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Abstract—This paper presents the architecture and initial fea-
sibility results of a proto-type communication network that uti-
lizes genetic programming to evolve services and protocols as part
of network operation. The network evolves responses to environ-
mental conditions in a manner that could not be pre-programmed
within legacy network nodesa priori. A priori in this case means
before network operation has begun. Genetic material is ex-
changed, loaded, and run dynamically within an active network.
The transfer and execution of code in support of the evolution
of network protocols and services would not be possible without
the active network environment. Rapid generation of network ser-
vice code occurs via a genetic programming paradigm. Complex-
ity and Algorithmic Information Theory play a key role in under-
standing and guiding code evolution within the network.

Index Terms—Active Networks, Algorithmic Information The-
ory, Kolmogorov Complexity, Complexity Theory, Genetic Pro-
gramming, Self-Healing Networks.

I. I NTRODUCTION

AC tive networking is a novel approach to network archi-
tecture in which network nodes – switches, routers, hubs,

bridges, gateways etc. – perform customized computation on
packets flowing through them. The network is called an “ac-
tive network” because new computations are injected into the
nodes dynamically, thereby altering the behavior of the net-
work. Packets in an active network can carry fragments of
program code in addition to data. Customized computation is
embedded within the packets code, which is executed on the
intermediate network nodes.

Many active network components and services have been de-
signed, implemented, and are undergoing experimentation. The
ABone (Active Network Backbone) implements a relatively
large-scale (given the novelity of the technology) active net-
work (O(100) nodes). However, the fundamental science re-
quired to understand and take full advantage of active network-
ing is lagging behind the ability to engineer and build such net-
works. In fact, the current Internet, whose protocols were built
upon the ill-defined goal of simplicity are only slowly being
understood. An outcry from the Internet community, with its
carefully crafted, static protocol processing, with massive doc-
umentation (O(4000) Request for Comments) of passive (non-
executable) packets is that it is already “too” complex.

An adaptive fault tolerant system, no matter how resilient,
would unlikely receive acceptance by industry or the commu-
nity if it were considered “complex” in the colloquial sense.
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How can such systems, which require complexity to be adap-
tive, at the same time appear simple to understand and manage.
Are active networks really more complex than the current In-
ternet? Are adaptive applications built upon active networks
any more or less complex than the same applications built upon
the legacy Internet? Does a measure of complexity exist that
would allow an objective comparison to be made? What are the
benefits of an active network with respect to passive networks?
While these are extremely difficult questions to answer, this pa-
per attempts to lay the groundwork for answering these ques-
tions by proposing a complexity measure, Kolmogorov Com-
plexity, and proposing an adaptation mechanism, Genetic Pro-
gramming, based upon an analogy with biological systems.

Kolmogorov Complexity was applied in [1] as a measure of
potential algorithmic information content for use in prediction
and control of an active network. In the remainder of this paper,
the term complexity will be used to indicate a particular form
of complexity known as Kolmogorov Complexity. Kolmogorov
Complexity is a measure of the length of the smallest program,
such that, when executed upon a Universal Turing Machine, it
generates a particular string of bitsx. The length of such a
smallest programK(x) is the complexity of the bit-string,x.
It should be noted that research has been performed in the use
of genetic programming to evolve the smallest program for a
given bit-string, and thus estimateK(x). Complexity was ap-
plied in [1] to optimize the combined use of communication
and computation within an active network; to determine the
optimal amount of code versus data. It was shown that if the
Kolmogorov Complexity of the information related to the pre-
diction of the future state of the network is estimated to be high,
then the ability to develop code, representing the non-random,
or algorithmic portion, of that information is low. This results
in a low potential benefit for algorithmic coding of the informa-
tion; the benefit of having code within an active packet would
appear to be minimal in such cases. Conversely, if the com-
plexity estimate is low, then there is great potential benefit in
representing information in algorithmic form within an active
packet. In [1] it was suggested that if the algorithmic portion
of information changes often and impacts the operation of net-
work devices then active networking provides the best frame-
work for implementing solutions. This is precisely the case in
genetically programmed network services, a new class of ser-
vices that are not pre-defined but those that evolve themselves
in the network in response to the state of the network. In this
paper, we will restrict this class to those services that are pro-
grammatic solutions for perceived faults that occur in a net-
work. Further research is required to generalize this class to
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include other types of network services.
Frameworks for protocol and service composition have been

