
In Proceedings of the 9th ACM SIGOPS European Workshop, pp. 91–96, Kolding, Denmark, September 2000

Congestion Prices as Feedback Signals:
An Approach to QoS Management

Rolf Neugebauer ∗

Department of Computing Science
University of Glasgow

Glasgow, G12 8QQ, Scotland, U.K.
neugebar@dcs.gla.ac.uk

Derek McAuley
Microsoft Research Limited

St. George House
Cambridge CB2 3NH, U.K.
dmcauley@microsoft.com

Abstract

Recently there has been a renewed interest in the application of
economic models to the management of computational resources.
Most of this interest is focused on pricing models for the Inter-
net; in particular, on congestion or shadow prices, that address
the phenomenon of what economists call external costs — users
are exposed to the costs they impose on other users when causing
congestion of a resource.

This paper describes how congestion prices can be applied to
resource management in operating systems. Shadow prices are
interpreted as feedback signals to applications which can adjust
their resource requirements according to an application-specific
strategy. This leads to a decentralised approach of resource man-
agement where applications are enabled and encouraged to per-
form resource and quality tradeoffs themselves. We have imple-
mented a simulation environment and a number of strategies to
evaluate the usefulness of congestion prices as a feedback signal
and demonstrate that this approach can offer different service lev-
els to different tasks. We also discuss how the simulation results
can be applied in a real operating system and how this work can
be extended to form a generic resource management framework.

1 Motivation

Over the past decade or so there have been numerous proposals
for adding support for multi-media and Quality of Service (QoS)
guarantees to operating systems. In order to provide predictable
service to applications, resource reservations are used, giving hard
or soft guarantees for resource allocations. Typically, reservations
for temporal resources, in particular the CPU, are either based on
real-time scheduling algorithms [18, 13, 20, 8] or on proportional
share algorithms [4, 23, 2]. The latter are often used in conjunc-
tion with a hierarchical scheduling framework which partitions
the available resources between tasks, with reservations and tasks
sharing resources in a weighted fair fashion.

Resource reservation schemes in general face two related prob-
lems: resource requirements have to be specified in advance; and
an admission control system has to be deployed to ensure that
granted resource reservations can be met by the system. Sim-
ply providing a mechanism for specifying resource requirements
is not sufficient – the challenge lies in determining the actual re-
source needs within the constraints of the system’s finite resources
and user preferences. The primary aim of an admission control
system is to take these potentially inaccurate and time-varying re-
source requirements and provide at least soft guarantees to appli-
cations that their resource requirements will be met. However, a
simplistic approach to admission control based on a first-come-
first-served strategy may lead to an inflexible and unfair system,
where tasks arriving later than others may be denied access to a
resource even if they are more important [20]. Ultimately, the

∗Rolf Neugebauer is supported by a Marie Curie Fellowship from the European
Union, Contract-No.: ERBFMBICT972363.

admission control or resource management system should aim to
provide maximum utility to the users of the system.

To tackle these problems, the use of QoS managers [9, 12, 21]
is usually proposed. Applications inform a QoS manager of their
resource requirements and users may specify their respective util-
ity values. The manager then attempts to maximise the overall
resource utilisation and system utility. In [24] it is argued that this
potentially NP-hard problem can be tackled by distributing the re-
source management task among the applications and the resources
themselves. The proposed architecture is based on an economic
model whereby resource managers responsible for individual re-
sources sell resource contracts to applications. Applications, pro-
vided with credits by the users or a user agent, negotiate and pur-
chase these contracts and attempt to locally maximise their, and
therefore the user’s, utility.

In this paper we build on this general model and examine in
more detail a pricing scheme for CPU resources. In particular
we investigate the application of a congestion pricing model de-
veloped in the context of congestion avoidance in communication
networks. In the next section we briefly describe this congestion
pricing model. In section 3 we discuss how this model can be
used for CPU resource management and section 4 presents a num-
ber of sample strategies showing how applications can react to the
feedback provided by shadow prices. In section 5 we describe the
issues which need to be addressed when applying congestion pric-
ing in the context of a real operating system. Section 6 presents
related work and in section 7 we present our conclusions.

