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Recent advances in distributed, mobile, and
ubiquitous systems demand new comput-
ing environments characterized by a high
degree of dynamism. Variations in

resource availability, network connec-
tivity, and hardware and software plat-
forms influence the performance of the
related user applications. The expected
growth of ubiquitous computing over
the next five years will further alter the
nature of the computational infrastruc-
ture, bringing a plethora of small
devices and requiring customized pro-
tocols and policies to fulfill users’
evolving quality of service (QoS)
requirements.

During the past 10 years, software
developers created middleware technology to facili-
tate development of software systems, most notably
distributed and Internet-based, to support activities
as diverse as scientific computation, information dis-
covery and dissemination, and e-commerce. Middle-
ware mediates interaction between the application
and the operating system (hence its name). Related
technologies, including the Object Management
Group’s CORBA, Sun Microsystems’ Java-based
J2EE, and Microsoft’s .NET, hide from the pro-

grammer the complicated details of network com-
munication, remote method invocation, naming,
and service instantiation, easing construction of
complex distributed systems. CORBA, or Common

Object Request Broker Architecture,
and Java also hide the differences in the
underlying software and hardware plat-
forms, increasing portability and facili-
tating maintenance, as new versions of
operating systems are released.

Despite aiding development of
distributed applications, conven-
tional middleware technology lacks
support for the dynamic aspects of
the new computational infrastruc-
ture. Next-generation applications
require middleware that can be

adapted to changes in the environment and cus-
tomized to fit into devices, from PDAs and sen-
sors to powerful desktops and multicomputers [1,
5]. Here, we reflect on how two independent
research projects might influence the evolution of
next-generation middleware. The reflective mid-
dleware model is a principled and efficient way of
dealing with highly dynamic environments yet
supports development of flexible and adaptive
systems and applications.

It’s flexible and reconfigurable yet simple 
for programmers to use, notably for building 
dynamic distributed applications operating 
on the Net. 
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Hides the Details
Middleware hides the details of the underlying lay-
ers and operating-system-specific interfaces. Pro-
grammers of distributed applications can write code
that looks similar to code written for centralized
applications; the middleware extends method invo-
cation by adding networking, marshalling, method
dispatching, and scheduling. Applications written
for middleware are easily ported, and programmers
need not worry about the internals of the operating
system or of the middleware itself.

On the other hand, some applications can benefit
from exploiting the underlying layers in the physical
environment, as well as in the computational envi-
ronment. For example, a multimedia streaming or
videoconferencing application can dramatically
improve QoS by selecting a network transport pro-
tocol that suits the underlying network infrastruc-
ture (whether wireless LAN, wired LAN, or
long-distance Internet), as well as the available band-
width. It may also benefit from being aware of its
physical context, detecting the presence of, say, a
wall display and reconfiguring the application to
show the video in the larger display. As another
example, an e-commerce Web site might improve its
response time by examining information about

resource utilization, then dynamically changing the
location of its system components, creating replicas
of its most requested services or changing the mid-
dleware’s request scheduling policies. As a third
example, an effective calendar application for ubiq-
uitous computing might detect the kind of hardware
platform on which it is executing, possibly a PDA,
wristwatch, desktop PC, or wall display, enabling it
to provide a graphical interface optimized for that
platform.

Most applications clearly benefit from middle-
ware that hides the details of the underlying layers;
but other applications can significantly improve
their performance through interaction with the
dynamic state of the underlying layers, tuning the
middleware implementation to their requirements
[1]. A desirable middleware model provides trans-
parency to the applications that want it and translu-
cency and fine-grain control to the applications that
need it.

Reflective middleware model. In the reflective
model, middleware is implemented as a collection of
components that can be configured and reconfigured
by the application. The middleware interface
remains unchanged and may support applications
developed for traditional middleware. In addition,
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T he foundations of reflective computing systems
were originally laid out in [12] in the context of

programming languages. A system is reflective when
it is able to manipulate and reason about itself the
same way it does about its application domain. As a
result of such introspective processing, a reflective
system is able to inspect and change itself during the
course of its execution.

From its original application in programming lan-
guages, reflection gained wider acceptance in other
areas, including operating systems and distributed
systems. This appeal followed the assumption that
the same underlying principles seamlessly apply to
these other areas, too. The assumption has also
fueled work on reflective middleware involving a few
fundamental concepts:

Reification. The action of exposing the internal
representation of a system in terms of programming
entities that can be manipulated at runtime. The
opposite process, absorption, consists of effecting
the changes made to reified entities into the system,
thus realizing the causal connection link.