developed for active networks, one of which is well described
in [2]. Thoughts on the requirements for protocol and service
composition are also discussed in [3]. However, the work done
to date is lacking in that it does not address how active code will
be generated rapidly enough to make dynamic injection of the
code a significant factor. The argument against active and pro-
grammable networks is that, given enough time, memory, and
processing power, legacy systems could eventually contain all
the functionality that active networks could have injected. To do
this, legacy developers would have to knowa priori all possible
functionality that would be required in the network. However,
this paper demonstrates that it is possible for the network to
generate code rapidly and in a manner that can never be known
a priori for every possible condition. The inspiration for a ge-
netic algorithm based approach to solution composition comes
from nature in the form of the docking problem in molecular
biology [4], [5], [6]. Solutions that efficiently match a particu-
lar fault should be able to “dock” with the fault. Prediction for
successful docking in biology can be attempted by searching
for minimal energy or minimal geometric construction combi-
nations. Here we consider a genetic algorithm used to generate
a solution for the self-composition of solutions to mitigate net-
work faults. One goal of the experiment discussed later in this
paper is to study the relationship between complexity and so-
lution composition. In particular, it has been hypothesized that
the complexity of the fault and potential solution will decrease
as the optimal solution is composed. Specific examples of faults
that could be simulated are:

� Network mis-configuration
� Bandwidth and Processor mis-allocation
� Faults caused by Distributed Denial of Service and virus

attacks
� Poor Traffic shaping
� Routing problems
� Non-optimal fused data within the network
� Poor link quality in wireless and mobile environments
� Mal-composed protocol framework models in the network
� Poorly tuned components of network services
A simple fault, namely, mis-allocation of bandwidth and pro-

cessing capability resulting in packet jitter, has been chosen as a
working example. A fitness function defines a metric for “good-
ness” of a population. In this case, “goodness” is the reduction
in the variance of packet arrival times. The fault is represented
by the difference between the actual system and a minimum re-
quired fitness. Genetic material will evolve to minimize the ef-
fect of the fault. The complexity of the combined fault-solution
pair should be at a minimum when the fitness is optimal. We
will borrow a term from molecular biology and call a perfectly
matched fault and solution a successful “docking”.

II. COMPLEXITY AND EVOLUTIONARY CONTROL

Complexity and evolution are intimately linked. Kol-
mogorov Complexity (K(x)) [7] is the optimal compression of
string x. This incomputable, yet fundamental property of in-
formation has vast implications in a wide range of applications

including system management and optimization [8], [9], secu-
rity [10], [11], and Bioinformatics. Active networks [12] form
an ideal environment in which to study the effects of tradeoffs
in algorithmic and static information representation because an
active packet is concerned with the efficient transport of both
code and data. As noted in Figure 1, there is a striking similar-
ity between an active packet and DNA. Both carry information
having algorithmic and non-algorithmic portions. The algorith-
mic portion of DNA has transcription control elements as well
as the codons [13]. The active packet has control code and may
contain data as well.

Kolmogorov Complexity and Genetic Programming have
complementary roles. Genetic Programming has been used to
estimate Kolmogorov Complexity [14], [15]. Genetic Program-
ming benefits from Kolmogorov Complexity as a measure and
means of controlling not only the complexity, but the size and
generality of the result [16]. One of the most obvious uses for
complexity in networking is Programmatic Compression [17].
In this paper, the foundation is developed for the use of com-
plexity to enable the network to self-heal. In the next section, a
description of the Minimum Description Length algorithm and
its role in Active Networks is explained.