2 Congestion Pricing

The basic task of a resource management system aiming to pro-
vide resource reservation and timeliness guarantees is to avoid
overload of the resource while still offering fairness and flexibility
to users and their tasks. This task can be expressed in economic
terms and has been done for congestion control for the Internet
by economists [16], mathematicians [10], and computer scientists
[11].

These proposals are motivated by the observation that if the
network is not saturated, the marginal cost of sending an extra
packet is close to zero. If, however, the network is congested, the
marginal cost of sending an extra packet may incur an unreason-
ably high cost in the form of increased congestion and packet loss
to other users. In economic terms congestion is an “externality”,
a phenomenon closely related to the “tragedy of the commons”
[5] and typicallyshadow pricesare used to cover these external
costs. In other words, shadow prices make users aware of the ex-
ternal cost they impose on others.

This basic concept leads to a simple decentralised model for
resource management, with resource managers providing feed-
back in the form of shadow prices and applications reacting ac-
cordingly. This approach has a number of appealing properties.
Firstly, shadow prices form both a very simple and generic feed-

1

back signal. Secondly, applications can take full advantage of
application-specific knowledge when adapting to varying resource
availability, taking into account application-specific user prefer-
ences. Thirdly, an appropriate pricing scheme with sensible con-
sumer behaviour can achieve a (near) optimal resource alloca-
tion with all consumers maximising their benefits from limited
resources (social optimum). And finally, congestion pricing is an
elegant and simple mechanism for resource revocation, a problem
typically not addressed in reservation based schemes.

To formalise the notion of congestion prices we follow the
model presented in [10] and [11]. In general, a useri of a re-
source can be represented asUi(xi) = ui(xi) − C whereui is
the user’s utility function depending on the amount of a resource
xi he receives andC denotes some non constant cost associated
with the resource consumption. Naturally, users seek to maximise
Ui.

A social planner, on the other hand, would attempt to maximise
the sum of all user’s utility minus the cost of the overall system
load (externalities) to achieve an efficient resource utilisation.

max
nX

i=1

ui(xi) − C(
nX

i=1

xi) (1)

While this optimisation problem is mathematically tractable, its
solution relies on knowledge of the users’ utility functionsui(xi),
which are typically not known to the system. However, in [10],
it is demonstrated that the problem can be decomposed into an
optimisation problem for each user and an optimisation problem,
not involving the user’s utility functions, for the resource.

Suppose a user is charged a rateti proportional to the amount of
the resourcexi he receives. Then the user faces the optimisation
problem:

maxUi(xi) = ui(xi) − tixi (2)

For a monotonically increasing, concave, and continously differ-
entiable utility function, the unique solution is:

u′
i(xi) = ti

If the resource manager seeks to achieve a socially optimal re-
source allocation according to equation 1 it will set the chargeti

to the shadow pricep(y) depending on the loady of the resource
giving:

ti = p(y) =
d

dy
C(y) (3)

with C(y) being the rate at which cost is incurred at overall load
y. Thus, the feedback signal in form of the chargexip(y) is both
proportional to the user’s resource allocation and the congestion
cost it incurs.

Equation 2 can be presented in an alternative form. Suppose
the user sets an amountwi and in return receives a share of the
resourcexi proportional towi such thatwi = tixi. The user
optimisation problem becomes:

maxUi(xi) = ui(
wi

ti
) − wi (4)

Analogous to the solution to equation 2, the condition:u′
i(

wi
ti

) =
ti identifies the optimal choice ofwi under a given priceti.

3 Application to CPU scheduling

The pricing scheme described in section 2 has been proposed as a
congestion avoidance mechanism for IP networks, where a clear
indication of congestion exists in the form of dropped packets.
In a soft real-time system, without strict admission control, the
analogous congestion indicator are missed deadlines.

To illustrate this, consider a simple Earliest Deadline First
(EDF) based scheduler in which tasks specify their resource de-
mands as a tuple[p, s] to receive a share ofs nanoseconds every
period ofp nanoseconds. It has been shown [14] that, under cer-
tain assumptions, EDF generates a feasible schedule if the overall
reservation is below 100%. If the overall system utilisation ex-
ceeds 100% and all tasks consume their entire share each period
then, inevitably, deadlines will be missed. Since we are consider-
ing a soft real-time system this can be toleratedoccasionally.

