Strong Replica Consistency for Fault-Tolerant CORBA Applications

P. Narasimhan, L. E. Moser and P. M. Melliar-Smith
Department of Electrical and Computer Engineering
University of California, Santa Barbara, CA 93106. USA.

priya®@alpha.ece.ucsb.edu, moser@ece.ucsb.edu, pmms @ece.ucsb.edu

Abstract

The Eternal system provides transparent fault tolerance for
CORBA applications, without requiring modifications to the ap-
plication or the ORB, and without requiring special skills of
the CORBA application programmers. Eternal maintains strong
replica consistency as replicas of objects perform operations,
and even as they fail and are recovered. Eternal implements the
new Fault Tolerant CORBA standard.

1 Introduction

The Common Object Request Broker Architecture (CORBA)
112] middleware supports applications that consist of objects
distributed across a system, with client objects invoking server
objects, which return responses to the client objects after per-
forming the requested operations. CORBA’s Object Request
Broker (ORB) acts as an intermediary in the communication be-
tween a client object and a server object, shielding them from
any differences in their programming languages and their phys-
ical locations. CORBA’s TCP/IP-based Internet Inter-ORB Pro-
tocol (IIOP) sustains this communication even if the client ob-
ject and the server object use different operating systems, byte
orders and hardware architectures.

The Eternal system [9] enhances CORBA by providing fault
tolerance for CORBA applications, without requiring the appli-
cation programmer (0 be concerned with the difficult issues of
fault tolerance. The value of Eternal in developing fault-tolerant
CORBA applications lies in the transparency of its approach,
i.e., neither the application code nor the CORBA middleware
needs to be modified to benefit from Eternal’s fault tolerance.
The transparency of Eternal allows existing CORBA applica-
tions to be rendered fault-tolerant easily and quickly, by appli-
cation programmers who have no special experience or training
in fault tolerance.

Another key feature of Eternal is that it provides strong
replica consistency, even as objects and the processors that host
them fail, even as object receive and process invocations, and
even as objects are created and destroyed.

2 Strong Replica Consistency

Eternal provides fault tolerance for CORBA applications by
replicating the objects of the application. The purpose of repli-
cation is to provide multiple, redundant, identical copies, or
replicas, of an object so that the object can continue to pro-
vide useful services, even though some of its replicas fail, or
as the processors hosting some of its replicas fail. The essence
of replication is that the replicas of an object must be consistent
1n state. :

10

0-7695-1068-X/01 $10.00 © 2001 IEEE

For ensuring strong replica consistency, Eternal requires ap-
plication objects to be dererministic (or to be rendered deter-
ministic) in their behavior so that if two replicas of an object
start from the same initial state, and have the same sequence
of messages applied to them, in the same order, then the two
replicas will reach the same final state. In cases where the
application is inherently non-deterministic, e.g., the applica-
tion uses system-specific or processor-specific functions, Eter-
nal provides mechanisms to identify and “sanitize” such sources
of non-determinism, thereby rendering the application deter-
ministic from the viewpoint of replication. The different compo-
nents of Eternal interact to address the challenges in maintaining
strong replica consistency.

e Ordering of operations. All of the replicas of each repli-
cated object must perform the same sequence of operations
in the same order to achieve replica consistency. Eter-
nal achieves this by exploiting a reliable totally-ordered
multicast protocol for conveying the TIOP invocations (re-
sponses) to the replicas of a CORBA server (client).

o Duplicate operations. Replication, by its very nature, can
lead to duplicate operations. For example, if every replica
of a three-way replicated client object invokes a method of
a replicated server object, every server replica will receive
three copies of the same invocation, one from each of the
client replicas. Eternal ensures that such duplicate invoca-
tions (responses) due to a replicated client (server) object
are filtered so that the server (client) object receives only a
single copy of every distinct invocation (response).

o Recovery. When a new replica is activated, or when a
failed replica is recovered, before it can start to operate,
it must have the same state as the other replicas of the ob-
ject. Eternal retrieves the state from an existing operational
replica of the object, and transfers the state to the new or
recovering replica before making it operational.

e Multithreading. Replicas of a multithreaded CORBA ob-
ject may become inconsistent if the threads, and the oper-
ations that they execute, are not carefully controlled. For
multithreaded ORBs or objects that allow the simultaneous
execution of multiple operations, Eternal provides mech-
anisms to ensure strong replica consistency, regardless of
the multithreading of the ORB or the application.

