Linear Operators

- D is a linear operator iff:

 $$D(\alpha f_1 + \beta f_2) = \alpha D(f_1) + \beta D(f_2)$$

 Where f_1 and f_2 are images,

 and α and β are scalar multipliers

- Not a linear operator (why?):

 $$g = D(f) = af + b$$
Kernel Operators

- Kernel \(h \) = “small image”
 - Often 3x3 or 5x5
- Correlated with a “normal” image \(f \)
- Implied correlation (sum of products) makes a kernel an operator. A linear operator.
- Note: This use of correlation is often mislabeled as convolution in the literature.
- Any linear operator applied to an image can be approximated with correlation.

Kernels for Derivatives

- Task: estimate partial spatial derivatives
- Solution: numerical approximation
 - \[\frac{f(x + 1) - f(x)}{1} \]
 - Really Bad choice: not even symmetric
 - \[\frac{f(x + 1) - f(x - 1)}{2} \]
 - Still a bad choice: very sensitive to noise
- We need to blur away the noise (only blur orthogonal to the direction of each partial):
 - \(\frac{\partial f}{\partial x} = \frac{1}{6} \left[\begin{array}{ccc} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{array} \right] \otimes f \) or \(\frac{\partial f}{\partial x} = \frac{1}{8} \left[\begin{array}{ccc} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{array} \right] \otimes f \)
 - The Sobel kernel is center-weighted
Derivative Estimation #2: Use Function Fitting

- Think of the image as a surface
 - The gradient then fully specifies the orientation of the tangent planes at every point, and vice-versa.
- So, fit a plane to the neighborhood around a point
 - Then the plane gives you the gradient
- The concept of fitting occurs frequently in machine vision.
 Ex:
 - Gray values
 - Surfaces
 - Lines
 - Curves
 - Etc.

Derivative Estimation: Derive a 3x3 Kernel by Fitting a Plane

- If you fit by minimizing squared error, and you use symbolic notation to generalize, you get:
 - A headache
 - The kernel that we intuitively guessed earlier:

\[
\begin{bmatrix}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
1 & 6 & 1 \\
-1 & 0 & 1
\end{bmatrix}
\]
Vector Representations of Images

- Also called lexicographic representations
- Linearize the image
 - Pixels have a single index (that starts at 0)

![Image of Lexicographic Index](image)

Vector listing of pixel values

<table>
<thead>
<tr>
<th>F₀</th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

Change of coordinates

Vector Representations of Kernels

- Can also linearize a kernel
- Linearization is unique for each pixel coordinate and for each image size.
 - For pixel coordinate (1,2) (i.e. pixel F₀) in our image:

 \[
 h = \begin{bmatrix}
 -3 & 1 & 2 \\
 -5 & 4 & 6 \\
 -7 & 9 & 8 \\
 \end{bmatrix}
 \]

 \[
 Hₜ = \begin{bmatrix}
 0 & 0 & 0 & 0 & -3 & 1 & 2 & 0 & -5 & 4 & 6 & 0 & -7 & 9 & 8 & 0 \\
 \end{bmatrix}
 \]

 \[
 Hₙ = \begin{bmatrix}
 0 & 0 & 0 & 0 & -3 & 1 & 2 & 0 & -5 & 4 & 6 & 0 & -7 & 9 & 8 \\
 \end{bmatrix}
 \]

 \[
 H = \begin{bmatrix}
 -3 & 0 & 0 \\
 1 & 0 & 0 \\
 2 & 0 & 0 \\
 0 & 0 & 0 \\
 -5 & 0 & 0 \\
 4 & 1 & -3 \\
 6 & 2 & 1 \\
 -7 & 9 & 4 \\
 8 & 6 & 4 \\
 0 & 0 & 0 \\
 0 & -7 & 0 \\
 0 & 9 & -7 \\
 0 & 8 & 9 \\
 0 & 0 & 8 \\
 \end{bmatrix}
 \]

- Can combine the kernel vectors for each of the pixels into a single lexicographic kernel matrix (H)
- H is circulant (columns are rotations of one another). Why?
Convolution in Lexicographic Representations

- Convolution becomes matrix multiplication!
- Great conceptual tool for proving theorems
- H is almost never computed or written out

Basis Vectors for (Sub)Images

- Carefully choose a set of basis vectors (image patches) on which to project a sub-image (window) of size (x,y)
 - Is this lexicographic?
- The basis vectors with the largest coefficients are the most like this sub-image.
- If we choose meaningful basis vectors, this tells us something about the sub-image

Cartesian Basis Vectors
$$u_1 = \begin{bmatrix} 1 & \sqrt{2} & 1 \\ 0 & 0 & 0 \\ -1 & \sqrt{2} & -1 \end{bmatrix}$$
$$u_2 = \begin{bmatrix} 0 & -1 & 0 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 0 & 1 & 0 \end{bmatrix}$$
$$u_3 = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & -1 \\ -\sqrt{2} & 1 & 0 \end{bmatrix}$$