Meta-level architectures. A reflective system has

a meta-level architecture when it is explicitly struc-
tured in terms of a base-level dealing with applica-
tion concerns and a meta-level dealing with
reflective computation.

Meta-objects and the meta-object protocol
(MOP). In object-oriented reflective systems, the
entities populating the meta-level are called meta-
objects. The interaction protocol supported by meta-
objects provides reflective capabilities and is known
as the meta-object protocol.

Structural reflection. This ability of a language (or
system) provides a complete reification of the pro-
gram currently executing in terms of, say, the lan-
guage’s methods and state. The programmer can
inspect or change the functionality of the program,
as well as the way it models the domain.

Behavioral reflection. This ability of a language (or
system) provides a complete representation of the
language’s own semantics in terms of the internal
aspects of its runtime environment. Programmers can
inspect or change the way the underlying environ-
ment processes a program with regard for, say, non-
functional properties and resource management. c

Basic Reflection Terminology



system and application code may inspect the internal
configuration of the middleware and, if needed,
reconfigure it to adapt to changes in the environment
through meta-interfaces. In this manner, it is possi-
ble to select networking protocols, security policies,
encoding algorithms, and various other mechanisms
to optimize system performance for specific and
often unpredictable contexts and situations.

In general terms, reflective middleware refers to
the use of a causally connected self-representa-
tion to support the inspection and adaptation
of the middleware system [5]. The same reflec-

tion techniques used in, say, programming lan-
guages also apply to middleware (see the sidebar
“Basic Reflection Terminology”). Self-representa-
tion refers to an explicit representation of the inter-
nal structure of the middleware implementation
that the middleware maintains and manipulates. In
this limited sense, the middleware is self-aware. The
self-representation is causally connected if changes
in the representation lead to changes in the middle-
ware implementation itself and, conversely, changes
in the middleware implementation
lead to changes in the representation.

Unlike middleware constructed as a
monolithic black box, reflective mid-
dleware is organized as a group of col-
laborating components. This principle
permits the configuration of very small middleware
engines that interoperate with conventional middle-
ware. Such middleware implementations often
include all the functions applications might need;
however, in most cases a particular application may
use only a small subset of this functionality. The cur-
rent difficulties deploying standard middleware
technologies to the small devices used in ubiquitous
computing do not apply to component-based mid-
dleware. While conventional CORBA object request
brokers (ORBs) and Java virtual machines require
several megabytes of memory, component-based
reflective ORBs have memory footprints as small as
6KB [10].

In addition to these properties, a reflective archi-
tecture must also support the dynamic customiza-
tion of component behavior and fine-grain resource
management through meta-interfaces. Two different
implementations—DynamicTAO and Open
ORB—of reflective middleware systems developed
at the University of Illinois and at Lancaster Univer-
sity, respectively, each addresses these issues in its
own ways.

DynamicTAO. DynamicTAO [6] is an extension
of the C++ TAO ORB (see www.cs.wustl.edu/

schmidt/TAO.html), enabling on-the-fly reconfigu-
ration of the ORB internal engine and of applica-
tions running on top of the ORB. In DynamicTAO,
ComponentConfigurators represent the dependence
relationships between ORB components and
between ORBs and application components. A
ComponentConfigurator is a C++ object that stores
these dependencies as lists of references pointing to
other component configurators, thus creating a
directed dependence graph of ORB and application

components (see Figure 1).
Whenever a request for the replacement of a com-

ponent C arrives, the middleware examines the
dynamic dependencies between C and other mid-
dleware and application components using the
ComponentConfigurator object associated with C.
Programmers extend the ComponentConfigurator
class through inheritance to provide customized
implementations dealing with different kinds of
components. Middleware developers use this feature
to write code that takes the proper actions to guar-
antee the consistency of the ORB internal structure
in the presence of dynamic reconfigurations.
DynamicTAO supports safe dynamic reconfigura-
tion of the middleware components controlling con-
currency, security, and monitoring.