3 Architecture of the Eternal System

Eternal’s OMG-compliant fault tolerance infrastructure consists
of components above the ORB and mechanisms below the ORB,

Replication :
Manager

Client
Replica

CORBA ORB

5 Platform

CORBA Application

IIOP Messages

Reliable
Totally Ordered
Multicast Messages

Server
Replica

CORBA ORB

Platform

Figure 1. Eternal’s OMG-compliant fault tolerance infrastructure, consisting of components above and below the ORB.

as shown in Figure 1. Because Eternal’s components above the
ORB are composed of CORBA objects, they can also be repli-
cated (just as the application’s CORBA objects are) by Eternal,
with an adequate number of replicas distributed across the pro-
cessors in the system. On the other hand, Eternal’s Mechanisms,
underneath the ORB, are composed of non-CORBA C++ ob-
jects. and must be present on every processor that is to host
replicated objects.

Using Eternal’s fault tolerance infrastructure, both client and
server objects of the CORBA application can be replicated, with
the replicas distributed across the system. Eternal supports dif-
ferent replication styles — active, cold passive and warm pas-
sive replication — for every application object. To facilitate
replica consistency, the Eternal infrastructure conveys the IIOP
messages of the CORBA application using the reliable totally-
ordered multicast messages of the underlying Totem system [8].

The Replication Manager component replicates each applica-
tion object, according to user-specified requirements, and dis-
tributes the replicas across the system. The Fault Detector com-
ponent detects the failure of replicas, objects and processors in
the system. The Fault Notifier component uses the information
gathered by the Fault Detector to notify other interested com-
ponents of faults that have occurred in the system. The Repli-
cation Manager, the Fault Detector and the Fault Notifier are
themselves implemented as collections of CORBA objects and,
thus, can benefit from Eternal’s fault tolerance.

The Interceptor captures the ITOP messages (containing the
client’s requests and the server’s replies), which are intended
for TCP/IP, and diverts them instead to the Replication Mecha-
nisms for multicasting via Totem. The Replication Mechanisms,
together with the Recovery Mechanisms, maintain strong con-
sistency of the replicas, detect and recover from faults, and sus-

11

tain operation in all components of a partitioned system, should
a partition occur.

The types of faults tolerated by Eternal, and the underlying
Totem systern, are communication faults, including message
loss and network partitioning, and processor, process and ob-
ject faults. Eternal can also tolerate arbitrary faults [10] by ex-
ploiting protocols with more stringent guarantees than Totem
provides.

3.1 Replication Management

To manage the replication of an object, Eternal employs the no-
tion of an object group, where the members of the group cor-
respond to the replicas of an object. In Eternal, both client
and server objects can be replicated and, thus, constitute object
groups.

The Replication Manager is a crucial component of the Eter-
nal’s fault tolerance infrastructure, and handles the creation,
deletion and replication of both the application objects and the
infrastructure objects. The Replication Manager component
replicates objects, and distributes the replicas across the system.
Although each replica of an object has an individual object ref-
erence, the Replication Manager component fabricates an object
group reference for the replicated object that clients use to con-
tact the replicated object. The Replication Manager’s function-
ality is achieved through the Property Manager, Generic Factory
and Object Group Manager components.

The Property Manager component allows a user to assign val-
ues to a number of fault tolerance properties for every applica-
tion object that is to be replicated. Eternal provides the user
with the flexibility to configure the replication of every appli-
cation object by assigning the values of various fault tolerance
properties, including:

Actively Replicated
Server Object B

Actively Replicated
Client Object A

It T o :
' Etemnal |- | Etemal ' ! Etemal 'i | Etemal ,, ' Etemnal !
A A v) A EY Zi

Reliable multicast messages

A4

Dupilicate responses

Duplicate invocation suppressed

suppressed

(a)

Passively Replicated Passively Replicated

Client Object A Server Object B
y Replica’z - . .- Replica 1 Replica 2 Replica'3 . .
(Primary) {Primary} (Backup) (Backup) -~

A

r 1
; Eternal |

A S

i Reliable multicast messages

State Transfer

(b)

Figure 2: Two of the Replication Styles supported by the Eternal system (a) active replication and (b) warm passive replication.