Frei-Chen Basis Vectors
$$u_1 = \begin{bmatrix} \sqrt{2} & 1 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
$$u_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$u_3 = \begin{bmatrix} -1 & \sqrt{2} & 0 \\ 0 & 1 & 0 \\ -\sqrt{2} & 1 & 1 \end{bmatrix}$$
$$u_4 = \begin{bmatrix} -1 & 0 & \sqrt{2} \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$
Edge Detection (VERY IMPORTANT)

- Image areas where:
 - Brightness changes suddenly =
 - Some derivative has a large magnitude
- **Often occur at object boundaries!**
- Find by:
 - Estimating partial derivatives with kernels
 - Calculating magnitude and direction from partials

![Easy to Find](Positive step edge)
!Positive roof edge
!Positive ramp edges
!Noisy Positive Edge

![Harder To Find](Negative step edge)
!Negative roof edge
!Negative ramp edges
!Noisy Negative Edge

11

Edge Detection

Diatom image (left) and its gradient magnitude (right). (http://bigwww.epfl.ch/thevez/raz/differentials/)

\[
\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} = \begin{bmatrix} G_x \\ G_y \end{bmatrix}^T
\]

\[
|\nabla f| = \sqrt{G_x^2 + G_y^2} = \text{Edge Strength}
\]

\[
\angle \nabla f = \tan^{-1}\left(\frac{G_x}{G_y}\right)
\]

Then **threshold** the gradient magnitude image

Detected edges are:
- Too thick in places
- Missing in places
- Extraneous in places
Convolving w/ Fourier

- Sometimes, the fastest way to convolve is to multiply in the frequency domain.
- Multiplication is fast. Fourier transforms are not.
- The Fast Fourier Transform (FFT) helps.
- Pratt (Snyder ref. 5.33) figured out the details.
 - Complex tradeoff depending on both the size of the kernel and the size of the image.

*For almost all image sizes

For kernels $\leq 7\times 7$, normal (spatial domain) convolution is fastest*.

For kernels $\geq 13\times 13$, the Fourier method is fastest*.

Image Pyramids

- A series of representations of the same image.
- Each is a 2:1 subsampling of the image at the next "lower level.
 - Subsampling = averaging = down sampling.
 - The subsampling happens across all dimensions!
 - For a 2D image, 4 pixels in one layer correspond to 1 pixel in the next layer.
- To make a Gaussian pyramid:
 1. Blur with Gaussian.
 2. Down sample by 2:1 in each dimension.
 3. Go to step 1.

Increasing Scale
Scale Space

- Multiple levels like a pyramid
- Blur like a pyramid
- **But don’t subsample**
 - All layers have the same size
- **Instead:**
 - Convolve each layer with a Gaussian of variance σ.
 - σ is the “scale parameter”
 - Only large features are visible at high scale (large σ).

Quad/Oc Trees

- Represent an image
- Homogeneous blocks
- Inefficient for storage
 - Too much overhead
- Not stable across small changes
- But: Useful for representing scale space.
Gaussian Scale Space

- Large scale = only large objects are visible
 - Increasing $\sigma \rightarrow$ coarser representations
- Scale space causality
 - Increasing $\sigma \rightarrow$ # extrema should not increase
 - Allows you to find “important” edges first at high scale.
- How features vary with scale tells us something about the image
- Non-integral steps in scale can be used
- Useful for representing:
 - Brightness
 - Texture
 - PDF (scale space implements clustering)

How do People Do It?

- Receptive fields
- Representable by Gabor functions
 - 2D Gaussian +
 - A plane wave
- The plane wave tends to propagate along the short axis of the Gaussian
- But also representable by Difference of offset Gaussians
 - Only 3 extrema
Canny Edge Detector

1. Use kernels to find at every point:
 - Gradient magnitude
 - Gradient direction
2. Perform Nonmaximum suppression (NMS) on the magnitude image
 - This thins edges that are too thick
 - Only preserve gradient magnitudes that are maximum compared to their 2 neighbors in the direction of the gradient

Canny Edge Detector, contd.

- Edges are now properly located and 1 pixel wide
- But noise leads to false edges, and noise+blur lead to missing edges.
 - Help this with 2 thresholds
 - A high threshold does not get many false edges, and a low threshold does not miss many edges.
 - Do a “flood fill” on the low threshold result, seeded by the high-threshold result
 - Only flood fill along isophotes
Reminders

- Quiz 4 next class
- HW2 due Monday night, Feb. 11
 - Help stops at 5pm on 11th
 - You can submit up until midnight
 - Please CC your Pitt or CMU email address when you submit, as your “proof” of submission.