0

2

4

6

8

10

0 200 400 600 800 1000 1200 1400

N
o.

 o
f d

ea
dl

in
es

 m
is

se
d

Time

Cumulative Deadlines missed

task 1
task 2
task 3
task 4
task 5

0
100
200
300
400
500
600
700
800

0 500 1000 1500 2000 2500 3000

S
er

vi
ce

 T
im

e

Time

Cumulative Service

task 1
task 2
task 3
task 4
task 5

Figure 1: Cumulative missed deadlines and service time in 15%
overload

In figure 1 the results of a simulation of a set of five tasks, each
initially having a reservation of[100, 20] equivalent to 20% of the
CPU, are given. During the initial phase no deadlines are missed
and the tasks receive the same service time each period. At time
t = 300 the reservation of two tasks is increased to[100, 30] and
[100, 25] respectively, resulting in a 15% overload of the system.
As one would expect with EDF, not all deadlines can be met. Due
to the relatively high overload, all tasks start missing deadlines
after a short period. Thus, the two tasks that increased their share
have an external effect on the other tasks. Since our implementa-
tion of EDF1 does not discard requests whose deadlines cannot be
met, all tasks continue to receive service time, with the three un-
changed tasks making slightly less progress and the tasks with the
increased resource allocation making more progress. Essentially,
when overloaded the scheduling algorithm degrades to weighted
fair sharing. However, the longer the CPU is overloaded the more
deadlines are missed; quickly converging to the point where all
deadlines are missed. Clearly, this situation should be avoided for
longer periods of time and situations of overload should be tran-
sient. From this simple experiment we conclude that the metric of
missed deadlines is a suitable indicator for resource congestion.

If missed deadlines represent the external cost of overload, the
next question is how to translate this into shadow prices. Con-
sider a taskA whose deadlinedn was missed while its previous
deadlinedn−1 was met. Assume also, that the deadlines of all
other active tasks are met. Essentially, all tasks which ran be-
tween task A’s previous deadlinedn−1 and its missed deadlinedn

contributed to the missed deadline in proportion to the share of
the resource they consumed during that period. More generally,
all users of a resource should be charged proportionally to their
use of the resource from the start of a busy period leading to an
overload until the overload situation ends. However, this seems
impractical to implement directly since it requires the system to
be able to predict the future resource usage.

An alternative has been described in [11]. Instead of charg-
ing from the start of a busy period, one could start charging tasks
when the first deadline has been missed but continue charging af-
ter the congestion phase has stopped. This may lead to a minor
unfairness, where tasks which did not contribute to the congestion

1Which is based on the EDF variant deployed in the Nemesis operating system
[13], known as Atropos.

2

might get charged. However, we anticipate that charging periods
are only of short duration while changes to the task set occur on
larger timescales.

This strategy could be implemented using the periodic timer
interrupt most operating systems use to maintain the system soft-
ware clock and/or to perform scheduling related functions such as
updating usage statistics or priority re-computation. If the sched-
uler detected a missed deadline (i.e., an overload) the interrupt
service routine would decrement the account of the currently run-
ning task by a fixed value on every execution until the scheduler
detects that the system is idle. On standard PC style hardware this
periodic timer can be set to periods as small as122µs offering a
high resolution feedback signal.2 A variation of this scheme could
implement a strategy akin to Random Early Detection (RED) [3],
where tasks would be charged small amounts at random before
actual overload occurs and charged as described above in over-
load. This may prevent situations of heavy overload by reducing
the overall system utilisation marginally. We plan to investigate
different charging schemes in more detail in the future.

4 Sample Strategies

The charging mechanism introduced in the previous section pro-
vides a feedback signal to individual tasks in the form of conges-
tion charges. A user can express the relative importance of tasks
by assigning different “budgets” to different tasks. Tasks can then
use this feedback to implement a variety of different strategies to
adapt to these feedback signals. We have implemented a simula-
tion environment and a number of strategies to evaluate the use-
fulness of congestion prices as feedback signals. In this section
we present some initial results of this evaluation. A detailed de-
scription of the simulator and the implementation of the strategies
is beyond the scope of this paper. We hope to report on it in detail
in the future.