Replication Style — stateless, actively replicated, cold pas-
sively replicated or warm passively replicated. Eternal’s
support for active replication and warm passive replication
are shown in Figure 2.

Membership Style — addition, or removal. of an ob-
ject’s replicas is application-controlled or infrastructure-
controlled.!

Consistency Style — replica consistency (including recov-
ery. checkpointing, logging, etc.) is application-controlled
or infrastructure-controlled.

Factories — objects that create and delete the replicas of the
object.

Initial Number of Replicas — the number of replicas of the
object to be created initially.

Minimum Number of Replicas — the number of replicas
of the object that must exist for the object to be sufficiently
protected against faults.

Checkpoint Interval — the frequency at which the state of
an object is 10 be retrieved and logged for the purposes of
recovery.

The Generic Factory component allows users to create repli-
cated objects in the same way that they would normally create
unreplicated objects. The Generic Factory interface is inher-
ited by the Replication Manager component to allow the appli-
cation to invoke the Replication Manager directly to create and
delete replicated objects. When asked to create a replicated ob-

_ ject through its Generic Factory interface, the Replication Man-
ager component, in turn, delegates the operation to the factories
on the processors where the individual replicas of the object are
to be created.

The Object Group Manager component allows users to con-
trol directly the creation, deletion and location of individual
replicas of an application object. While this violates replication
transparency (because the user is explicitly aware of the replicas
of an object), and must be used with care to ensure replica con-
sistency, it is useful for expert users who wish to exercise direct
control over the replication of application objects.

Infrastructure-controlled Membership Style, in conjunction
with infrastructure-controlled Consistency Style, is favored for
the development of fault-tolerant CORBA applications, because

“Infrastructure-controlled” is equivalent to “Eternal-controlled”.

12

it provides the maximal ease of use and transparency to the
application, with the assurance of strong replica consistency,
which the Eternal infrastructure maintains under both fault-free
and recovery conditions.

3.2 Fault Detection and Notification

The Fault Detector component is capable of detecting host, pro-
cess and object faults. Each application object inherits a Mon-
itorable interface to allow the Fault Detector component to
determine the object’s status. The Fault Detector component
communicates the occurrence of faults to the Fault Notifier.

On receiving reports of faults from the Fault Detector compo-
nent, the Fault Notifier component filters them to eliminate any
inappropriate or duplicate reports. The Fault Notifier component
then distributes fault event notifications to all of the objects that
have subscribed to receive such notifications. The Replication
Manager component is one such subscriber.

Eternal allows the user to influence fault detection for an ob-
ject through the following fault tolerance properties:

e Fault Monitoring Style — the object is monitored by pe-
riodic “pinging” (pull monitoring) of the object or, alter-
natively, by periodic “i-am-alive” messages (push monitor-
ing) sent by the object.

Fault Monitoring Granularity — the replicated object is
monitored on the basis of an individual replica. a location,
or a location-and-type.

Fault Monitoring Interval - the frequency at which an
object is to be “pinged” to detect if it is alive or has failed.

As shown in Figure 3, the Fault Detection framework can be
structured in a hierarchical way, with the global replicated Fault
Detector component triggering the operation of local fault detec-
tor components located on each processor. Any faults detected
by the local fault detectors are reported to the global replicated
Fault Notifier component. The Replication Manager, being a
subscriber of the Fault Notifier component, receives reports of
any faults that occur in the system, and can initiate appropriate
actions to enable the system to recover from the faults.