III. T HE APPLICATION OFCOMPLEXITY IN A

COMMUNICATIONS NETWORK

The goal of the system that has been implemented is to uti-
lize the benefit of an active network to automatically generate
solutions that bring the network back into line with a healthy
model of the system. The fitness function is used to describe
the desired outcome. The concept of molecular docking, men-
tioned previously, requires a more precise measurement of the
degree of “fit” in the docking of a fault and solution. In this
project, we are exploring the use of Kolmogorov Complexity,
estimated via the Minimum Description Length algorithm, as
the means to measure the fit between the fault and the desired
state. The next paragraph describes the Minimum Description
Length complexity estimator and its relationship to active net-
working.

Fig. 1. DNA and an Active Packet.

A question active network application developers must an-
swer is: “How can I best leverage the capabilities that active
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networks have to offer?” Because the word “active” in ac-
tive networks refers to the ability to dynamically move code
and modify execution of components deep within the network,
this typically leads to another question: “What is the optimal
proportion of content for an active application that should be
code versus data?” A method for obtaining the answer to this
question comes from direct application of Minimum Descrip-
tion Length (MDL) [18] to an active packet. LetDx be a binary
string representingx. LetHx be a hypothesis or model, in al-
gorithmic form, that attempts to explain howx is formed. Later
in this paper, we viewHx as a predictor ofx in the analysis of
Active Virtual Network Management Prediction. For now let
us focus on developing a measure of the complexity ofx. MDL
states that the sum of the length of the shortest encoding of a
hypothesis of two components will estimate the Kolmogorov
Complexity. The two components are the length of a model
generating stringx and the length of the shortest encoding of
x using the hypothesis. This can be represented mathemati-
cally asK(x) = K(Hx) + K(DxjHx). Note that error in
the hypothesis or model must be compensated within the en-
coding. A small hypothesis with a large amount of error does
not yield the smallest encoding, nor does an excessively large
hypothesis with little or with no error. A method for determin-
ing K(x) can be viewed as separating randomness from non-
randomness inx by “squeezing out” non-randomness, which is
computable, and representing the non-randomness algorithmi-
cally. The random part of the string, that is, the part remaining
after all pattern has been removed, represents pure randomness,
unpredictability, or simply, error. Thus, the goal is to minimize
l(He) + l(DxjHe) + l(E) wherel(x) is the length of stringx,
He is the estimated hypothesis used to encode the string (Dx)
andE is the error in the hypothesis. The more accurately the
hypothesis describes stringx and the shorter the hypothesis, the
shorter the encoding of the string. Choosing an optimal propor-
tion of code and data minimizes the packet length.

The proposed hypothesis is that the Kolmogorov Complex-
ity of a combined fault and solution description is minimized
when the optimal solution to mitigate the fault is composed.
A nearly trivial example can be seen with reverse code. As-
sume that fault data,F exists. Assume that the fault does not
erase data but merely transforms it. Define the algorithmic de-
scription of the fault dataPF (). The reverse code forPF ()
will be labeledRPF (). AssumePF () andRPF ()are minimal
length programs. Then,RPF (PF ()) = �, where� is the empty
set.RF is the data generated byRPF (). Since the fault does
not erase any data, the process is reversible [7] and therefore,
K(RF ) �K(F ) = 0. The equivalence in complexity ofRF
andF follows because there is no loss or gain of complexity
when the system is restored to a prior state using the anti-fault
processRPF ; there is no work performed. The algorithmically
reversed fault will be referred to as an anti-fault in this paper.