The sample strategies include a simplified TCP-like algorithm
implementing an additive increase/exponential decrease strategy:
If a task incurs no congestion charges it requests a small, fixed-
sized increase of its resource allocation; if the rate at which a task
incurs congestion charges is above a set threshold it reduces its
resource reservation by a fixed proportion.

A second strategy implements the Willingness To Pay (WTP)
algorithm described in [11]:

∆xi(t) = κi(wi(t) − xi(t) × p(y(t))) (5)

with xi denoting the current service rate,wi the willingness to
pay factor, i.e., the rate at which the task is willing to pay for
congestion charges,p the rate at which congestion charges are
incurred, andκi a constant influencing the rate of convergence.

A third strategy implements a Proportional-Integral Derivative
(PID) controller similar to the one used in [22, 15]:

∆xi(t) = CiP ei(t) + CiI

Z
ei(t) + CiD

dei(t)

dt
(6)

with CiP , CiI , CiD being constants andei(t) representing the
error between a configurable willingness to pay rate and the rate
at which congestion charges are incurred, i.e.ei(t) = wi(t) −
p(y(t)).

In a first experiment we illustrate the basic behaviour of each
of the strategies. For each experiment five tasks were started with

2Naturally, care must be taken so that this does not impose an intolerable over-
head. On the version of Nemesis for Alpha processors the periodic timer interrupt
is only used for maintaining wall clock time and the service routine is entirely im-
plemented in PAL code. Changing the timer period to122µs and adding code for
implementing the charging scheme does not impact the overall performance of the
system.

a period of10ms and an initial slice of1ms. The algorithms
for the different strategies are performed once every100ms by
each task and alter the slice of the task to change its execution
rate xi accordingly. If the system is overloaded, the tasks get
charged 1 unit every100µs (modelling a122µs periodic timer
interrupt) thus the maximum charging rate is10000 units/s. For
the experiments with the WTP and PID strategy, the willingness to
pay factor is set to100 units/s. The results are shown in figure 2
as the service rate each task received, averaged over200ms. Table
1 summarises the three experiments by giving the mean (x̄) and
the variance of the achieved service rate (σ2), together with the
total number of missed deadlines for each task (d).

T
TCP-like WTP PID

x̄ σ2 d x̄ σ2 d x̄ σ2 d

1 16.13 7.99 0 18.73 2.55 0 19.04 2.40 0

2 18.88 9.97 386 19.01 2.79 0 19.05 2.40 0

3 16.86 12.29 0 19.05 2.82 0 19.46 2.73 511

4 17.16 8.47 2 19.02 2.80 0 18.83 2.23 0

5 15.52 10.42 0 19.39 3.18 487 19.03 2.37 0

Table 1: Summary of the three experiments

For the TCP-like algorithm the average service rate is compa-
rably low with a large variance due to its aggressive back-off.
Tasks sometimes back-off for consecutive periods because the
system may need a longer time to catch up after missing dead-
lines. Furthermore, the system does not converge to a stable al-
location. In contrast, using WTP achieves close to optimal av-
erage allocation for each task after about 10 seconds. However,
the tasks’ service rates oscillate slightly just below the optimal al-
location. The PID algorithm converges slightly quicker towards
a stable state where the tasks allocation oscillates similar to the
tasks using the WTP strategy. It is worth noting, however, that
it is fairly difficult to tune the parameters of the PID algorithm.
In fact the configuration used for all experiments in this paper
(CP = .1, CI = .001, CD = .1) were found through a trial-
and-error process, with variations of the parameters often leading
to unstable behaviour. The convergence constantκi used by the
WTP algorithm has a far less dramatic effect and simply influ-
ences the rate of convergence (we useκi = .1 for all experi-
ments).

The uneven distribution of missed deadlines for each of the
strategies and the uneven distribution of service rates for the TCP-
like strategy can be attributed to the implementation of the sched-
uler. Tasks on the run queue are ordered by their deadlines and
are inserted into the run queue in the same order after each period.
In the experiment, all tasks have the same deadlines and start at
exactly the same time, thus, under transient overload, the same
tasks are likely to miss deadlines. However, we anticipate that in
a more realistic environment, where a larger number of tasks with
more diverse deadlines are active and where tasks block or yield
occasionally, this effect will be far less dominant.