3.3 Interception

The Eternal Interceptor is a non-ORB-level, non-application-
level component that transparently “attaches™ itself to every ex-
ecuting CORBA object, without the object’s knowledge or the

Property Object Group
Manager Manager
Generic
Factory
|
|
AN]J::—
[
Invoked by !
Application Fault
Replication fault notifications Notifier “
Manager . Fault
I Detector
”M T~ < Uping's

Local
Fault
Detector

T

| Fault .
Detector

ht

| ORB

ORB ORB
g | Intekl;cei)t;!‘ l Interceptoxj

Repllcanonﬁdmmﬁl | ReplicationMechanisms|
i Mecl;axgxis;— ‘ : mﬁis;— H :

Gateway
Component

TCP/IP

Reliable multicast

Figure 3: Interaction between Eternal’s components below the ORB and above the ORB.

ORB’s knowledge, and that can modify the object’s behavior as
desired. The advantage of Eternal’s Interceptor, located under-
neath the ORB, is not only its transparency to the ORB and to the
application, but also its implementation in an ORB-independent
manner. This ORB independence allows Eternal to be used with
many different ORBs without modifying, or even having access
to, the ORB’s code.

Current operating systems provide hooks that can be ex-
ploited to develop components such as interceptors. With the
Unix operating system, at least two possible implementations
of interceptors exist. The first of these approaches, the /proc-
based implementation, provides for interception at the level of
system calls. The second approach, the library interpositioning
implementation (also possible on Windows NT), provides for in-
terception at the level of library routines. While the techniques
differ, the intent and use of the interceptor in both cases is iden-

tical, and requires no modification of the intercepted CORBA
objects, the ORB or the operating system.

The specific system calls to redefine in a /proc-based imple-
mentation or the specific library routines to redefine in a library-
interpositioning implementation, depend on the extent of the in-
formation that the interceptor must extract (from the ORB or the
CORBA application) to enhance the application with new fea-
tures. The interceptor may capture all, or a particular subset, of
the system calls or library routines used by the CORBA appli-
cation, depending on the feature being added.

Eternal’s Interceptor currently employs the library interposi-
tioning approach, because of its lower overheads and ease of
deployment with various ORBs. The system calls, or library
routines, of interest to Eternal are those associated with the com- -
munication of CORBA’s IIOP messages. Because the ORB con-
veys the IIOP messages over TCP/IP, Eternal’s Interceptor cap-

13

tures, and redefines, the routines related to TCP/IP communi-
cation. The redefinition of these routines allows the Interceptor
to divert the captured IIOP messages to the Eternal Replication
Mechanisms.

3.4 Replication Mechanisms

The interaction between Eternal’s components above the ORB
and Eternal’s Mechanisms below the ORB, is captured in Fig-
ure 3. To facilitate replica consistency, Eternal’s Replication
Mechanisms (underneath the ORB) convey the IIOP messages
of the CORBA application using the reliable totally-ordered
multicast messages of the underlying multicast group commu-
nication protocol [8].

Eternal’s Replication Mechanisms perform different opera-
tions for the different replication styles, as shown in Figure 2.
For an actively replicated server (client) object, each replica
responds to (invokes) every operation. Thus, the Replication
Mechanisms deliver every TIOP invocation (response) intended
for a replicated server (client) to every server (client) replica
through the Interceptor. For active replication, the failure of a
single active replica is masked due to the presence of the other
active replicas that are also performing the operation.

For a passively replicated server (client) object, only one of
the replicas, designated the primary, responds to (invokes) ev-
ery operation. The remaining replicas of the object are referred
to as the backup replicas. The Replication Mechanisms deliver
every IIOP invocation (response) only to the primary replica of
a passively replicated server (client) object. In the case of warm
passive replication, the backup replicas are synchronized peri-
odically with the primary replica. In the case of cold passive
replication, the backup replicas are not loaded, but Eternal pe-
riodically retrieves, and stores in a log, the state of the primary
replica. In the event that the primary replica fails, one of the
backup replicas takes over as the new primary replica.

3.5 Logging and Recovery

Every replicated CORBA object can be regarded as having
three kinds of state: application-level state (known to, and
programmed into the object by, the application programmer)
ORB-level state (maintained by the ORB for the object) and
infrastructure-level state (invisible to the application program-
mer and maintained for the object by Eternal). Application-level
state is typically represented by the values of the data structures
of the replicated object. ORB-level state is vendor-dependent
and consists of the values of the data structures (last-seen re-
quest identifier, threading policy, etc.). Infrastructure-level state
is independent of, and invisible to, the replicated object as well
as to the ORB, and involves information that Eternal maintains
for consistent replication.

