
1David Garlan 3/31/2003

Class 5:
Architecture-based Self-Healing

www.cs.cmu.edu/~garlan/17811/

Class 5
Architecture-Based

Self-Healing Systems

David Garlan
Carnegie Mellon University

Architectures of Self-Healing Systems

Basic Component

I

I’ O’

O M A

M’ A’

What is its signature?

Is this a general-enough model?

What architectural styles can be used to compose
such components?

Abstractor?

Refiner?



2David Garlan 3/31/2003

Class 5:
Architecture-based Self-Healing

Four General Requirements 
for Self-Healing Systems

• Monitor: Observe the running system and abstract
observed behavior.

• Detection: Continuously check design constraints
via explicit run-time models.

• Resolution: Determine the cause of constraint
violation and choose a repair strategy.

• Adaptation: Adapt the system using verified change
strategies.

• Monitor:
» How can we get information out of a running system?
» How can we abstract it to make sense of observations?

• Detection:
» What kind of models are useful? What kinds of

constraints?
• Resolution:

» What kind of repair engines are useful, efficient,
flexible?

• Adaptation:
» How can we cause the repairs to happen safely in a

running system
» How can we verify repair strategies?



3David Garlan 3/31/2003

Class 5:
Architecture-based Self-Healing

Architecture-based Self-Repair

• Main idea
> Use architectural models as basis for problem

detection and repair.

• Variations
> Externalized or internalized?

> Style-specific?

> Support multiple control models?

> Enforcement of linkage between architectural
model(s) and system?

Executing System

Arch-based

Control Mechanisms

MonitorAffect

Taxonomy?

• Application Domains
> Networks, Distributed Systems
> Mobile Systems
> Ubiquitous Computing
> Biology Simulation
> User Interfaces
> Collaborative Computing
> Games

• Tools, Mechanisms, Techniques
> Architectural models
> Algorithms/code-based
> Formal models
> Genetic algorithms/alternative models
> Agents
> Economic theory

• Goals:
> Improve system performance/Resource usage
> Improve user experience; reduce user distractions
> Improve dependability

Arch-based adaptation

Typically, but not
necessarily distributed
applications

Arch models

Reusable abstractors and
refiners

Repair strategies

System quality attributes
such as performance,
reliability, etc.



4David Garlan 3/31/2003

Class 5:
Architecture-based Self-Healing

Rainbow Perspective

> Work with existing systems, and manage the
adaptation of those systems
» Allow minimal intrusion into the system

» Use existing mechanisms for change

» Use non-intrusive monitoring techniques

> Use architectural models as basis for self-healing
» Externalized model

» High-level perspective

» Tailorable to specific architectural style and properties
of interest

Rainbow Approach

• Monitor:
» Use system of “probes” to get raw information out
» Abstract that information using “gauges”

• Detection:
» Compare (abstracted) observed behavior against

desired (as specified in the architecture)
• Resolution:

» Specify architecture-based repair policies
• Adaptation:

» Rely on system’s own adaptation capabilities, but
provide a translator to map from arch-based adaptation
to lower-level ones.



5David Garlan 3/31/2003

Class 5:
Architecture-based Self-Healing

Architecture-Driven Adaptation

Constraint
Evaluator

Repair
Handler

Interpreter

Architecture Layer

Arch. 
ModelG

en
er

ic
AP

I

Monitoring
Mechanisms

Executing System

Implementation Layer

Translator

Runtime
Manager

Architectural Model

Client1 Client2 Client3 Client4 Client5 Client6

ServerGrp1 ServerGrp2 ServerGrp3

Component ServerGrp1
(ServerGrpRep)

Server1 Server2 Server3



6David Garlan 3/31/2003

Class 5:
Architecture-based Self-Healing

Making Repairs

A
rc
hi
te
ct
ur
e

A
rc
hi
te
ct
ur
e

La
ye
r

La
ye
r

Repairer
(Tailor)

Repairer
(Tailor)

InterpreterInterpreter

TranslatorTranslator

Analyzer
(Armani)

Analyzer
(Armani)

Mathilde User2 User3 User4 User5 User6

ServerGrp1 ServerGrp2 ServerGrp3

4 second latency

Client6.avg_latency = 3.1

True?: avg_latency <= max_latency

False! Find the right tactic

Client6.moveClient (ServerGrp2)

User1 User2 User3 User4 User5 User6

ServerGrp1 ServerGrp2 ServerGrp3

Move impl

Technical Details

• Monitoring mechanisms
> Reusable library of ‘gauges’ translate ‘probe’

information into model-based properties
» implemented as Java classes

» listen to a probe pub-sub bus

» dynamically modify properties of architectural models

> Example gauges:
» performance gauges convert network observations into

connector latencies and throughputs

» protocol gauges detect ordering of events in
component interactions



7David Garlan 3/31/2003

Class 5:
Architecture-based Self-Healing

Technical Details (continued)

• Architectural models
> Typed components, connectors, compositions define

architectural topology
» Acme

> Property annotations convey semantic details
» Define expected dynamic behavior
» Extensible, like XML

> Each architecture must conform to a ‘style’, which
indicates
» Allowable types of elements, constraints on

composition
» Constraints expressed as first-order predicates over

architectural elements, topology, and properties

Technical Details (continued)

• Modifications to architectural representation needed
for dynamic adaptation
> Define a set of architecture change operators for that

style
» E.g., change a client-server connector, add a server

> For each stylistic constraint associate a repair strategy
» May be verified in advance

> For each architectural change operation define a
translation to modify the running system
» May involve complex set of distributed, coordinated,

low-level actions



8David Garlan 3/31/2003

Class 5:
Architecture-based Self-Healing

Example

• Sample constraint:
avg_latency < max_latency

• Sample repair tactic

tactic fixServerLoad (client : ClientT) ={
let lSG : set {ServerGroupT} =

select sgrp:ServerGroupT in self.components |
connected (sgrp, client) and sgrp.load > maxLoad

foreach sGrp in lSG {sGrp.addServer ()}

}

tactic fixServerLoad (client : ClientT) ={
let lSG : set {ServerGroupT} =

select sgrp:ServerGroupT in self.components |
connected (sgrp, client) and sgrp.load > maxLoad

foreach sGrp in lSG {sGrp.addServer ()}

}

Adaptation Model

Comp/Apps Comp/Apps

Services

R
ain

b
o

w


