

Liverpool John Moores University
School of Computing and Mathematical Sciences

 Investigation into Self-Adaptive Software
Agents Development

 E. Grishikashvili

This paper provides an overview of Self-Adaptive Software and software agent technology.

 Literature Survey

Distributed Multimedia Systems Engineering Research Group

Technical Report

http://www.cms.livjm.ac.uk/cmsegris/Deliverables/Reports/

27 April 2001 Liverpool john Moors University

Version: Draft 1.0 School of Computing and Mathematical Sciences

 Byrom Street, Liverpool, L3 7UF

 Tel: + 44 151 231 2263, Fax: Tel: +44 151 231 2263

 E-mail: cmsegris@livjm.ac.uk

http://www.cms.livjm.ac.uk/cmsegris

Investigation into Self-Adaptive Software Agents Development

1. Introduction

Society’s increasing dependence on software- intensive systems is driving the need for
dependable, robust, continuously available systems. The ability to reconfigure a
system at run time is one critical aspect of achieving continuously availability.
Although operating systems and programming language have provided programmers
with the ability to evoke runtime software changes, such mechanisms do not
guarantee that a change will have desired effect or maintain application integrity. It is
therefore imperative that there are developed approaches to run time system
reconfiguration that help us determine what to change, facilitate reasoning about the
consequences of a change, and govern change to preserve application integrity.
Without this, the risks introduced by runtime reconfiguration may outweigh those
associated with shutting down and restarting the system for reconfiguration.

The new approach in area of “Self-Adaptive Software” provides the key for this kind
of systems. Self-adaptive software will identify, promote and evaluate new models of
code design and run-time support. These new models will allow software to modify
its own behavior or order to adapt, at runtime, when exact conditions and inputs are
known, to discovered changes in requirements, inputs, and internal external
conditions.

…This implies that the software has multiple ways of accomplishing its purpose, and
has enough knowledge of its construction to make effective changes at runtime. Such
software should include functionality for evaluating its behaviour and performance, as
well as the ability to replan and reconfigure its operations in order to improve its
operation. Self-adaptive software should also include a set of components for each
major function, along with descriptions of the components, so that components of
systems also requires the ability to impedance match input/output of sequenced
components, and the ability to generate some of this code from specifications.
DARPA seek this new basis of adaptation to be applied at runtime, as opposed to
development/design time, or as a maintenance activity [Laddaga., 1998].

Self-adaptive software requires high dependability, robustness, adaptability, and
availability. From our point of view it will be useful to develop agents with these
properties for multi-agent systems. The design of this kind of multi-agent systems
requires spatial attention as no self-adaptive agents design has been developed.

Proposed work aims to develop framework for self-adaptive software agent
development. Building a good software agent framework is an enormously complex
task since it requires a rather complete understanding of a variety of software
architecture areas.

In their work “Towards a Viable Reference Architecture for Multi-Agent Supported
Holonic Manufacturing Systems” [Laws, 2000] the authors suggest that Viable
System Model (VSM) can be regarded as a unifying reference architecture that
provides an integrated organizational/software design approach for multi-agent
software systems.

The remainder of the paper is organized as follow. The first section describes what is
the software agent and gives briefly definitions of agents that are more important for
large systems development. The next section presents an overview of current work,
the taxonomy of agent and requirements for self-adaptive software agent. Finally, the
paper concludes with the future development opportunities.

2. What is the Software Agent?

Before we explain main objectives of our future work we want to define what the
software agent is. During the years, many researchers have come up with different
definitions of the term.

According the Wooldridge and Jennings definition a software agent is "... a hardware
or (more usually) software-based computer system that enjoys the following
properties:

• autonomy: agents operate without the direct intervention of humans or others,
and have some kind of control over their actions and internal state;

• social ability: agents interact with other agents (and possibly humans) via
some kind of agent -communication language;

• reactivity: agents perceive their environment, (which may be the physical
world, a user via a graphical user interface, a collection of other agents, the
INTERNET, or perhaps all of these combined), and respond in a timely
fashion to changes that occur in it;

• pro-activeness: agents do not simply act in response to their environment, they
are able to exhibit goal-directed behaviour by taking the initiative."

By this definition an agent is a rather complex piece of software that must exhibit
some rather extraordinary characteristics in order to be called an agent. In practice
most agents have these properties, but most do not take each of them to their extreme.
Instead, they focus on one or a few.

