pipeline metaphor is appropriate because a
snapshot of the system at any time would have revealed different capabilities
in different stages of progress.
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Fig. 11. Capabilities in Coda developed over time. Note that translucent caching and operation
shipping were never deployed. To avoid making the figure too busy, efforts such as directory reso-
lution, ASR support, IOT support, porting, and reengineering have been omitted. The triangle on
each capability indicates the date of final acceptance of its key research publication. We show accep-
tance date rather than publication date because it is a more accurate indicator of when reporting
was completed.

The existence of a user community dependent on Coda discouraged dis-
ruptive or incompatible changes. Each capability typically went through the
stages of

—conceptualization, identifying the importance of the new capability and how
it fits into existing Coda functionality;

—detailed design and implementation in an experimental branch of the code;
—measurement and evaluation of the implementation through controlled

experiments;
—research publication in a conference or journal, reporting on the design, im-

plementation, and evaluation;
—deployment and initial refinement based on usage experience. This step in-

cludes integration of the capability into the production version of the source
code; and

—ongoing improvement to enhance robustness, performance, and usability.
This stage is driven by discovery of bugs and unexpected feature interac-
tions as new users and new capabilities are added to the system. It continues
the process of refinement begun in the previous stage.

Figure 11 illustrates this development process. The Y-axis gives an approx-
imate measure of the time-relative level of effort applied to a particular ca-
pability by the Coda development team; it is a meaningful measure within a
capability, but not across capabilities. The X-axis depicts the years since the be-
ginning of the project; time comparisons are meaningful both within and across
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capabilities. The type of a line segment indicates the stage of development of a
capability. Except for RVM, all the capabilities followed the sequence of stages
listed earlier. In the case of RVM, deployment preceded evaluation.

A major surprise of Figure 11 is the astonishing length of the last stage.
Debugging continues to this day in parts of Coda long considered “done.” The
resilient nature of the system makes the discovery of subtle load-induced bugs
especially difficult. The importance of this long “software tail” has been the
subject of recent interest in the software engineering community [Rajlich and
Bennett 2000]. The quality of talent needed to make effective changes in the
software tail is no less than in the earlier, higher-visibility stages. In fact, more
talent is needed because later changes have to preserve the architectural co-
herence of the system. As code stabilizes, it is often possible to shrink its size
through careful recoding. At this point in Coda’s life, we typically measure
progress by the number of lines of code deleted rather than added.

12.5 Hail Moore’s Law, the Savior of Portability

It is unusual for a complex piece of system software, such as a file system, to
remain portable across many diverse operating systems and many generations
of hardware. Coda was originally implemented in the Mach 2.5, and the first
eight years of its evolution occurred in Mach. Although nontrivial, the move
away from Mach was much less painful than we had feared. The client structure
shown in Figure 9 was an important contributor to this smooth transition. That
structure has a small and simple in-kernel MiniCache to provide OS-specific
support; more complex code is encapsulated in a platform-independent, user-
level Venus.

In the early years of Coda, the performance impact of this client structure
was high. Even a simple system call, such as open on a cached file, requires
a redirection: from application to kernel, and thence to Venus; the reply also
requires redirection. We were tempted on many occasions to move Venus into
the kernel to reduce this overhead. Indeed, Coda’s ancestor AFS chose exactly
this path in moving from AFS-2 to AFS-3 [Satyanarayanan 1990]. The fact that
Coda was a university research project helped us resist this temptation. Ease of
experimentation, ease of debugging, and ease of educating new team members
in the internals of Coda were greater concerns in our mind than performance.

Over time, the overhead due to redirection has become less of a concern. The
14 years from 1987 to 2001 represent about eight generations of hardware by
Moore’s law. Processors are so much faster that the cost of redirection is much
less noticeable today. Moving Venus into the kernel is no longer attractive.

The evolution of Coda has overlapped the research community’s interest in
microkernels and other modular operating system structures. Many projects
such as Mach 3.0 [Rashid et al. 1989], Exokernel [Engler et al. 1995], SPIN
[Bershad et al. 1995], and Vino [Seltzer et al. 1996] engaged the attention
of leading OS researchers from the late 1980s to mid-1990s. Those projects
took a principled, top-down view of OS decomposition and developed general
mechanisms for modularizing OS functionality. One can view Figure 9 as Coda’s
approach to modularizing one important part of OS functionality. Although less
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general than a microkernel or exokernel structure, it has the merit of being
shaped by genuine need rather than ideology.

Throughout the evolution of Coda we have also tried to avoid dependence
on functionality that is not widely supported on many OS platforms. Today,
POSIX defines this interface. We had both philosophical and pragmatic rea-
sons for this self-imposed constraint. Since our goal was to show that a highly
available distributed file system could be build out of commodity hardware and
widely accepted software standards, exploiting specialized OS support would
have weakened our validation. In addition, such functionality is often not ro-
bust: it is not stressed enough in real use to solidify the implementation. The re-
placement of Camelot by RVM, which depends only on POSIX [Satyanarayanan
et al. 1993b], is perhaps the best example of Coda’s commitment to portability.