For both WTP and PID the user can specify a willingness to
pay factorwi(t) for each task which determines the rate at which
the task is able to pay for congestion prices. Thus, tasks with
different wi(t) factors should receive different levels of service.
Essentially, the proportion of

P
wi to the maximum charging rate

determines which level of overload is acceptable to the system.
For example, ifwi is set to50 units/s instead of100 units/s
in the previous experiment the numbers of missed deadlines are
about half as big as the ones shown in table 1.

3

0

5

10

15

20

25

 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

S
er

vi
ce

 R
at

e

Time (s)

task 1
task 2
task 3
task 4
task 5

TCP-like

0

5

10

15

20

25

 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

S
er

vi
ce

 R
at

e

Time (s)

task 1
task 2
task 3
task 4
task 5

WTP

0

5

10

15

20

25

 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

S
er

vi
ce

 R
at

e

Time (s)

task 1
task 2
task 3
task 4
task 5

PID

Figure 2: Sample strategies

Next, we evaluate the ability of the WTP and PID strategies to
provide different service levels to different tasks and the ability of
the strategies to adapt in a changing environment. For each of the
strategies we start 9 tasks with different initial allocations (10%,
5%, 1%, .5%), different periods (5ms,10ms,20ms), and different
values forwi (100, 200, 300, 400). After50s a tenth task joins,
after100s the value ofwi for one task is changed from 100 to 400
while after 150s the value ofwi for another task is reduced from
400 to 200, and finally, after 200s a task terminates.

The results of this experiment for both strategies are shown in
figure 3 which illustrates the tasks’ received service rates. In both
experiments one can clearly see the 4 different service levels cor-
responding to the different values ofwi. For the PID strategy the
task set converges quicker to a stable allocation and the service
rates adjust quicker when the task set changes or thewi parame-
ters are changed. In general, both algorithms yield comparable re-
sults. However, the implementation of the PID algorithm is more
complex than the very simple implementation of the WTP algo-
rithm.

It is important to note that the service levels achieved by the
tasks are solely depending onwi and areindependentof their pe-
riodsand their initial allocation. Thus, the decentralised system,
in which tasks choose their resource allocation themselves based
on feedback signals by the scheduler, can lead to a weighted fair
resource allocation, while still providing soft real-time guarantees
over short periods of time.

These three different strategies can be used for different types
of applications. For example, a low priority background task
such as a background document indexer or client for a distributed
computing challenge such as rc5des3 or SETI@Home4 may use
a TCP-like strategy to rapidly decrease their resource allocation
when the system becomes overloaded. A PID or WTP like strat-
egy might be used by more important batch processing jobs or
multi-media applications. Furthermore, with thewi parameter the
user is provided with a single, easily understood “knob” to adjust
the importance of a task.

5 Issues and Future Work

We have described a general model for congestion pricing and
demonstrated through a number of experiments that the feedback
provided through shadow prices can be used by applications to
change their resource allocation. In this section we discuss the
issues involved in applying this model to the management of re-
sources in a real operating system.

In the above experiments, tasks voluntarily adjust their resource
allocation during overload. However, in a real system, tasks may
not be that cooperative. To promote cooperation, tasks should
be given credits and the amount of credits a task may spend to

3http://www.distributed.net/
4http://setiathome.ssl.berkeley.edu/

cover congestion costs should be limited. If a task runs out of
credits it may only execute best-effort until the transient overload
has ended. Limiting the available credits provides the right incen-
tives to tasks to only use the necessary resources and also limits
the maximum tolerable overload. Furthermore, the user can ex-
press relative importance of tasks by allocating different amounts
of credits to different tasks.

An important issue in this context is that for the system to be
stable, the total amount of credits available in the system needs to
be limited and a task may not be allowed to accumulate arbitrary
amounts of credit nor create credits. This could be achieved by
allocating new credits to tasks in intervals at a user defined rate
and decaying unused credits over time. Users will only have a
limited amount of credit available. This model could be extended
to support abstractions such as user-defined currencies and infla-
tion of these currencies similar to the abstractions used in lottery
scheduling [25].

