Lecture 7—Image Relaxation: Restoration and Feature Extraction

ch. 6 of *Machine Vision* by Wesley E. Snyder & Hairong Qi

Spring 2018
16-725 (CMU RI) : BioE 2630 (Pitt)

Dr. John Galeotti

All images are degraded

- Remember, all measured images are degraded
 - Noise (always)
 - Distortion = Blur (usually)
- False edges
 - From noise
- Unnoticed/Missed edges
 - From noise + blur
We need an “un-degrader”…

- To extract “clean” features for segmentation, registration, etc.
- Restoration
 - A-posteriori image restoration
 - Removes degradations from images
- Feature extraction
 - Iterative image feature extraction
 - Extracts features from noisy images

Image relaxation

- The basic operation performed by:
 - Restoration
 - Feature extraction (of the type in ch. 6)
- An image relaxation process is a multistep algorithm with the properties that:
 - The output of a step is the same form as the input (e.g., 256² image to 256² image)
 - Allows iteration
 - It converges to a bounded result
 - The operation on any pixel is dependent only on those pixels in some well defined, finite neighborhood of that pixel. (optional)
Restoration: An inverse problem

- Assume:
 - An ideal image, f
 - A measured image, g
 - A distortion operation, D
 - Random noise, n

- Put it all together:
 \[g = D(f) + n \]

This is what we want
This is what we get
How do we extract f?

Restoration is ill-posed

- Even without noise
- Even if the distortion is linear blur
 - Inverting linear blur = deconvolution
- But we want restoration to be well-posed...
A well-posed problem

- $g = D(f)$ is well-posed if:
 - For each f, a solution exists,
 - The solution is unique, AND
 - The solution g continuously depends on the data f
- Otherwise, it is ill-posed
 - Usually because it has a large condition number: $K >> 1$

Condition number, K

- $K \approx \Delta \text{output} / \Delta \text{input}$
- For the linear system $b = Ax$
 - $K = ||A|| ||A^{-1}||$
 - $K \in [1, \infty)$
K for convolved blur

- Why is restoration ill-posed for simple blur?
- Why not just linearize a blur kernel, and then take the inverse of that matrix?
 - $F = H^{-1}G$
- Because H is probably singular
- If not, H almost certainly has a large K
 - So small amounts of noise in G will make the computed F almost meaningless
- See the book for great examples

Regularization theory to the rescue!

- How to handle an ill-posed problem?
- Find a related well-posed problem!
 - One whose solution approximates that of our ill-posed problem
- E.g., try minimizing:

 $$E = \sum_i \left(g_i - (f_i \otimes h) \right)^2$$

- But unless we know something about the noise, this is the exact same problem!
Digression: Statistics

- Remember Bayes’ rule?

\[p(f \mid g) = \frac{p(g \mid f) \cdot p(f)}{p(g)} \]

This is the a posteriori conditional pdf
This is the conditional pdf
This is the a priori pdf
Just a normalization constant

This is what we want!
It is our discrimination function.

Maximum a posteriori (MAP) image processing algorithms

- To find the \(f \) underlying a given \(g \):
 1. Use Bayes’ rule to “compute all” \(p(f_q \mid g) \)
 - \(f_q \in \) (the set of all possible \(f \))
 2. Pick the \(f_q \) with the maximum \(p(f_q \mid g) \)
 - \(p(g) \) is “useless” here (it’s constant across all \(f_q \))

- This is equivalent to:

\[f = \text{argmax}(f_q) \cdot p(g \mid f_q) \cdot p(f_q) \]

Noise term
Prior term
Probabilities of images

- Based on probabilities of pixels
- For each pixel i:
 - $p(f_i \mid g_i) \propto p(g_i \mid f_i) \times p(f_i)$

Let’s simplify:
- Assume no blur (just noise)
 - At this point, some people would say we are denoising the image.
- $p(g \mid f) = \prod p(g_i \mid f_i)$
- $p(f) = \prod p(f_i)$

Probabilities of pixel values

- $p(g_i \mid f_i)$
 - This could be the density of the noise...
 - Such as a Gaussian noise model
 - $= \text{constant} \times e^{\text{something}}$
- $p(f_i)$
 - This could be a Gibbs distribution...
 - If you model your image as an ND Markov field
 - $= e^{\text{something}}$

- See the book for more details
Put the math together

- Remember, we want:
 - \(f = \text{argmax}(f_q) \ p(g \mid f_q) \cdot p(f_q) \)
 - where \(f_q \in \) (the set of all possible \(f \))

- And remember:
 - \(p(g \mid f) = \prod p(g_i \mid f_i) = \text{constant} \cdot \prod e^{\text{something}} \)
 - \(p(f) = \prod p(f_i) = \prod e^{\text{something}} \)
 - where \(i \in \) (the set of all image pixels)

- But we like \(\sum \text{something} \) better than \(\prod e^{\text{something}} \), so take the log and solve for:
 - \(f = \text{argmin}(f_q) \left(\sum p'(g_i \mid f_i) + \sum p'(f_i) \right) \)

Objective functions

- We can re-write the previous slide's final equation to use \textit{objective functions} for our noise and prior terms:
 - \(f = \text{argmin}(f_q) \left(\sum p'(g_i \mid f_i) + \sum p'(f_i) \right) \)
 - \(f = \text{argmin}(f_q) \left(H_n(f, g) + H_p(f) \right) \)

- We can also combine these objective functions:
 - \(H(f, g) = H_n(f, g) + H_p(f) \)
Purpose of the objective functions

- Noise term $H_n(f, g)$:
 - If we assume independent, Gaussian noise for each pixel,
 - We tell the minimization that f should resemble g.
- Prior term (a.k.a. regularizer term) $H_p(f)$:
 - Tells the minimization what properties the image should have
 - Often, this means brightness that is:
 - Constant in local areas
 - Discontinuous at boundaries

Minimization is a beast!