DynamicTAO exports a meta-interface for load-
ing and unloading modules into the system runtime,
and for inspecting and changing the ORB configu-
ration state. The meta-interface is available to devel-
opers for debugging and testing purposes, to system
administrators for maintenance purposes, and to
other software components that can inspect and
reconfigure the internals of the ORB based on infor-
mation collected from other sources, including
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resource utilization monitors. In addition, to sup-
port the reconfiguration of distributed ORBs,
DynamicTAO exports a similar meta-interface for
mobile agents. In this case, system administrators

use a graphical interface to build mobile agents and
inject them into the network; the agents travel from
ORB to ORB, inspecting and reconfiguring each
one according to the instructions the administrator
has programmed into the agents [6].

To allow dynamic interposition of application- or
enterprise-specific code into the remote method
invocation path, DynamicTAO has provided sup-

port for interceptors since its earliest release in 1999.
More recently, the OMG defined a standard for
portable interceptors that is now part of TAO (see
www.omg.org). Developers can install portable
interceptors at the client or server sides and at the
message or request levels. They can use interceptors
to support cryptography, compression, access con-
trol, monitoring, and auditing.

DynamicTAO delegates resource management to
components not part of the basic middleware
engine but that can be dynamically loaded into the
engine. It employs the Dynamic Soft Real-Time
Scheduler (DSRT) [8] running as a user-level

process in such conventional
operating systems as Linux,
Solaris, and Windows. DSRT
uses the system’s low-level real-

time API to provide QoS guarantees to applications
with soft real-time requirements, performing QoS-
aware admission control, resource negotiation, reser-
vation, and real-time scheduling.

The mechanisms for reification, inspection, and
reconfiguration of the ORB internal engine added
by DynamicTAO to the conventional TAO imple-
mentation make DynamicTAO a reflective ORB.
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Anumber of researchers have developed middle-
ware architectures that apply the concepts of

reflection and meta-level architectures, as in the fol-
lowing examples:

OpenCORBA. This reflective implementation of
CORBA is written in NeoClasstalk, a Smalltalk-like
reflective language based on meta-classes [7]. The
reflective features of OpenCORBA are based on the
idea of modifying the behavior of a CORBA service by
replacing the meta-class of the class defining that
service.

Quarterware. This early reflective middleware plat-
form supports multiple middleware standards, includ-
ing CORBA, Java RMI, and MPI [11]. It uses a
component framework in which the various ORB mech-
anisms are realized in terms of components. A reflec-
tive interface allows programmers to plug customized
versions of these components into the framework.

multi-Channel Reification Model (mChaRM). This
experimental reflective middleware platform uses the
communication reification approach to enable explicit
control over multi-party communication [4]. The
architecture is centered on channels as the main
meta-level abstraction and permits the interception

of method calls to inspect and adapt the channels’
structures and behavior.

Besides the object-oriented approach of most
reflective middleware projects, researchers have also
considered the aspect-oriented programming (AOP)
paradigm to structure middleware meta-level archi-
tectures. AOP extends the basic notion of the separa-
tion of concerns in reflective systems, or base-level
vs. meta-level, to a finer level of granularity; multiple
crosscutting concerns, or aspects, (at both base-level
and meta-level) can be implemented separately yet
can also be integrated into a cohesive system. In
mainstream AOP research, aspects are not preserved
at runtime as identifiable entities, thus hindering
their use for dynamic adaptation. Other approaches
for developing aspect-oriented systems have
employed such mechanisms as composition filters [2]
and fragmented components that realize aspects in
terms of first-class runtime entities. These new
research initiatives open the possibility of aspect-
oriented reflective middleware; the design of the
meta-level benefits from the greater separation of a
system’s various aspects into different parts, 
typical of the AOP paradigm. c
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Open ORB. The Open ORB project aims to
design highly configurable and dynamically recon-
figurable middleware platforms to support applica-
tions with dynamic requirements, including those
involving distributed multimedia and mobility [3].
Components with well-defined interfaces imple-
ment the elements of middleware functionality. Cus-
tomized instances of the Open ORB platform can
then be configured by assembling the appropriate
components, following a component model that
allows hierarchical composition and distribution.
The Open ORB architecture preserves
components as identifiable entities
at runtime, facilitating runtime
reconfiguration as it eases iden-
tification of the parts of the
platform that need to
change.