Another example is our use of a portable RPC package based on the socket
interface. RPC performance was a major topic of interest in the research commu-
nity in the late 1980s and early 1990s. Using custom-designed kernel support,
intermachine round-trip RPC times in the neighborhood of a few milliseconds
were demonstrated in systems such as Firefly [Schroeder and Burrows 1990],
Amoeba [van Renesse et al. 1988], V [Cheriton 1988], and Sprite [Ousterhout
et al. 1988]. In contrast, Coda’s round-trip RPC time was nearly an order of
magnitude worse.

Rather than sacrificing portability, our response was to reduce the frequency
of RPCs: a strategy captured by the slogan “The fastest RPC is the one you don’t
make.” Techniques such as aggressive client caching, callback-based consis-
tency, trickle reintegration, and volume callbacks lower the frequency of client–
server communication and thus reduce the impact of poor RPC performance.
Over time, the improvement in processor performance through Moore’s law has
contributed to modest improvements in RPC performance; typical round-trip
time is a few milliseconds today. Since disk and network latency have not im-
proved as much over the years, the impact of using a portable RPC package is
more acceptable today.

12.6 Code Reuse is Bittersweet

One of the first decisions facing any systems project is whether to implement
the new system from scratch or to extend an existing system. Each approach
has well-known merits and shortcomings. In the case of Coda, reusing existing
code appeared to be the obvious choice. We had an excellent starting point in
AFS-2, since it was already in serious use and addressed the same kinds of
workload and application domain as Coda.

In hindsight, our decision has proved to be a wise one. The starting code base
represented nearly 15 high-quality man-years of development effort on AFS-1
and AFS-2. It allowed us to focus on high availability immediately, and to
quickly come to grips with implementation issues in server replication. Using
AFS-2 was thus critical to the success of Coda. However, it had two negative
consequences that we did not foresee in 1987. These relate to legal encumbrance
and code longevity.
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By mid-1991 there was considerable interest in Coda from other researchers
and from companies. Although we were eager to freely distribute Coda, we dis-
covered that it was legally viewed as “derived code” and could not be distributed
without the permission of IBM, the owner of AFS-2. The long and frustrating
process of obtaining this permission was made more difficult by the fact that
we could offer no tangible benefit in return. To IBM’s credit, our request was
eventually honored. Between 1992 and 1995, the code was distributable for re-
search and educational purposes but an explicit license had to be signed by each
recipient. After a further round of negotiation in late 1995, IBM finally released
control of Coda. Only then were we able to freely distribute Coda through the
Internet.

The long delay in making Coda freely available outside Carnegie Mellon
had a negative effect on its external impact. Unlike systems such Kerberos,
X Windows, and Linux whose external use took place relatively early in their
evolutions, Coda could not profit from the energy and talent of external adopters
and contributors until late in its life. Although Coda is now gaining visibility in
the Open Source community, earlier external distribution would have enabled
it to play a more prominent and influential role in shaping the growth of that
community.

The second negative consequence of using AFS-2 relates to obsolete design
and coding assumptions. Although there is virtually no unmodified AFS-2 code
left in Coda, the original code channeled our implementation along paths that
seem anachronistic today. For example, in typical UNIX implementations of the
mid-1980s, a process could use relatively few file descriptors (20 was a common
limit). Using a file descriptor per client was clearly not a viable strategy for
an AFS-2 file server process. As another example, typical UNIX kernels of the
mid-1980s could support relatively few TCP connections. Allocating one or more
open TCP connection per client was therefore not feasible for a server hoping
to support a hundred or more clients. Typical disk sizes of that era were 100 to
200 Mb, whereas they are 10 Gb or more today, far beyond the limit of 32-bit
addressing. It is only as we reengineer Coda that we are unearthing and fixing
these long-forgotten assumptions. Since they often have a long reach, the fixes
are a lot of work.

On balance, the use of AFS-2 has been beneficial but expensive for Coda.
The lesson to extract from our experience is to be aware that code reuse has
many subtle consequences that are not immediately apparent. In particular, one
should be more sophisticated than we were about licensing issues and should
ensure the ability to freely distribute derivatives before investing the energy
to extend existing code. Once energy has been invested, it is too late to be in a
favorable negotiating position.

12.7 System Administration Gets No Respect

The most compelling reason for using a distributed file system is the separation
of concerns that it provides. Users can focus exclusively on access and use of
files, confident that mundane but necessary tasks such as backup, server load
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balancing, capacity growth, and preventive maintenance will be competently
handled by well-trained operational staff. A good design allows a small admin-
istrative staff to meet the needs of a large user community. Such a design can
reduce the total cost of ownership, a metric of growing importance as hard-
ware costs decline. Ease of system administration has been an explicit goal
of many distributed file systems, including AFS [Satyanarayanan 1990] and
Frangipani [Thekkath et al. 1997]. This separation of concerns suggests that
user- and administration-centric mechanisms should receive equal attention in
distributed file system design; they are both equally important to the overall
success of a deployed system.