The three different strategies, and others, require to be eval-
uated exhaustively with more realistic workloads in a more dy-
namic environment. We intend to do this both through simula-
tions and by implementing the model in a real operating system,
namely Nemesis [13]. In particular, we are interested in multi-
media applications which can adapt their resource requirements
by offering different levels of quality to users. Such applications
can use the feedback provided by the system through congestion
prices and the feedback provided by the user through credit allo-
cation to make informed quality and resource tradeoffs based on
more general, application-specific user preferences. We have im-
plemented a small toolkit which can assist developers with this
task [19]. Furthermore, we are interested in the interaction be-
tween different adaption strategies, in particular the relationship
betweenwi, charging mechanisms, and the tasks’ adaption strate-
gies. In this context we also plan to investigate if the system can
be “sabotaged” by deliberately misbehaving tasks.

The overall aim of the pricing scheme should be to prevent the
system from being overloaded in the stable state and provide max-
imum user utility. This allows the system to give short term re-
source guarantees to applications which have strict timeliness re-
quirements. We anticipate that applications are prepared to adapt
to changing resource availability over longer periods. We cur-
rently do not have enough experience with the system to make pre-
dictions about the timescales at which these changes will occur.
However, we currently consider two techniques which can influ-
ence the timescale at which resource reservations change. Firstly,
an admission control system could be deployed which only al-
lows new tasks to enter the system if the system is in a stable
state or if the new tasks’ initial allocation will not push the over-
all resource reservation above a threshold not much greater than
100%. Secondly, users could deploy a user agent which dynami-

4

0

5

10

15

20

25

 0.00 50.00 100.00 150.00 200.00 250.00

S
er

vi
ce

 R
at

e

Time (s)

wtp: w=100, p=20ms

wtp: w=200, p=20ms

wtp: w=300, p=20mswtp: w=400, p=20ms

wtp: w=400, p=10ms wtp: w=300, p=10ms

wtp: w=200, p=10ms

wtp: w=100, p=10ms

wtp: w=400, p= 5ms wtp: w=100, p= 5ms

Task joines
w=100

Change w from
w=100 to w=400

Change w from
w=400 to w=200

Task leaves

Different initial
allocations

0

5

10

15

20

25

 0.00 50.00 100.00 150.00 200.00 250.00

S
er

vi
ce

 R
at

e

Time (s)

pid: w=100, p=20ms

pid: w=200, p=20ms

pid: w=300, p=20mspid: w=400, p=20ms

pid: w=400, p=10ms pid: w=300, p=10ms

pid: w=200, p=10ms

pid: w=100, p=10ms

pid: w=400, p= 5ms pid: w=100, p= 5ms

Task joines
w=100

Change w from
w=100 to w=400

Change w from
w=400 to w=200

Task leaves

Different initial
allocations

Figure 3: WTP (top) and PID (bottom): Received Service Rate (Averaged over200ms)

cally alters the credit allocations of the users’ tasks based on some
user-defined preferences.

So far we have only considered a single resource, CPU resource
allocations. However, we believe that the general principal of con-
gestion pricing is applicable to other resources. For example, for
virtual memory management, the number of page faults can be
used as an indication of congestion of physical memory. In gen-
eral, managing resource reservations for multiple resources is very
difficult. However, we believe that decentralising resource man-
agement makes this more tractable and permits the exploitation of
application domain specific information and knowledge.

6 Related Work

Using economic models for resource management is certainly not
a novel approach — [7] and [1] provide excellent overviews over
past research in this area. Most of the systems described are
auction-based and intended for more coarse-grained resource al-
locations. In [17] a proportional share scheduling algorithm is de-
scribed in which tasks are charged for their resource usage and are
refunded periodically. In [6] a system where objects are charged
for backing store usage is presented. Charges are based on an an-
alytical cost function of the storage utilisation. It is interesting
to note that none of these systems base their charges on shadow
prices, which have been demonstrated to be a useful mechanism
to avoid congestion in communication networks.