The descriptive complexity of the fault and the solution
should ultimately be as low as possible and the Minimum De-
scriptive Length algorithm can be used, among other complex-
ity estimators, as a technique to guide solution composition. In
fact, this is the case with reversible code. Complexity is impor-
tant information because it is an indicator of both the type of
fault and level of difficulty in correcting the fault and the sever-

ity of the fault; fault severity is important in triage operations
to optimize system health. Second, a more compact algorith-
mic representation of a fault will travel faster and more rapidly
through the network; it is an efficient format for alerting system
management and in triggering automated solutions. Third, it
can be relatively easy to reverse the code of an algorithm, pos-
sibly generating an anti-fault, or solution to a problem in certain
cases. Reversible code has been presented in previous work as
a mechanism for generating anti-messages in Time Warp simu-
lation [19].

Fault tolerant and self-healing systems should have the abil-
ity to self-compose solutions to faults. Ideally, composition
should be an inherent part of system operation, rather than a
structure imposed from “outside” the system. Genetic Algo-
rithms are on the path towards self-composing solutions, how-
ever genetic algorithms, as implemented today, require external
control to manipulate the genetic material. In other words, the
genetic algorithm itself must be programmed into the system;
if the genetic algorithm code failed, then the self-healing capa-
bility would fail. While this situation is not ideal, it is explored
as a possible step towards a truly self-healing system.

One of the contributions of this paper is the study of com-
plexity in genetic algorithms with the goal of eventually design-
ing self-composing solutions. Genetic algorithms are widely
known for their ability to find optimal solutions, avoiding lo-
cal extrema, by using evolutionary-like processes dependent
upon “random” mutation. Kolmogorov Complexity describes
the randomness of information. The Kolmogorov Complexity
of the genetic material during the evolution of a genetic algo-
rithm can be estimated and yields interesting clues about the un-
derlying physics of the information during its evolution towards
a fitness function. It is our hypothesis that, as the evolution
proceeds and the fitness level of the genetic material rises, the
complexity decreases. This result yields an interesting insight
that supports the hypothesis that “solutions” that self-compose
to mitigate a fault will tend to decrease in complexity.

IV. T HE GENETIC ALGORITHM

The goal of this study is to examine how complexity, specifi-
cally an estimate of Kolmogorov Complexity, relates to the evo-
lution of a self-composing solution. We consider a genetic algo-
rithm to be an approximation of a self-composing system. De-
tails on the operation of genetic algorithms can be found in [20],
[21], [22]. This paper assumes a basic understanding of genetic
algorithm operation and provides only a brief overview. In this
experiment a pre-existing Mathematica genetic algorithm pack-
age1 is used. The decision to use Mathematica was based upon
its combination of symbolic and arithmetic capabilities and be-
cause many of our research utilities, including Kolmogorov es-
timation functions are implemented in Mathematica.

The genetic algorithm package assumes a population of bi-
nary strings of preset size and whose values, when converted
to a float type, are between zero and one. Similarly, the fitness
function is assumed to accept and return values in the range
from zero to one. Fitness values closer to one are assumed

1Written by Mats G. Bengtsson National Defense Research Establishment
Box 1165, S-581 11 Linkoping Sweden email: matben@lin.foa.se
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indicate more highly optimized results. A genetic algorithm
consists essentially of three parts: selection, crossover, and mu-
tation. In selection, each string is selected with a probability
proportional to its fitness value. In crossover, a pair of selected
strings is determined, a position along the string is chosen at
random, and the right and left parts of each string are swapped.
In mutation, each gene is changed at random with a low proba-
bility, in this case a probability of0:002 was chosen based upon
repeated experimentation. Each individual is coded as a binary
string of length10 bits. This length provides the size neces-
sary to achieve numerical precision while being small enough
to allow a large population size and without excessive overhead.
The problem is limited to one-dimension with valuex, which
represents the real value of the bits in stringx, that varies from
zero to one. The first step is to create a random population. The
population is defined on the real axis from zero to one. The
random values are represented in the form of binary strings.
Next a fitness function is defined. It is defined in the interval
zero to one. The fitness function in this example is defined as
f(x) = sin(�x). Thus, binary representations of values that
are odd multiples of0:5 will have maximal fitness.