Eternal’s Logging-Recovery Mechanisms ensure that all of
the replicas of an object are consistent in application-level,
ORB-level and infrastructure-level state. State transfer to a new
or recovering replica includes the transfer of application-level
state to the new replica, ORB-level state to the ORB hosting
the new replica, and infrastructure-level state to the Logging-
Recovery Mechanisms that manage the new replica.

To enable application-level state to be captured, every repli-
cated CORBA object must inherit from an interface that con-
tains methods for retrieving and assigning an object’s state. The
interface accesses the object’s state in its entirety. The Logging-

14

Recovery Mechanisms invoke this interface to retrieve, or check-
point, the application object’s state. In the case of warm pas-
sive replication, the Logging-Recovery Mechanisms checkpoint
the primary replica’s state periodically, and transfer the check-
pointed state to the backup replicas. In the case of cold passive
replication, the Logging-Recovery Mechanisms store the check-
pointed state of the primary replica into a log for restoring the
state of a new primarys should the existing primary fail. The
frequency of checkpointing is determined on a per-group basis,
by the user at deployment time, when the other fault tolerance
properties (number of replicas, location of replicas, etc) are also
assigned their values.

Because the state retrieval from an existing (primary) active
(passive) replica occurs at a different point in the message se-
quence from the assignment of the retrieved state to the new
(backup) active (passive) replicas, the Logging-Recovery Mech-
anisms at the state retrieval and assignment locations must syn-
chronize the retrieval and state assignment messages. Further-
more, the Logging-Recovery Mechanisms must enqueue all new
invocations and responses that arrive for a replica while its state
is being assigned.

The Logging-Recovery Mechanisms on a processor are re-
sponsible for storing the invocations, responses and state check-
points of the replicas hosted on that processor. Typically, differ-
ent object groups exist on a processor and, thus, the Logging-
Recovery Mechanisms maintain a single physical log per pro-
cessor, with the log being indexed by the object group identifier.

Each entry in the log is a log record that contains a received
IIOP message along with a special Eternal-specific header as-
sociated with the IIOP message for duplicate detection, garbage
collection of the log, etc. The records are stored in the log as
they arrive at the Logging-Recovery Mechanisms, through the
totally ordered message sequence provided by the underlying
multicast protocol.

Because the Logging-Recovery Mechanisms have access to
the log, they are in a position to match up responses with their
corresponding invocations and to detect and suppress duplicate
invocations, responses and state transfer messages. To enable
incoming response messages to be matched with their corre-
sponding invocations, the Logging-Recovery Mechanisms in-
sert an invocation (response) identifier into the Eternal-specific
header for each outgoing IIOP invocation (response) message.
For an outgoing response, the Logging-Recovery Mechanisms
“remember” and reuse a portion of the invocation identifier as-
sociated with the invocation that resulted in this response. The
portion of the invocation identifier that is reused in its counter-
part response identifier is the operation identifier, which repre-
sents the operation consisting of the invocation-response pair.

By exploiting the unique totally-ordered sequence numbers
that Totem assigns to each message that it delivers, the Logging-
Recovery Mechanisms on different processors ensure that they
always assign the same unique operation identifier for each dis-
tinct operation. Also, by performing the duplicate detection
and suppression to every incoming message that they receive,
the Logging-Recovery Mechanisms ensure that the target appli-
cation objects receive only one copy of every distinct invoca-
tion or response intended for them. Furthermore, the Logging-
Recovery Mechanisms perform the duplicate detection before
recording messages in the log; thus, the log is a sequence of
non-duplicate log records.

Replica of 2
CORBA Object

N4

 Interceptor

—

Recovery’ . Repii;_:‘atidnv
Mechanisms Mechanisms
| v _—

‘————-—‘” 1IOP Message : {
4 [T
Ovemti
ontifior Y
Reliable
Multicast
(a)

Replica of a
CORBA Object

RN £

- Interceptor . . |

THOP Message

— 7] [noemenge -
Rccbvéry g
Mechanisms:

[

Rephcauon .
. “Mechanisms

Non-duplicate
Messages

-

TIOP Message,

Duplicate - i
MR o [o
|
A\
. Reliable
Multicast

(b)

Figure 4: Interaction between Eternal’s mechanisms below the ORB for (a) outgoing messages and (b) incoming messages.