In his paper entitled “Software Agents: An Overview”, Hyancinth Hwana takes the
“Wooldridge Jennings” definition and hones it down to three behavioural attributes,
any two of which must be possessed by a software agents. These are (Nwana 1996):

• Autonomy – “refers to the principle that agents can operate on their own without

the need for human guidance, even though this would sometimes be invaluable.
Hence agents have individual internal states and goals, and they act in such a
manner as to meet its goals on behalf of its user. A key element of their autonomy
is their proactiveness, i.e. their ability to ‘take the initiative’ rather than acting
simply in response to their environment. [M. Wooldridge & Jennings, 1995]”

• Cooperation – “cooperation with other agents is paramount: it is raison for
having multiple agents in the first place in contrast to having just one. In order to

cooperate, agents need to possess a social ability, i.e. the ability to interact with
other agents and possibly human via some communication language (Wooldridge
& Jennings, 1995).” Having said this, it is possible for agents to coordinate their
actions without cooperation (Nwana et al. 1996).

• Learning – “For agent systems to be truly ‘smart’, they would have to learn as
they react and/or interact with their external environment. Agents are (or should
be) disembodied bits of ‘intelligence’. Though, we will not attempt to define what
intelligence is, a key attribute of any intelligent being is its ability to learn. The
learning may also take the form of increased performance over time. ”

Many of the current reviews of software agents attempt to classify agents by either
their ‘roles or functions (King 1995) or by their supporting technology. These
approaches lead to very complex taxonomies as many agents in fixed roles, (i.e.
Information retrieval agents) utilize a number of underling technologies
(collaboration, mobility act.), and, conversely, many underling technologies lead
to agents with many roles.

Agent developers have identified several forms of agents that are more important
for large systems development. Those forms considered the most important to
agent developers today are discusses below (OMG 2000):

Software agent – is an autonomous software entity that can interact with its
environment. In other words, they are agents that are implemented using software.
This means that they are autonomous and can react with other entities, including
humans, machines, and other software agents in various environment and across
various platforms.

Autonomous agent - is capable acting without direct external intervention. It has
some degree of control over its internal state and actions based on its own
experiences.

Adaptive agent – is capable of responding to other agents and/or its environment
to some degree. More advanced from of adaptation permit an agent to modify its
behavior based on its experience.

Mobile agent – able to transport itself from one environment to another.

Interactive agent – communicates with the environment and other agents.

Proxy agent – may act on behalf of someone or something, that is, acting in the
interest of, as a representative of, or for the benefit of some entity.

Intelligent agent – state is formalized by knowledge (i.e., beliefs, goals, plans,
assumptions) and interacts with other agents using symbolic language.

Coordinative agent – able to perform some activity in a shared environment with
other agents. Activities are often coordinated via a plans, workflows, or some
other process management mechanism.

Cooperative agent – able to coordinate with other agents to achieve a common
purpose; nonantagonistic agents that succeed or fail together. (collaboration is
another term used synonymously with cooperation.)

We want to pay more attention to the software agent autonomy and adaptability.
When an agent has a certain independence from external control, it is considered
autonomous. Autonomy is best characterized in degrees, rather than simply being
present or not. To some extent, agents can operate without direct external invocation
or intervention, without any autonomy, an agent would no longer be a dynamic entity.
Therefore, autonomy is considered by FIPA and the OMG’s Agents Working Group
to be a required property of agent.

An agent is considered adaptive if it is capable of responding to other agents and/or its
environment to some degree. At minimum, this means that an agent must be able to
react to a simple stimulus-to make a direct, predetermined response to particular event
or environmental signal. Adaptation gives to agent capacity to learn and evolve. These
agents can change their behaviour based on experience.

An agent that can not respond to its environment or to other agent whose usefulness is
questionable for developing agent-based systems. Adaptation as autonomy is
considered by FIPA and OMG’s Agent Working Group to be a required property of
agent.

3. Agent Taxonomy

As we described before there are a lot of types of agent already defined. Agents may
be usefully classified according to the subset of the properties that they enjoy. These
properties may help us further classify agents in useful ways. The table that follows
lists several of the properties mentioned above (S. Franklin 1996).