Unfortunately, our experience has been that it is far easier to motivate ef-
fort and to demonstrate innovation in the user-centric aspects of Coda such as
disconnected operation and bandwidth adaptation. It is much harder to moti-
vate effort in administration-centric development, even though lip service is
paid to its importance. The absence of good metrics to quantify progress may
be an important factor, as suggested by Hennessy [1999]. Today, it is Coda’s
administration-centric mechanisms that are most in need of improvement. A
production-quality system will require development of a full range of robust
tools for system administration, work for which there are few tangible rewards
in an academic research environment.

12.8 Short Projects Never Die

In the era of “Internet time,” a computer systems research project that lasts
well over a decade is an oxymoron. Most research projects in universities are
of less than half that duration. As mentioned in Section 2, we ourselves began
Coda in the belief that it was just a footnote to AFS and only expected it to
last two or three years. How has Coda managed to generate sustained interest,
activity, and results for so long?

The primary reason for Coda’s longevity has been its ability to generate ex-
citing yet attainable research goals in a timely manner. In most cases, these
goals were not visible earlier, but came into view as the project moved forward.
In the beginning, when we worked on server replication, we had not even iden-
tified the concept of disconnected operation. Only when we were in the midst of
implementing server replication did the idea of disconnected operation strike
us. Once we were on the verge of success in implementing disconnected opera-
tion, we asked ourselves, “Now that we can handle the case of zero bandwidth,
how can we make life better with a little bandwidth?” This led to the work
on bandwidth-adaptive, weakly connected operation. That, in turn, opened the
doors to new research opportunities, and so on. On more than one occasion,
Coda has managed to stay alive by revealing new research possibilities just in
the nick of time.

Long project life has some drawbacks. First, funding sources are often reluc-
tant to invest in something that they perceive as “old.” It takes considerable
effort to make the case that Coda is being used only as a vehicle, and that the
research itself is new. Second, it is hard to change early stereotypes. More than
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one person has remarked, “I have read the Coda paper,” meaning the key Coda
paper on disconnected operation. Their concept of Coda is frozen at that stage,
and it is often an uphill task to explain the significance of the evolution that
has happened since.

A more savvy strategy for marketing and publicity would have been to choose
distinct project names for the different phases of Coda’s evolution. This would
have preserved the continuity of work, while giving the illusion of a sequence
of relatively short, well-defined projects. However, such a strategy would have
been intellectually dishonest because it would have hidden one of the major
strengths of Coda: its graceful and seamless integration of the many capabilities
described in this article into a single system.

A secondary reason for Coda’s longevity has been the near-absence of com-
mercial systems with similar capabilities. IBM Transarc, the custodian of AFS,
would have been the most likely candidate to build a commercially supported
distributed file system along the lines explored by Coda. But DFS [Kazar et al.
1990], Transarc’s successor to AFS, ignored the problems of high availability
and mobility. Sun Microsystem’s NFS [Sandberg et al. 1985], another possible
candidate, has remained relatively stagnant over its entire life. The IntelliMir-
ror component of Microsoft’s Windows 2000 file system is the only commercial
product to have absorbed ideas from Coda. On Open Source platforms, Coda
continues to be the most advanced distributed file system available today. On a
lighter note, perhaps the lesson to take away from Coda’s longevity is to avoid
project names that imply a short duration!

13. CONCLUSION

Providing scalable, secure, and highly available access to shared data remains
an important requirement for enterprise-scale computing. Meeting this require-
ment is hard enough with stationary users and a wired network; it becomes a
difficult challenge with mobile users and wireless networks.

Coda can help meet this challenge in several distinct ways. First, it can serve
users directly. This was Coda’s original design goal, and is clearly attainable
even though the system is not yet of production quality. Second, Coda can serve
as the data access layer of mobile devices customized to specific applications.
There are many hooks in Coda for customization: ASRs, hoard profiles, policies
for translucent caching, mapping of application data to file system structure,
and so on. By using Coda as a substrate, the development effort for such cus-
tomized solutions can be reduced. Third, the ideas explored and validated by
Coda can be used in new contexts and implementations. As mentioned ear-
lier, Microsoft has used this approach in IntelliMirror. Other examples include
the Caubweb disconnectable browser [LoVerso and Mazer 1997] and the Inter-
Mezzo file system [Braam et al. 1999b].

The evolution of Coda bears witness to the power of the deceptively sim-
ple question posed at the beginning of this paper: Can the virtues of AFS
be preserved, while alleviating its vulnerability to failures? When we asked
this question in 1987, we had no idea that answering it positively would
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involve so much work, require so much research, or take so long. But the effort
has not been in vain. From a scientific as well as a practical viewpoint, Coda has
been a valuable investment that will pay rich dividends well into the future.
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