4 Consistency under Multithreading

Many commercial ORBs arc multithreaded, and multithreading
can yield substantial performance advantages. Unfortunately,
the specification of multithreading in the CORBA standard does
not place any guarantee on the order of operations dispatched
by a multithreaded ORB. In particular, the specification of the
Portable Object Adapter (POA), which is a key component of
the CORBA standard. provides no guarantees on the POA’s dis-
patching of requests to threads. The ORB/POA may dispatch
several requests for the same object within multiple threads at
the same time.

In addition to ORB-level threads, the CORBA application
may itself be multithreaded, with the thread scheduling hav-
ing been determined by the application programmer. The ap-
plication programmer must ensure correct sequencing of opera-
tions and must prevent thread hazards. Careful application pro-
gramming can only ensure thread-safe operations within a single
replica of an object: however, it does not guarantee that threads
and operations are dispatched in the same order across all of the
replicas of the object.

Thus, to preserve replica consistency for multithreaded ob-
jects, the Eternal system enforces deterministic behavior across
all of the replicas of a multithreaded object by controlling the
dispatching of threads and operations identically within every
replica through a deterministic operation scheduler.

The scheduler dictates the creation, activation, deactivation
and destruction of threads, within every replica of a multi-
threaded object, as required for the execution of the current op-
eration “holding” the logical thread-of-control. Exploiting the
thread library interpositioning mechanisms of Eternal’s Inter-
ceptor, the scheduler can transparently override any thread or

operation scheduling performed by either the nondeterministic
multithreaded ORB within the replica, or by the replica itself.
Based on this incoming totally ordered sequence of messages,
the scheduler at each replica decides on the immediate delivery,
or the delayed delivery, of the messages to that replica. At each
replica, the scheduler’s decisions are identical and, thus, opera-
tions and threads are dispatched identically at each replica, en-
suring determinstic operation across all replicas of the object.

4.1 Implementation and Performance

The current implementation of Eternal’s fault tolerance in-
frastructure provides transparent fault tolerance to unmodified
CORBA applications running over the following unmodified
commercial implementations of CORBA over standard operat-
ing systems (Solaris 2.x, Red Hat Linux 6.0 and HP-UX 10.20):

o VisiBroker from Inprise Corporation

Orbix from Iona Technologies

¢*ORB and CORBAplus from Vertel (previously Exper-
soft)

ORBacus from Object-Oriented Concepts, Inc.

TAO from Washington University, St. Louis

omniORB2 from AT & T Laboratories, U.K.

ILU from Xerox PARC

The efficient Totem multicast group communication protocol
allows Eternal to provide fault tolerance with minimal overhead.
Using Eternal, for Solaris 2.x on 167Mhz SPARC workstations
connected by a 100Mbps Ethernet, when application objects
are actively replicated, test applications typically incur only a
10% increase in round-trip invocation time, compared with their
unreplicated unreliable counterparts. For RedHatLinux 6.0 on

15

Unreplicated client
and server objects
(without Eternal)

g

g

Actively replicated
client and server objects
(with Etemal)

g

Throughpul measured at the server (invocations/sec)
"
8

0 L . L i n L i
50 100 150 200 250 300 350

Interval berween invocations measured at the client (microseconds)

400

(a)

Time to recover the replica (ms)

o
&

-y
3

@
o

o
<

Iy

[

5

3

"
a

w
=]

L . . .
15 2
Size of application-level state for areplica (bytes)

(b)

s
5

Figure 5: (a) Throughputs obtained for an unreplicated application (without Eternal) and its three-way actively replicated coun-
terpart (with Eternal), and (b) Variation of the recovery time for a server replica with the size of the replica’s application-level

state.

400Mhz Intel Pentium processors connected by a 100Mbps Eth-
ernet, this overhead reduces to 3%.