A. Kolmogorov Complexity

This section discusses a general approach for self-composing
solutions using lessons learned from the previous section. The
approach can be described as the automated generation of a so-
lution hypothesisHs = R(He � Hf ), that is, the reverse of
the algorithmic difference between the faulty and correct al-
gorithmic representation of behavior by controlled means. As
Hf deviates fromHe, complexity or heat as presented here, is
generated. In [8] the relationship between fault and energy is
explored and simulated (see [11], [10], [23] for recent work on
complexity and energy and Information Assurance). The moti-
vation for that experiment came from the relationship between
Kolmogorov Complexity and entropy. The definition and ap-
plication of Kolmogorov Complexity to vulnerability analysis
identified how Kolmogorov Complexity can be used to deter-
mine vulnerabilities in a system as areas of low complexity.
An underlying hypothesis of our work is that computation and
communication are fundamentally related through complexity
theory, and, thus, bandwidth and processing utilized in denial
of service are fundamentally interrelated. Low complexity data
or code consuming large amounts of bandwidth or processing
indicates the likelihood of an attack. A model of complexity
evolution within a closed system is described in reference [10].
That reference developed an abstract model with which to study
complexity, specifically Kolmogorov Complexity, of informa-
tion within an information system. That model exploresK(x),
a measurement of length in bytes, andK(x)=s, a measure of
the maximum increase in complexity of the system due to code
entering a system such as code carried by active packets. The
rate of complexity increase in terms of algorithmic active packet
complexity in units ofK(x)=s within the closed system was
measured. Significant changes in system complexity indicate
the presence of faults. Reference [24] reported the results of
Kolmogorov Complexity probes that detect Distributed Denial
of Service attacks.

An active network environment is used to emphasize that in-
formation assurance laws must be able to deal with many alter-
native and dynamically changing representations of informa-
tion. With regard to active packets and information theory,
passive data is simple Shannon compressed data, and active
packets are a combination of data and program code whose ef-
ficiency can be estimated by means of Kolmogorov Complexity
[25]. The active network Kolmogorov Complexity estimator is
currently implemented with a variety of compression estimators
ranging from simple empirical entropy to more complex algo-
rithms beyond the scope of this conference. The probe returns
an estimate of the smallest compressed size of a string. The
simplest estimator, trading accuracy for speed and low over-
head, is based upon computing the entropy of the weight of
ones in a string. Specifically it is defined in Equation 1 where
x#1 is the number of 1 bits andx#0 is the number of 0 bits
in the string whose complexity is to be determined. Entropy is
defined in Equation 2. See [25] for other measures of empiri-
cal entropy and their relationship to Kolmogorov Complexity.
The expected complexity is asymptotically related to entropy
as shown in Equation 3. Observe an input sequence at the bit-
level and concatenate with an output sequence at the bit-level.
This input/output concatenation is observed for either the entire
system or for components of the system. Low complexity in-
put/output observations quantify the ease of understanding by
a potential attacker. Previous work has demonstrated the use
of Kolmogorov Complexity for Distributed Denial of Service
(DDoS) attack detection [24].

K̂(x) = l(x)H(
x#1

x#1 + x#0
) + log2(l(x)) (1)

H(p) = �p log2 p� (1:0� p) log2(1:0� p) (2)

H(X) =
X

l(x)=n

P (X = x)K(x) (3)

Because Kolmogorov Complexity was originally derived for
the study of randomness, it is interesting to note that random-
ness plays a significant role in the operation of the genetic al-
gorithm itself. The initial genetic material should be generated
randomly. Selection of genes for mutation and crossover points
should also be done randomly. Finally, selection of gene pairs
is done randomly, but in proportion to their fitness value.

Given the randomly generated nature of the initial genetic
material, one would expect the complexity of the genetic mate-
rial to decrease as the genetic algorithm evolves. This is clearly
the case in the initial steep downward spike shown in Figure 2.
As the algorithm continues to evolve and the fitness of the ge-
netic material improves, one would expect structure and order
to appear. As mentioned earlier, in this specific case, the al-
gorithm encourages the growth of binary strings that represent
odd multiples of0:5.

