Methods In Medical Image Analysis

Spring 2017
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

What Are We Doing?

- Theoretical & practical skills in medical image analysis
 - Imaging modalities
 - Segmentation
 - Registration
 - Image understanding
 - Visualization
- Established methods and current research
- Focus on understanding & using algorithms
Why Is *Medical* Image Analysis Special?

- Because of the *patient*
- Computer Vision:
 - Good at detecting irregulars, e.g. on the factory floor
 - But no two patients are alike—everyone is “irregular”
- Medicine is war
 - Radiology is primarily for reconnaissance
 - Surgeons are the marines
 - Life/death decisions made on insufficient information
- Success measured by patient recovery
- You’re not in “theory land” anymore

What Do I Mean by *Analysis*?

- Different from “Image Processing”
- Results in identification, measurement, &/or judgment
- Produces numbers, words, & actions
- Holy Grail: *complete image understanding* automated within a computer to perform diagnosis & control robotic intervention
- State of the art: segmentation & registration
Segmentation

- Labeling every voxel
- Discrete vs. fuzzy
- How good are such labels?
 - Gray matter (circuits) vs. white matter (cables).
 - Tremendous oversimplification
- Requires a model

Registration

- Image to Image
 - same vs. different imaging modality
 - same vs. different patient
 - topological variation
- Image to Model
 - deformable models
- Model to Model
 - matching graphs
Visualization

- *Visualization* used to mean *to picture in the mind*.
- Retina is a 2D device
- Analysis needed to visualize surfaces
- Doctors prefer slices to renderings
- Visualization is required to reach visual cortex
- Computers have an advantage over humans in 3D

Model of a Modern Radiologist
How Are We Going to Do This?

- The Shadow Program
 - Observe & interact with practicing radiologists and pathologists at UPMC
- Project oriented
 - C++ &/or Python with ITK
 - New ITKv4!
 - National Library of Medicine Insight Toolkit
 - A software library developed by a consortium of institutions including CMU and UPitt
 - Open source
 - Large online community
 - www.itk.org

The Practice of Automated Medical Image Analysis

- A collection of recipes, a box of tools
 - Equations that function: crafting human thought.
 - ITK is a library, not a program.
- Solutions:
 - Computer programs (fully- and semi-automated).
 - Very application-specific, no general solution.
 - Supervision / apprenticeship of machines
Who Are We?

- Personal introductions
 - Name
 - Academic Background (ECE, Biology, etc.)
 - Research Interest
 - Why you’re here

Homework 1: after we get a TA, I’ll have you email the TA/grader & myself the requested info about yourself, and a photo.
 - (photo is optional, but requested; please crop to your head and shoulders)
 - Details will be posted on the website

Syllabus

- On the course website
 - http://www.cs.cmu.edu/~galeotti/methods_course/
- Prerequisites
 - Vector calculus
 - Basic probability
 - Knowledge of C++ and/or Python
 - Including command-line usage and command-line argument passing to your code
- Helpful but not required:
 - Knowledge of C++ templates & inheritance
Class Schedule

- Comply with Pitt & CMU calendars
- Online and subject to change
- Big picture:
 - Background & review
 - Fundamentals
 - Segmentation, registration, & other fun stuff
 - More advanced ITK programming constructs
 - Review scientific papers
 - Student project presentations

Requirements and Grading

- Attendance: Required (quizzes)
- Quizzes: 20%
 - Lowest 2 dropped
- Homework: 30%
- Shadow Program: 10%
- Final Project: 40%
 - 15% presentation
 - 25% code
Textbooks

- **Required**: *Machine Vision*, Wesley E. Snyder & Hairong Qi
- **Recommended**: *Insight into Images: Principles and Practice for Segmentation, Registration and Image Analysis*, Terry S. Yoo (Editor)
- Others (build your bookshelf)

Anatomical Axes

- Superior = head
- Inferior = feet
- Anterior = front
- Posterior = back
- Proximal = central
- Distal = peripheral