Property Other Names Meaning

reactive (sensing and
acting)

responds in a timely fashion to changes in the
environment

autonomous exercises control over its own actions

goal-oriented pro-active
purposeful

does not simply act in response to the
environment

temporally
continuous is a continuously running process

communicative socially able communicates with other agents, perhaps
including people

learning adaptive changes its behaviour based on its previous
experience

mobile able to transport itself from one machine to
another

flexible actions are not scripted
character believable "personality" and emotional state.

 Every agent satisfies the some of these properties. Adding other properties produces
potentially useful classes of agents, for example, mobile, learning agents. Thus a
hierarchical classification based on set inclusion occurs naturally. Mobile, learning
agents are then a subclass of mobile agents.

There are, of course, other possible classifying schemes. For example, the software
agents can be classified according to the tasks they perform, for example, information
gathering agents or email filtering agents, or according to their control architecture.
Agents may also be classified by the range and sensitivity of their senses, or by the
range and effectiveness of their actions, or by how much internal state they possess
(S. Franklin 1996).

As we mentioned by adding some properties to existing agent produces useful class of
agent/or new type of agent. If we put agents well known properties autonomy,
learning, reactions, flexibility, cooperation, and add self-adaptive behaviour, we’ll
develop new type of agent that is a self-adaptive (Figure 1). The agent with self-
adaptive behaviour is very useful for the system that needs runtime reconfiguration.

 Self-Adaptive Software Agent

Figure 1.

4. A Self-Adaptive Software Management Approach

The Viable System Model (Beer 1981) (Beer 1985), provides a theoretically support
to self-adaptive software system development (Laws 2000). Viable systems have
ability to continually respond and adapt to unexpected stimuli allowing them to
survive in a changing and unpredictable environment. The model identifies the
necessary and sufficient communication and control systems that must exist for any
organization to remain viable in a changing environment. In doing so, the model does
not attempt to specify the activities that must occur in each system, instead activities
are typified by a cybernetic rationale to allow either the design of activities to match
the cybernetic criteria or for actual activities to be identified by their system type and
hence assigned to the appropriate element of the model. Such a generalized approach
allows the model to be applied to any organization regardless of size.

Autonomy
Adaptation

Cooperation

Flexibility
 Learning

According the principles of the VSM and Bratman et al.’s [Bratman (1988)] IRMA
terminology six major systems can be used to demonstrate a conceptual, architectural
outline of an agent based systems.

The major systems of the Viable Systems Model

System One - “Operations” performs the productive operations of the organization.
 An organization may be composed of a number System Ones, each
 providing a distinct or service. Each S1 consists of an operational
 element controlled by a management.
System Two – “coordination” is concerned with coordinating the activities of S1
 units. It is essentially anti-oscillatory in that it attempts to contain or

minimize inter-S1 fluctuations. This is achieved by the provision of
stabilizing, coordinating facilities such as scheduling and
standardization information that is disseminated over all S1s, but
tailored locally to suit individual S1 needs.

System Three – “Control” is concerned with the provision of cohesion and synergy to
a set of S1units. The management processes contained within this
system will be concerned with short term, immediate management
issues, such as resource provis ion and strategic plan production,
although strategic in this situation refers to planning with existing
resources rather than in the normally accepted sense.

System Three* - “Audit” provides facilities for the intermittent audit of S1 progress
and provides direct access to the physical operations of the particular
S1 allowing immediate corroboration of that progress. This essentially
provides additional data over and above that provided by normal
reporting procedures.

System Four – “Intelligence” is concerned with planning the way ahead in the light of
external environmental changes and internal organizational
capabilities. S4 ‘scans’ the environment for trends that may be either
beneficial or detrimental to the organization and constructs
developmental organizational plans accordingly. To ensure that such
plans are grounded in an accurate appreciation of the current
organization, the intelligence function contains an up-to-date model of
organizational capability.

System Five – “Policy” determines the overall purpose of the organization i.e. defines
the activities that are performed by S1s. as such S5 represents the
policy-formulation or normative planning function. Policy formulation
is informed by a “world-view” provided by S4 and models of current
organizational capability populated data flowing from the lower level
systems in the organization.

As this model allows to the system to have connection with environment, plan and
adopt changes when it is necessary it can be used for overall configuration
characteristics for both individual agent architectures and overall system architectures.
In such an approach each System must be represented as an appropriate agent (e.g.
Planning Agent, Learning Agent, Adaptive Agent). For communication and
coordination function as a communication agent. Such an approach provides support
to self-adaptive systems development.