Figure 3 shows the complexity, estimated as the compressed
size, of the genetic material as a function of evolutionary steps.
Compare with Figure 4, which shows the sum of the fitness
values as a function of evolutionary steps. The complexity de-
creases as the cumulative fitness function increases, then rises
again while evolution continues however, the fitness function
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Fig. 2. Complexity of Genetic versus Evolutionary Time Steps with Population
128.

does not significantly increase. The complexity measure seems
to indicate that the first optimal genetic composition was found
near evolution step 50. As the genetic algorithm continued
beyond that point, the genetic material became more complex
again with no corresponding benefit in fitness. This result was
unanticipated, but is plausible as new solutions evolve, with
varying complexity, attempting to maximize fitness.

Fig. 3. Cumulative Fitness Function of Genetic Material with Population128.

The cumulative fitness function results (multiplied by 10 to
shift upward for easier comparison with the estimated complex-
ity) are shown in Figure 4. Note that the points of high com-
plexity always coincide with points of low cumulative fitness.
Points of relatively low complexity correspond to high cumu-
lative fitness. Arrows point to the extrema in the cumulative
fitness function and estimated complexity that can be seen to
align with extrema in the fitness function. In particular, minima
in estimated complexity occur simultaneously with opposing
maxima in the fitness. This indicates an inverse relationship
between complexity and cumulative fitness extreme points.

Consider the complexity of the fitness function itself. The
fitness function is an algorithmic representation of the fitness of
a chromosome. The range resulting in maxima generated from
the fitness function forms a string that represents the target com-
plexity. In this particular genetic algorithm example, a solution
of 0:5 for all 128 members of the population would yield an
estimated complexity of611:3. This low a level of complexity
was never reached for two reasons: there are multiple optimal
solutions, namely odd multiples of0:5, and the algorithm never

Fig. 4. Complexity and Fitness Comparison.

exactly achieved odd multiples of0:5, but rather approximately
close values. The remaining sections discuss how these con-
cepts have been implemented to construct a fault tolerant net-
work.

B. Towards a Self-Evolving Network System

Other papers from the Imperishable Networks Project have
developed complexity-based techniques for fault detection and
identification as discussed in [26] and [9]. The focus of this
report is on progress towards self-composition of solutions as-
suming that other techniques, particularly complexity-based
techniques, have identified faults. A problem with the genetic
algorithm-based approach as previously described for use as a
self-evolving system is that control is generally external to the
genetic material and the genetic material is generally consid-
ered to be passive data. Instead the genetic material should be
capable of being algorithmic information, that is, program code
or objects. In addition, each chromosome, as an object, should
contain the necessary capability to run the genetic algorithm.
This would allow for a highly distributed and robust genetic
algorithm capable of fault mitigation where the fault is repre-
sented through the fitness function.

A criticism of this approach might be that a genetically-
engineered protocol stack will create a complex framework that
will be difficult to understand and maintain. However, our ap-
proach is to compose the framework from simple components.
Each of these components will be individually verifiable with
respect to its properties and actions. As the components are
arbitrarily composed to form a protocol stack, some protocol
stacks may be generated that violate the principles of safety,
consistency and correctness. One way to approach this is to
define a fitness function that verifies the suitability of the stack
with respect to the properties desired. Any mis-configured pro-
tocol stacks are automatically eliminated from consideration if
the fitness function is carefully defined to check for the above-
mentioned properties. However, this might make the definition
of the fitness function itself cumbersome as every possible stack
composition property will have to known a priori and an appro-
priate fitness “filter” defined. This will lead to a loss of ele-
gance in the fitness function definition and consequently poor
maintainability. A better approach would be to define syntactic
and certain semantic composition properties in the individual
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components themselves, possibly in the form of logical expres-
sions. These expressions will enforce constraints on the behav-
ior of the components, which can be verified at run-time. The
run-time system will embed a theorem-prover, which can be ei-
ther a full-blown prover like PVS, NuPrl or SPIN or a reduced
version of one, to systematically verify properties during com-
position itself. This reduces the burden on the programmer to
define a proper fitness function that can catch and eliminate all
types of composition errors.