To measure the performance of Eternal, we used a simple test
application developed with the VisiBroker 3.2 ORB. The mea-
surements were taken over a network of six dual-processor 167
MHz UltraSPARC workstations, running the Solaris 2.5.1 oper-
ating system and connected by a 100 Mbps Ethernet. The graph
in Figure 5(a) shows the throughput obtained for the three-way
active replication of both the client and the server objects us-
ing Eternal, as compared with the throughput obtained for the
unreplicated client and server objects without Eternal.

The performance of the Eternal system during the recovery
of a new or failed replica of an object is shown in Figure 5(b).
The graph shows the time to recover a server replica in a test
application developed with Inprise’s VisiBroker 4.0 C++ ORB.
The measurements were taken over a network of dual-processor
167 MHz UlraSPARC workstations, running Solaris 2.7, and
connected by a 100 Mbps Ethemet. The time to recover such
a failed replica was measured as the time interval between the
re-launch of the failed replica and the replica’s reinstatement
to normal operation. The graph shows the recovery times ob-
tained with this test application for varying sizes (from 10 bytes
to 350,000 bytes) of the application-level state that is transferred
across the network to recover a failed server replica.

5 Related Work

Other systems have been developed that address issues related to
consistent object replication and fault tolerance in the context of
CORBA. The Electra toolkit [5] built by Maffeis on top of Horus
[14] provides support for replicated CORBA objects, as does
Orbix+Isis [4] on top of Isis [1]. Both Electra and Orbix+Isis
integrate the replication and group communication mechanisms
into the ORB, thereby requiring modification of the ORB.

The Object Group Service (OGS) [3] provides replication for
CORBA applications through a set of CORBA services. Replica

16

consistency is ensured through group communication based on a
consensus algorithm implemented through CORBA service ob-
jects. OGS provides interfaces for detecting the liveness of ob-
jects, and mechanisms for duplicate detection and suppression,
and for the transfer of application-level state.

Newtop is a group communication toolkit that is exploited to
provide fault tolerance to CORBA using the service approach.
While the fundamental ideas are similar to OGS, the Newtop-
based object group service [7] has some key differences. Of
particular interest is the way this service handles failures due to
partitioning — support is provided for a group of replicas to be
partitioned into multiple sub-groups, with each sub-group being
connected within itself. No mechanisms are provided, however,
to ensure consistent remerging of the sub-groups once commu-
nication is reestablished.

The Maestro toolkit [15] includes an IIOP-conformant ORB
with an open architecture that supports multiple execution styles
and request processing policies. The replicated updates exe-
cution style can be used to add reliability and high availabil-
ity properties to client/server CORBA applications in settings
where it is not feasible to make modifications at the client side,
as is the case for unreplicated clients wishing to contact repli-
cated objects.

The AQuA architecture [2] is a dependability framework that
provides object replication and fault tolerance for CORBA ap-
plications. AQuA exploits the group communication facili-
ties and the ordering guarantees of the underlying Ensemble
and Maestro toolkits to ensure the consistency of the repli-
cated CORBA objects. AQuA supports both active and passive
replication, with state transfers to synchronize the states of the
backup replicas with the state of the primary replica in the case
of passive replication.

The Distributed Object-Oriented Reliable Service (DOORS)

[11] provides fault tolerance through a service approach, with
CORBA objects that detect, and recover from, replica and pro-

cessor faults. The system provides support for resource manage-
ment based on the needs of the CORBA application. DOORS
employs libraries for the transparent checkpointing of applica-
tions; however, duplicate detection and suppression are not ad-
dressed.

The Interoperable Replication Logic (IRL) [6] also provides
fault tolerance for CORBA applications through a service ap-
proach. One of the aims of IRL is to uphold CORBA’s interoper-
ability by supporting a fault-tolerant CORBA application that is
composed of objects running over implementations of CORBA
from different ORB vendors.

6 Conclusion

The Eternal system provides transparent OMG-compliant fault
tolerance for CORBA applications, requiring no modifications
to either the application or the CORBA middleware. Eternal’s
components and mechanisms interact to provide strong replica
consistency for every replicated object of the CORBA applica-
tion. Recognizing that real-world applications are necessarily
multi-tiered (i.e., containing objects that play the roles of both
client and server), Eternal supports the replication of both client
and server objects.