 As it was mentioned the main goal of our work is to develop agents with self-
adaptive behaviour that supports run-time reconfigurable systems. VSM provides
support for both agents and systems we are going to develop. Taxonomy of whole
system is future work. Classification of the self-adaptive software agent is presented
on Figure 2. (Laws 2000)

Figure 2. An outline Viable Self-Adaptive Software Agent Architecture

Desires

W
or

ld
M

od
el Deliberation

Process

Intentions

Opportuni ty
Analyser

Environmental
Scan

Filtering
Process

Plans

 S

ur
vi

vi
ng

 P
la

ns

Intentions

P lanning Process

Plan
Library

Reasoner

Interna l Model

Internal Model

Status

Resource
Bargaining

Process

Intentions

Schedul ing
Process

Schedule
M o n i t o r

Schedul ing
ProcessPlans

ScheduleR
esourcesA

cc
ou

nt
ab

ili
ty Intentions

Sys tem Three

Sys tem Four

System Five

O
perational

Status

The architecture embeds a beliefs-desires- intentions (BDI) approach at S5 level.

System Three, using a reasoning process supported by a plan library and the capacity
to audit the current status of operational System One units, structures the intentions
into plans, which are then passed to a Scheduling process. The Scheduling process, in
cooperation with a Resource Bargaining process, responsible for negotiating resource
deployment and monitoring usage, schedule the enactment of the plan. The schedule
passes to the coordinating System Two channel for dissemination to participating
System One elements. The System Two channel returns schedule-monitoring
information to System Three.

Environmental change is addressed in System Four, which equipped with an
Opportunity Analyzer guided by System Five desires, scans the environment for
detrimental events or beneficial opportunities. There are two outcomes of this process,
the first is the formulation of a view of the outside world that is provided to System
Five in the form of the World model. The second outcome is the production of
development plans for the future of the agent, either exploiting advantageous
opportunities or avoiding detrimental occurrences. To ensure that plans are founded in
a realistic appreciation of the current capabilities of the agent, a model, populated by
data flowing from System Three is provided. This data is further abstracted and feeds
the internal view used in the deliberation process in System Five. Plans are then
subjected to a filtering process to weigh between competing options and ensure
compatibility with the current agent-state. Surviving plans are then passed to the
deliberation process to begin the intention forming cycle again.

If we take general software agent and add the autonomous behavior we will get
autonomous agent. According the described architecture of agent, on the S3 level we
have autonomous agent that is capable acting without direct external intervention. On
the level S4 we need to add learning behavior in order to make agent capable to
interact with external world/environment, to learn the requirements the environment
needs. With adding the planning behavior we will make agent to plan new changes or
requirements for external world, but only on the level S5 we can make agent adaptive,
adding adaptive behavior. Agent makes decision (when it is necessary) how to change
existing or adapt new behavior.

 5. Conclusion

In this paper we described very briefly what is the software agent and what kind of
agents are developed. Presented the taxonomy of general agent with their properties
and classification of self-adaptive software agent.

Discussed how it is useful to use VSM as unifying reference architecture for self-
adaptive software agents and their supporting runtime reconfigurable systems.

 It is clear that this project needs a lot of work to be done, but at a result of this work
we are promising to create framework, that will make it easy to create intelligent
software agents, with self-adaptive behaviours, with built- in capabilities for
autonomous operation, monitoring their environments, reasoning, and communicating

with other agents and users. Will provide tools for specifying agent behaviour and
operation, tools for defining interaction between agents.

References:

Beer, S. (1981). Brain of the Firm, John Wiley &Sons, Chichester.
Beer, S. (1985). Diagnosing the System for Organizations, John Wiley and Sons,

Chichester.
King, Y. A. (1995). “Intelligent Agents: Bringing Good Things to Life.” .
Laws, A. G. (2000). “Managing Complexity in Self-Adaptive Software: A Cybernetic

Approach.” , S. J. Wade, ed., CMS, Liverpool John Moores University.
Nwana, H. S. (1996). “"Software Agents: An Overview" in Knowledge Engineering

Review.” .
OMG. (2000). “Agent Teqnology.” , Agent Working Group, OMG.
S. Franklin, A. G. “Is it an Agent, or just a Program?: A Taxonomy for Autonomous

Agents.” The Third International Workshop on Agent Theories, Architectures,
and Languages.