C. Approach

Genetic material begins in a random state (M ), and con-
verges to the complexity of the optimal value produced by the
fitness function. This enables true solution composition from
a wide range of possible solutions. One problem with this ap-
proach is the time required evolving towards a feasible solu-
tion. Another problem is the fitness function itself has to be
self-generated in some manner. Using Active Virtual Network
Management Prediction [12], the fitness function exists in the
form ofHe whereHe is the estimated correct operation hypoth-
esis of the system as described in [1].

In summary, the experiment in this section has shown a rela-
tionship among fitness, complexity, and the evolution of genetic
material. Complexity estimation probes have been embedded in
the General Electric Global Research Center Active Network
test-bed for use in security experimentation. The next section
explains the framework developed to utilize the same complex-
ity probes described in [24] to control the evolution of a genetic
program within the active network. This makes the network
highly resilient to faults by enabling the capability to adapt in a
wide variety of ways.

V. GENETIC NETWORK PROGRAMMING ARCHITECTURE

The Magician Active Network [12] overlay network is used
to test the feasibility of the genetically programmed network
service concept. An active packet representing the nucleus (as-
suming network nodes are like eucaryotes- cells containing nu-
clei) is injected into all the ‘network nodes. The nucleus con-
tains a population of chromosomes– strings of functional units.
Operation of Genetic Network Programming begins with the in-
jection of basic building blocks, known as functional units, into
the network as shown in Figure 5. Currently, this “genetic ma-
terial” is flooded into each active node. However, the material
will remain inactive in each active node until a fitness function
is injected into the network. Receipt of a fitness function will
cause evolution to proceed.

Functional units are very small pieces of code blocks that
perform simple, well-defined operations upon an active packet.
Examples of functional units areDelay, Split, Join, Clone, and
Forward. There is also aNull functional unit whose use is
explained later. Chromosomes are strings of functional units
as shown in Figure 6. Once a chromosome is assembled, the
codons can be translated into Amino Acids at the Ribosomes. In
other words, the string of functional units will operate upon ac-
tive packets from other applications (or other functional units)
that traverse through the node. The chromosome is represented

Fig. 5. Injection of the Nucleus.

Fig. 6. Functional Units, Evolution, and Fitness.

in the code in a form similar to a Lisp symbolic expression, for
example:((Null Join Split) (Delay Split Join Delay)).

Mutation and recombination occur among a population of
genes. Mutation is a probabilistic change of a functional unit
to another functional unit. Recombination is the exchange of
chromosome sections from two different chromosomes. In Fig-
ure 7, a close-up of a single node can be seen containing a very
short chromosome strand.

A single incoming traffic stream, as shown in Figure 8 enter-
ing the center node, is split into multiple streams. Each stream
is processed by a different chromosome. Note that currently in
our implementation, the full traffic stream is split along each
chromosome, however, it is hypothesized that traffic sampling
could be used to reduce the overhead in creating the multiple
streams.

As shown in Figure 9, fitness functions can be designed to
measure quality at different layers of the traditional protocol
stack. In this particular case, fitness measures are shown at the
Transport, Network, and Link Layers. As a particular example,
jitter control might have a fitness function that minimized per
frame variance at the Link Layer. The Network Layer would
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Fig. 7. Single Node Genetic Programming Architecture.

Fig. 8. Breeding Traffic Streams.

attempt to maximize packet arrives at the destination in the rea-
sonable time period, that is perform the routing function. The
Transport Layer would have a fitness function that attempts to
minimize end-to-end packet variance. The key is that each of
these fitness functions need to work together towards reaching
the stated goal in a reasonable manner. More will be said about
the fitness function later.