Eternal’s transparency reduces the time to develop a new
fault-tolerant application, requires no retraining of application
programmers, and enables existing applications t0 be made
fault-tolerant. With shorter time-to-market and higher reliabil-
ity being critical to many different kinds of applications, these
applications can be provided the fault tolerance that they need
more quickly, more affordably and more reliably using Eternal.

Our experience in designing and building the Eternal system
led to our active participation in developing the new standard for
Fault-Tolerant CORBA [13] that the Object Management Group
(OMG), the CORBA standards body, approved in March 2000.
The final specifications for the new Fault-Tolerant CORBA stan-
dard correspond closely to Eternal’s fault tolerance infrastruc-
ture.

Acknowledgements

This research has been supported by the Defense Advanced
Research Projects Agency in conjunction with the Office of
Naval Research and the Air Force Research Laboratory, Rome,
under Contracts N00174-95-K-0083 and F3602-97-1-0248, re-
spectively.

References

[1] K.P. Birman and R. van Rennesse. Reliable Distributed Comput-
ing Using the Isis Toolkit. IEEE Computer Society Press, 1994.

[2] M. Cukier, J. Ren, C. Sabnis, W. H. Sanders, D. E. Bakken, M. E.
Berman, D. A. Karr, and R. Schantz. AQuA: An adaptive ar-
chitecture that provides dependable distributed objects. In Pro-
ceedings of the IEEE 17th Symposium on Reliable Distributed

Systems, pages 245-253, West Lafayette, IN, October 1998.
3

[t

P. Felber, R. Guerraoui, and A. Schiper. The implementation of
a CORBA object group service. Theory and Practice of Object
Systems, 4(2):93-105, 1998.

(41

Isis Distributed Systems Inc. and Iona Technologies Limited. Or-
bix+Isis Programmer’s Guide, 1995.

17

(5]

(6]

[71

[8]

(9]

(10]

(11]

[13]

(14]

(15]

S. Maffeis. Adding group communication and fault tolerance to
CORBA. In Proceedings of the 1995 USENIX Conference on
Object-Oriented Technologies, pages 135-146, Monterey, CA,
1995.

C. Marchetti, M. Mecella, A. Virgillito, and R. Baldoni. An inter-
operable replication logic for CORBA systems. In Proceedings
of the International Symposium on Distributed Objects and Ap-
plications, pages 7-16, Antwerp, Belgium, September 2000.

G. Morgan, S. Shrivastava, P. Ezhilchelvan, and M. Little. De-
sign and implementation of a CORBA fault-tolerant object group
service. In Proceedings of the Second IFIP WG 6.1 International
Working Conference on Distributed Applications and Interopera-
ble Systems, Helsinki, Finland, June 1999.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia,
and C. A. Lingley-Papadopoulos. Totem: A fault-tolerant multi-
cast group communication system. Communications of the ACM,
39(4):54-63, April 1996.

L. E. Moser, P. M. Melliar-Smith, and P. Narasimhan. Consistent
object replication in the Eternal system. Theory and Practice of
Object Systems, 4(2):81-92, 1998.

P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-
Smith. Providing support for survivable CORBA applications
with the Immune system. In Proceedings of the 19th IEEE In-
ternational Conference on Distributed Computing Systems, pages
507-516, Austin, TX, May 1999.

B. Natarajan, A. Gokhale, S. Yajnik, and D. C. Schmidt. DOORS:
Towards high-performance fault-tolerant CORBA. In Proceed-
ings of the International Symposium on Distributed Objects and
Applications, pages 3948, Antwerp, Belgium, September 2000.

Object Management Group. The Common Object Request Bro-
ker: Architecture and specification, 2.3 edition. OMG Technical
Committee Document formal/98-12-01, June 1999.

Object Management Group. Fault tolerant CORBA (final adopted
specification). OMG Technical Committee Document ptc/2000-
04-04, March 2000.

R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexi-
ble group communication system. Communications of the ACM,
39(4):76-83, Apr. 1996.

A. Vaysburd and K. Birman. The Maestro approach to building
reliable interoperable distributed applications with multiple exe-
cution styles. Theory and Practice of Object Systems, 4(2):73-80,
1998.