Recently, two scheduling algorithms have been described,
which proportion CPU resources based on feedback [22, 15].
Both schemes are based on real-time scheduling algorithms and
deploy a PID controller to calculate the changes to the current re-
source allocation. In [22] applications provide feedback on their
progress to the controller viasymbiotic interfacesand the con-
troller is used to dynamically adjust their resource reservations
accordingly. The system described in [15] uses the deadline miss
ratio of an EDF scheduler as the input to its feedback loop. Re-
sulting adjustments to tasks’ resource allocations are based on the
tasks’ discrete utility functions assumed to be known to the sys-
tem. With the approach presented in this paper, the feedback is
provided in the other direction – from the system to the applica-
tions, explicitly notifying applications that an adjustment is re-
quired and allowing them to adapt in an applications specific way.
Applications may use utility functions to accomplish this task but
it is not necessary to make utility functions explicit in the system.

QoS managers are usually deployed to manage the distribution
of resources amongst competing tasks. The resource planner in
Rialto [9] and the Q-RAM architecture [21] follow a centralised
approach where tasks specify their resource requirements to a cen-
tral entity responsible for resource management. Rialto deploys
a simple negotiation protocol where tasks request a reservation
and the planner either grants or rejects the request. In Q-RAM,
tasks’ requirements are based on a comprehensive description of

5

all modes of operation of an application with associated user spec-
ified utility values. With complete knowledge of resource require-
ments and user preferences, the QoS manager then maximises the
overall system utility. With our approach this exhaustive descrip-
tion can still be used by the applications to perform resource trade-
offs, but no central resource manager is required and the resource
requirements do not need to be known in advance. We believe
that this approach can yield similar optimal results. In a sense
our approach is similar to AQUA [12] where applications are ex-
pected to collaborate through application-level QoS management
libraries. Applications are given simple hints by the system on
whether they can increase their resource usage or areexpectedto
decrease it. AQUA expects applications to collaborate but does
not enforce a reduction of resource usage in overload. Shadow
prices, as described in this paper, provide a more expressive feed-
back signal to applications and the charging mechanism provides
applications with an incentive to adapt.

7 Conclusions

In this paper we evaluated the application of a congestion pricing
scheme proposed for congestion avoidance in communication net-
works to the problem of resource management in operating sys-
tems. Analogous to the networking environment, we treat missed
deadlines as the external cost of congestion and provide, through
shadow prices, an explicit feedback signal to applications causing
the congestion. Through a credit system, applications are given
the incentive to adapt to these signals. We have argued that this
approach leads to a decentralised form of QoS management which
does not require a central QoS manager.

We have demonstrated, through simulations, that the simple
feedback provided by shadow prices can be used to implement
a range of different adaption strategies and that different credit
allocations by the users allow tasks to obtain different service lev-
els. We feel encouraged by these results and will evaluate this
approach more extensively, both in a more realistic simulated en-
vironment and in the context of a real system.

We have identified and discussed the issues which need to be
addressed to extend this model to a generic resource management
framework for real operating systems. In particular, future work
will include an investigation of the interaction between user pref-
erences and application adaption strategies in dynamic environ-
ments and the application of congestion pricing to more than one
resource.

References
[1] S. Clearwater, editor.Market-Based Control: A Paradigm for Distributed Re-

source Allocation. World Scientific, 1996.

[2] K. Duda and D. Cheriton. Borrowed-Virtual-Time (BVT) scheduling: support-
ing latency-sensitive threads in a general-purpose scheduler. InProc. of the
17th Symposium on Operating Systems Principles (SOSP’99), pages 261–276,
Kiawah Island Resort, SC, USA, December 1999.

[3] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion
Avoidance. 1(4):397–413, August 1993.

[4] P. Goyal, X. Guo, and H. Vin. A Hierachichal CPU Scheduler for Multimedia
Operating Systems. InProc. of the 2nd Symposium on Operating Systems
Design and Implementation (OSDI’96), pages 107–121, Seattle, WA, USA,
October 1996.

[5] G. Hardin. The tragedy of the commons.Science, 162:1243–1248, December
1968.

[6] G. Heiser, F. Lam, and S. Russell. Resource Management in the Mungi Single-
Address-Space Operating System. InProc. of the 21st Australasian Computer
Science Conference, Perth, Australia, February 1998.

