Class 5:
Architecture-based Self-Healing

Class 5
Architecture-Based
Self-Healing Systems

David Garlan
Carnegie Mellon University

Architectures of Self-Healing Systems

Basic Component

Abstractor?

Refiner?

What is its signature?
Is this a general-enough model?

What architectural styles can be used to compose
such components?

David Garlan 1 3/31/2003

Class 5:
Architecture-based Self-Healing

Four General Requirements
for Self-Healing Systems

Observe the running system and abstract
observed behavior.

Continuously check design constraints
viaexplicit run-time models.

Determine the cause of constraint
violation and choose arepair strategy.

Adapt the system using verified change

strategies.

»How can we get information out of arunning system?
»How can we abstract it to make sense of observations?

» What kind of models are useful ? What kinds of
constraints?

»What kind of repair engines are useful, efficient,
flexible?

»How can we cause the repairs to happen safely in a
running system
»How can we verify repair strategies?

David Garlan 2 3/31/2003

David Garlan

Class 5:
Architecture-based Self-Healing

Architecture-based Self-Repair

e Manidea

> Use architectural models as basis for problem
detection and repair.

O Varlatlons Arch-based
Control Mechanisms

> Externalized or internalized? Aot - -

> Style-specific?

> Support multiple control models?

> Enforcement of linkage between architectural
model(s) and system?

Taxonomy?

 Application Domains Arch-based adaptation
Networks, Distributed Systems

Mobile Systems Typically, but not
Ubiquitous Computing necessarily distributed
Biology Simulation Spplizeie s

User Interfaces

Collaborative Computing

Games

ols, Mechanisms, Techniques Arch models
Architectural models Reusable abstractors and
Algorithms/code-based refiners
Formal models Repair strategies
Genetic algorithms/alternative models
Agents
Economic theory

» Godls:

> Improve system performance/Resource usage System quality attributes
> |Improve user experience; reduce user distractions such as performance,

- reliability, etc.
> Improve dependability

o T

VVVVVV4S VVVVYVYVYV

3/31/2003

David Garlan

Class 5:
Architecture-based Self-Healing

Rainbow Perspective

> Work with existing systems, and manage the
adaptation of those systems

» Allow minimal intrusion into the system
» Use existing mechanisms for change
» Use non-intrusive monitoring techniques
> Use architectural models as basis for self-healing
» Externalized model
» High-level perspective

» Tailorable to specific architectural style and properties
of interest

Rainbow Approach

» Use system of “probes’ to get raw information out
» Abstract that information using “gauges’

» Compare (abstracted) observed behavior against
desired (as specified in the architecture)

» Specify architecture-based repair policies
» Rely on system’ s own adaptation capabilities, but

provide atranslator to map from arch-based adaptation
to lower-level ones.

3/31/2003

Class 5:
Architecture-based Self-Healing

Architecture-Driven Adaptation

/" Architecture Layer

!

Interpreter |0<—

echanisms.

Runtime 0
Manager

Executing System

Implementation Layer

Architectural Model

EaEIEIEIEI S

Component ServerGrpl
(ServerGrpRep)

David Garlan 5 3/31/2003

Class 5:
Architecture-based Self-Healing

Making Repairs

False! Find the right tactic

t6.moveClient (ServerGrp2)

True?: avg| latency <=

=3 (= (=8 (D) I (=) .
I
-
[— |
H Client6.avg_latency = 3.1

Architecture

Technical Details

* Monitoring mechanisms
> Reusable library of ‘gauges trandate ‘ probe’
information into model -based properties
» implemented as Java classes
» listen to a probe pub-sub bus
» dynamically modify properties of architectural models
> Example gauges:
» performance gauges convert network observations into
connector latencies and throughputs

» protocol gauges detect ordering of eventsin
component interactions

David Garlan 6 3/31/2003

David Garlan

Class 5:
Architecture-based Self-Healing

Technical Details (continued)

* Architectural models
> Typed components, connectors, compositions define
architectural topology
»Acme
> Property annotations convey semantic details
» Define expected dynamic behavior
» Extensible, like XML
> Each architecture must conform to a ‘ style’, which
indicates
» Allowabl e types of elements, constraints on
composition
» Constraints expressed as first-order predicates over
architectural elements, topology, and properties

Technical Details (continued)

» Modifications to architectural representation needed

for dynamic adaptation
> Define a set of architecture change operators for that
style
» E.g., change a client-server connector, add a server
> For each stylistic constraint associate arepair strategy
»May be verified in advance

> For each architectural change operation define a
translation to modify the running system

»May involve complex set of distributed, coordinated,
low-level actions

3/31/2003

Class 5:
Architecture-based Self-Healing

Example

» Sample constraint:
avg |l atency < max_| atency

» Samplerepair tactic

tactic fixServerlLoad (client : ClientT) ={
let ISG : set {ServerGroupT} =
select sgrp:ServerGroupT in self.components |
connected (sgrp, client) and sgrp.load > maxLoad

foreach sGrp in ISG {3Grp.addServer ()}

Adaptation Model

moqurey

David Garlan 3/31/2003