- Our objective function is not “nice”
 - It has many local minima
 - So gradient descent will not do well
- We need a more powerful optimizer:
- Mean field annealing (MFA)
 - Approximates simulated annealing
 - But it’s faster!
 - It’s also based on the mean field approximation of statistical mechanics
MFA

- MFA is a *continuation method*
- So it implements a *homotopy*
 - A homotopy is a continuous deformation of one hyper-surface into another
- MFA procedure:
 1. Distort our complex objective function into a convex hyper-surface (N-surface)
 - The only minima is now the global minimum
 2. Gradually distort the convex N-surface back into our objective function

MFA: Single-Pixel Visualization

Continuous deformation of a function which is initially convex to find the (near-) global minimum of a non-convex function.
Generalized objective functions for MFA

- Noise term: \[\sum_i \left((D(f))_i - k_i \right)^2 \]
 - \((D(f))_i\) denotes some distortion (e.g., blur) of image \(f\) in the vicinity of pixel \(i\)

- Prior term: \[-\frac{1}{\tau} \sum_i e^{-\frac{(R(f)_i)^2}{\tau^2}} \]
 - \(\tau\) represents a priori knowledge about the roughness of the image, which is altered in the course of MFA
 - \((R(f)_i)\) denotes some function of image \(f\) at pixel \(i\)
 - The prior will seek the \(f\) which causes \(R(f)\) to be zero (or as close to zero as possible)

\[R(f): \text{choices, choices} \]

- Piecewise-constant images
 \[R^2(f) = \left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \]
 - \(=0\) if the image is constant
 - \(\approx 0\) if the image is piecewise-constant (why?)
 - The noise term will force a piecewise-constant image
$R(f)$: Piecewise-planer images

\[
R^2(f) = \left(\frac{\partial^2 f}{\partial x^2} \right)^2 + \left(\frac{\partial^2 f}{\partial y^2} \right)^2 + \left(\frac{\partial^2 f}{\partial x \partial y} \right)^2
\]

- =0 if the image is a plane
- \(\approx 0\) if the image is piecewise-planar
 - The noise term will force a piecewise-planar image

Graduated nonconvexity (GNC)

- Similar to MFA
 - Uses a descent method
 - Reduces a control parameter
 - Can be derived using MFA as its basis
 - “Weak membrane” GNC is analogous to piecewise-constant MFA
- But different:
 - Its objective function treats the presence of edges explicitly
 - Pixels labeled as edges don’t count in our noise term
 - So we must explicitly minimize the # of edge pixels
Variable conductance diffusion (VCD)

- Idea:
 - Blur an image everywhere,
 - except at features of interest
 - such as edges

\[
\frac{\partial f_i}{\partial t} = \nabla \cdot (c_i \cdot \nabla_i f)
\]

- Where:
 - \(t \) = time
 - \(\nabla_i f \) = spatial gradient of \(f \) at pixel \(i \)
 - \(c_i \) = conductivity (to blurring)
Isotropic diffusion

- If c_i is constant across all pixels:
 - *Isotropic* diffusion
 - Not really VCD
 - Isotropic diffusion is equivalent to convolution with a Gaussian
 - The Gaussian’s variance is defined in terms of t and c_i

VCD

- c_i is a function of spatial coordinates, parameterized by i
 - Typically a property of the local image intensities
 - Can be thought of as a factor by which space is locally compressed
- To smooth except at edges:
 - Let c_i be small if i is an edge pixel
 - Little smoothing occurs because “space is stretched” or “little heat flows”
 - Let c_i be large at all other pixels
 - More smoothing occurs in the vicinity of pixel i because “space is compressed” or “heat flows easily”
VCD

- A.K.A. Anisotropic diffusion
- With repetition, produces a nearly piecewise uniform result
 - Like MFA and GNC formulations
 - Equivalent to MFA w/o a noise term
- Edge-oriented VCD:
 - VCD + diffuse tangential to edges when near edges
- Biased Anisotropic diffusion (BAD)
 - Equivalent to MAP image restoration

VCD Sample Images

- From the Scientific Applications and Visualization Group at NIST
Various VCD Approaches:
Tradeoffs and example images

- Images copied per Creative Commons license
- http://www.insight-journal.org/browse/publication/953
 - Then click on the “Download Paper” link in the top-right

Edge Preserving Smoothing

- Other techniques constantly being developed (but none is perfect)
- E.g., “A Brief Survey of Recent Edge-Preserving Smoothing Algorithms on Digital Images”
- SimpleITK filters:
 - BilateralImageFilter
 - Various types of AnisotropicDiffusionImageFilter
 - Various types of CurvatureFlowImageFilter