In Figure 10, recombination can occur both within a node or
between two nodes. In addition, as shown in Figure 11, chang-
ing the route of a packet also effectively accomplishes a recom-
bination because the packet processing will be dependent upon
the genetic material at each node traversed.

A key component of the evolutionary process is the fitness
function. Fitness functions are “user” defined and injected into
the network to control the evolution of the genetic population.
For example, in our initial tests, minimizing variance in trans-
mission time was used as a simple fitness function. However,
initial experiments quickly demonstrated that the design of the
fitness function is the most critical element. It reminds one of
the saying, “Be careful of what you pray for..., because you
might get it.” Often the fitness was achieved, but in ways that

Fig. 9. Multiple Levels of Fitness.

Fig. 10. Recombination Levels.

Fig. 11. Chromosomes and Routing.
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were unexpected and sometimes detrimental to the intended op-
eration of the network. As a trivial example, the variance can
be minimized by slowing the traffic to a near halt. Thus, a low
latency term had to be added to the jitter control fitness func-
tion.

A. Genetically Programmed Active Network Jitter Control

As a feasibility test, an adaptive jitter control mechanism was
developed on a fixed, wired active communication network hav-
ing the topology shown in Figure 11. The genetic algorithm was
implemented as an active application in the Magician Active
Network Execution Environment [12]. Packets originate from
the left-most node in Figure 11 and are destined for the right-
most node in the figure. The dominant contributors to packet
link transit time variability given the topology shown in Figure
11 are the fact that the active network is an overlay network that
has unspecified lower-layer traffic and that packets are loaded
and executed within a Java Virtual Machine residing in each
node and are subject to Java garbage collection which runs at
unspecified times.

The fitness function on all nodes returns a greater fitness as
the result of a Simple Network Management Protocol query of
an Object Identifier that measures packet link transfer time vari-
ance on the destination node is minimized. As previously men-
tioned, the fitness function is itself an active packet that consists
of an objective function. The function is highly general and can
be comprised of any mathematical function of accessible met-
rics.

Figures 12 through 14 show packet link transit variance
through three of the chromosomes on the destination node and
Figure 15 shows packet link transit variance without any jit-
ter control mechanism at the destination node. Initial observa-
tion of the graphs shows that, overall, particularly as time pro-
gressed, the Chromosomes significantly reduced packet transit
variance.

Fig. 12. Packet Link Transit Variance (milliseconds2) on Destination Node
Through Chromosome One.

Another observation of the experimental data is that the ge-
netically programmed transit variance was initially worse than
transit variance without any control mechanism. The reason for
this is that the chromosomes begin operation with a random set
of functional units and require time to converge to an optimal
value.

Fig. 13. Packet Link Transit Variance (milliseconds
2) on Destination Node

Through Chromosome Two.

Fig. 14. Packet Link Transit Variance (milliseconds
2) on Destination Node

Through Chromosome Three.

Fig. 15. Packet Link Transit Variance (milliseconds2) on Destination Node
Without Jitter Control.
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VI. SUMMARY

This report has shown that a genetic algorithm shows sud-
den decreases in complexity of the population between gener-
ations as the algorithm evolves in response to the fitness func-
tion. Lower complexity correspond to greater homogeneity in
the population and greater fitness to the chosen criterion. Thus
it can be clearly seen that complexity can be used as one indica-
tor of progress in evolution of the genetic algorithm. A frame-
work for testing the injection of fitness functions into an active
network that evolves solutions via a genetic programming tech-
nique has been implemented. Future work involves testing the
response time to heal and the resiliency of the network in the
presence of faults.
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APPENDIX

Jitter Control: A Simple Test Case
While a priori techniques have been developed for jitter con-

trol in legacy networks, jitter control forms a simple, easily
measured and controlled application for the network genetic
programming technique. The functional units injected into the
network should allow evolution of a variety of interesting so-
lutions to reduce variance, including adding delays, forward
along different paths, or perhaps new ideas that have not been
thought of yet.
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