Dynamic reconfig-
urability is achieved
through the
extensive use of
reflection, with a
clear separation
between the base-level
and the meta-level. While
the base-level consists of compo-
nents implementing the usual middle-
ware services, the meta-level comprises
reflective facilities to expose these implementations
to the programmer, enabling inspection and adapta-
tion. The structure of the meta-level follows the
same component model used to define the base-
level, so reflection can be applied to inspect and
adapt the meta-level itself. Meta-level components
comprise a causally connected self-representation of
the platform and are associated with individual base-
level components. Each base-level component may
have its own private set of meta-level components,
collectively referred to as the component’s meta-
space.

To tackle the complexity of the meta-level
architecture and provide for manageable
yet comprehensive reflective interfaces, the
meta-space of a component is defined

according to a multi-model reflection framework
[9]. The meta-space is partitioned into distinct
meta-space models that offer different views of the
platform implementation and can be independently
reified. Open ORB defines four meta-space models
grouped according to the distinction between struc-
tural and behavioral reflection (see Figure 2).

The Interfaces and Architecture meta-space models

support structural reflection. The former is con-
cerned with the external representation of a compo-
nent in terms of the set of provided and required
interfaces. The associated meta-object protocol, or
MOP, offers facilities to enumerate and search the
elements of interface definitions, allowing, say, the
dynamic discovery of the services provided by a par-
ticular component. The latter is in turn concerned
with the internal implementation of components in
terms of their software architecture. The self-repre-
sentation consists of two parts: a component graph
representing the interconnections between the com-

ponents in a component assembly; and a set
of architectural constraints defining

the rules needed to validate
component assemblies.

The associated MOP
helps inspect and
adapt the software
architecture to, say,
add, remove, or replace
components and
change constraints,
thus enabling dynamic
adaptation.

The Interception meta-
space model supports
behavioral reflection.
The corresponding MOP
enables manipulation of
nonfunctional proper-

ties in the form of interceptors performing pre- and
post-processing of the interactions emitted from and
received at an interface. In addition to this behav-
ioral reflection, the Resources meta-space model
offers structured access to the underlying platform’s
resources and resource management. The MOP
allows inspection and reconfiguration of the
resources (such as storage and processing) allocated
to particular activities in the system; it might do so
by adding or removing resources or changing the
parameters and algorithms needed for resource man-
agement. With the Resources meta-space model,
resource allocation and properties can evolve to
match an application’s QoS requirements.

Over the past several years, the Open ORB research
group has implemented prototypes of this architec-
ture, focusing on performance, management of meta-
information, and resource management [3]. In each
case, the researchers tested the suitability of the archi-
tecture for distributed multimedia applications.

Similar motivations, similar solutions. Open
ORB and DynamicTAO were developed indepen-
dently on opposite sides of the Atlantic Ocean by
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people with different backgrounds using different
technologies. Nevertheless, their motivations were
the same, and both projects have yielded similar solu-
tions based on reflective architectures (see the sidebar
“Other Reflective Middleware Implementations”).

Open ORB and DynamicTAO illustrate two
opposite approaches to developing reflective systems
and, more specifically, reflective middleware. The
development of DynamicTAO started with TAO, a
complete implementation of a CORBA ORB that
was modular but static. Its developers reused tens of
thousands of lines of functional code and concen-
trated on adding reflective features to make the sys-
tem more flexible, dynamic, and customizable.
Conversely, Open ORB development started from
scratch, focusing on a novel middleware architecture
whereby all the elements are consistent with the prin-
ciples of reflection.

During the past few years, existing imple-
mentations of traditional middleware
have incorporated some of the innova-
tions produced through research in

reflective middleware. For example, CORBA now
includes a standard for portable interceptors. And
the Orbix2000 commercial ORB allows the specifi-
cation for such policies as security, transactions, and
communication, while supporting the dynamic
loading of new components, or plug-ins (see
www.iona.com). Despite the usefulness of these fea-
tures, support for customization and dynamic adap-
tation in mainstream middleware systems does not
cover all aspects of a platform’s life cycle. This limi-
tation is due mostly to the inherent black-box nature
of the technologies, limiting the extent elements of
the design can be opened and exposed to the pro-
grammer. 

Reflection, on the other hand, offers a truly
generic solution to the problem with a principled
approach to middleware design that yields openness.
Finally, reflection permits the manipulation and
adaptation of the different aspects of a platform in
ways not anticipated during its design.

The middleware community today should be dis-
cussing the architecture of next-generation middle-
ware technologies. Reaching an international
consensus in this area and working toward standards
for reflective middleware would be extremely bene-
ficial for researchers, software developers, system
administrators, and, ultimately, users.  
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