[7] B. A. Huberman, editor.The Ecology of Computation. North-Holland, Ams-
terdam, Netherlands, 1988.

[8] M. Jones, D. Rosu, and M. Rosu. CPU Reservations and Time Constraints:
Efficient, Predictable Scheduling of Independent Activities. InProc. of the
16th Symposium on Operating Systems Principles (SOSP’97), pages 198–211,
Saint-Malo, France, October 1997.

[9] M. B. Jones, P. J. Leach, R. Draves, and J. S. Barrera. Modular Real-Time
Resource Management in the Rialto Operating System. InProc. of the 5th
Workshop on Hot Topics in Operating Systems (HotOS-V), May 1995.

[10] F. Kelly, A. Maulloo, and D. Tan. Rate control in Communication Networks:
Shadow Prices, Proportional Fairness and Stability.Journal of the Operational
Research Society, 49(3):237–252, March 1998.

[11] P. Key, D. McAuley, P. Barham, and K. Laevens. Congestion pricing for
congestion avoidance. Technical Report MSR-TR-99-15, Microsoft Research,
Cambridge, U.K., February 1999.

[12] K. Lakshman, R. Yavatkar, and R. Finkel. Integrated CPU and Network-I/O
QoS Management in an Endsystem. InProc. of the IFIP Fifth Int. Workshop
on Quality of Service (IWQoS ’97), 1997.

[13] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R. Fair-
bairns, and E. Hyden. The Design and Implementation of an Operating System
to Support Distributed Multimedia Applications.IEEE Journal on Selected
Areas In Communications, 14(7):1280–1297, September 1996.

[14] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment.Journal of the ACM, 20(1):46–61, January
1973.

[15] C. Lu, J. Stankovic, G. Tao, and S. Son. Design and Evaluation of a Feedback
Control EDF Scheduling Algorithm. InProc. of the 20th IEEE Real-Time
Systems Symposium, Phoenix, Arizona, USA, December 1999.

[16] J. K. MacKie-Mason and H. R. Varian. Pricing the Internet. In B. Kahin and
J. Keller, editors,Public Access to the Internet, pages 269–314. MIT Press,
Cambridge, MA, USA, 1995.

[17] U. Maheshwari. Charge-Based Proportional Scheduling. Technical Memoran-
dum MIT/LCS/TM-529, January 1995. MIT Laboratory for Computer Sci-
ence.

[18] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Reserves for
Multimedia Operating Systems. InProc. of the IEEE Int. Conference on Mul-
timedia Computing and Systems, May 1994.

[19] R. Neugebauer. How Elastic are Real Applications? InProc. of the 9th Int.
Workshop on Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV’99), pages 197–200, Basking Ridge, NJ, USA, June 1999.

[20] J. Nieh and M. Lam. The Design, Implementation and Evaluation of SMART:
A Scheduler for Multimedia Applications. InProc. of the 16th Symposium on
Operating Systems Principles (SOSP’97), pages 184–197, Saint-Malo, France,
October 1997.

[21] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A Resource Allocation
Model for QoS Management. InProc. of the 18th IEEE Real-Time Systems
Symposium, San Francisco, USA, December 1997.

[22] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole.
A Feedback-driven Proportion Allocator for Real-Rate Scheduling. InProc.
of the 3rd Symposium on Operating Systems Design and Implementation
(OSDI’99), pages 145–158, New Orleans, LA, USA, February 1999.

[23] I. Stoica, H. Abdel-Wahab, and K. Jeffay. On the Duality between Resource
Reservation and Proportional Share Resource Allocation. InProc. of the Con-
ference on Multimedia Computing and Networking, pages 207–214, San Jose,
CA, USA, February 1997.

[24] N. Stratford and R. Mortier. An Economic Approach to Adaptive Resource
Management. InProc. of the 7th Workshop on Hot Topics in Operating Systems
(HotOS-VII), Rio Rico, AZ, USA, March 1999.

[25] C. Waldspurger and W. Weihl. Lottery Scheduling: Flexible Proportional-
Share Resource Mangement. InProc. of the 1st Symposium on Operating
Systems Design and Implementation (OSDI’94), pages 1–11, Monterey, CA,
USA, November 1994.

6

