Lecture 17 ITK Pipeline Methods in Medical Image Analysis - Spring 2016 18-791 (CMU ECE): 42-735 (CMU BME): BioE 2630 (Pitt) Dr. John Galeotti Based in part on Shelton's slides from 2006 **Disposed by solved and use of the first of the solve of the

When execution occurs

- The previous page of code **only** sets up the pipeline i.e., what connects to what
- This does not cause the pipeline to execute
- In order to "run" the pipeline, you must call **Update ()** on the last filter in the pipeline

9

Propagation of Update()

• When **Update ()** is called on a filter, the update propagates back "up" the pipeline until it reaches a process object that does not need to be updated, or the start of the pipeline

10

When are process objects updated?

- If the input to the process object has changed
- If the process object itself has been modified e.g., I change the radius of a Gaussian blur filter

How does it know?

Detecting process object modification

■ The easy way (when writing your own proces object) is to use

itkSetMacro (MemberName, type);
which produces the function

void SetMemberName (type);

that calls **Modified ()** for you when a new value is set in the class.

■ For example, the compiler turns this line of code:

itkSetMacro (DistanceMin, double); into a member function, SetDistanceMin(), that sets member variable m_DistanceMin.

12

2

Thoughts on pipeline modification

- Note that in the previous example the source never re-executed; it had no input and it was never modified, so the output cannot have changed
- This is good! We can change things at the end of the pipeline without wasting time recomputing things at the beginning

5. ...ad nauseam

Reading & writing

- You will often begin and end pipelines with readers and writers
- Fortunately, ITK knows how to read a wide variety of image types!

Reading and writing images

- - itk:: ImageFileReader < ImageType>
- Write images with:

itk::ImageFileWriter<ImageType>

■ Both classes have a function

used to optionally specify a particular type of image to read or write

It's easy in practice

- 2. Call **Update ()** on the last filter get the output
- 3. Tweak some of the filters
- 4. Call **Update ()** on the last filter get the output

SetImageIO(ImageIOBase*)

Reading an image (4.1.2)

Reader notes

- Create a reader
- If you know the file format (optional):
 - Create an instance of an ImgoIOBase derived class (e.g. **PNGImageIO**)
 - Pass the IO object to the reader
- Set the file name of the reader
- Update the reader

■ ITK assumes a valid conversion exists between the stored pixel type and the target pixel type

■ The **ImageType** template parameter is the type of image you want to convert the stored image

to, not necessarily the type of image stored in

More read/write notes

- Almost identical to the reader case, but you use an ImageFileWriter instead of a reader
- Output format can be specified with an IO object (optional)
- If you've already created an IO object during the read stage, you can recycle it for use with the writer

simplest conceptually Remember, you can read files without knowing

■ ITK actually has several different ways of

reading files - what I've presented is the

- their format a-priori
- Just don't specify any IO objects.
- Many more details are in ch. 7 of the software guide.

SimpleITK Pipeline

It doesn't have one!

- SimpleITK's interface does NOT use a pipeline
- Every time you call a filter in SimpleITK, it reexecutes.
- You manually execute each filter every time you think it is necessary
- You also manually pass the updated output from one filter to the input of the next filter

Combining ITK and SimpleITK

- You can combine ITK with SimpleITK!
- For example:
- Use SimpleITK to quickly read and preprocess images
- Use "full" ITK to perform a complex registration
- Use SimpleITK to save the results
- This is really easy in C++
- We just need to integrate SimpleITK into our ITK pipeline

Using SimpleITK in an ITK Pipeline

■ Convert a SimpleITK image into a "full" ITK image:

dynamic_cast <InternalITKImageType*> (
 itk::simple::Image.GetITKBase())

■ Convert a "full" ITK image into a SimpleITK image:

21

Using SimpleITK in an ITK Pipeline

- Warning: Conversion from SimpleITK to ITK requires matching image types!
 - "Full" ITK hard-codes (via template parameters) each output image's pixel type and dimensionality
 - SimpleITK automatically makes decisions about an output image's pixel type and dimensionality
 - The definitive list of SimpleITK pixel types is in its source code, at the bottom of this file:
 Simple ITM/Code/Common/include/ei tkPixelIDValues.h
- Solution:
 - Verify that dimensions match, and then...
 - Use SimpleITK's Cast Dags Filter to convert pixel type
 - See SimpleITE/Emmples/ITEIntegration.cxx

32

Example: ITK with SimpleITK

#include "SimpleITK.h"
#include "itkhage.h"
#include "itkhage.h"
#include "itktonnotRartitioningImageFilter.h"
namespace sitk = itk::simple;
typedef itk::Image< float, 2 > InternalITKImageType;
void main(void) {

sitk::Image sitkImageIn = sitk::ReadImage("in.nii");

if (sitkImageIn.GetDimmaich()!= 2) {

std::cerr << "Image dimmaichs must
match!"<<std::emil;
return;
}

sitk::CastImageFilter caster;
caster.SetOutputPimsIType(sitk::sitkFloat32);
sitkImageIn = caster.Emecute(sitkImageIn);

Example: ITK with SimpleITK

typedef itk::VormoiFartitioningImageFilter<
 InternalITEImageType, InternalITEImageType >
 FilterType;

FilterType::Pointer ithFilter = FilterType::Her(); ithFilter->SetInput(ithImage); // set parameters for ithFilter here ithFilter->Update();

CMakeLists.txt: ITK + SimpleITK

cmake_minimum_required (VERSION 2.8)

project(ITK_SimpleITK_Dumo)

- # Tell Cnake to find and process ITK find_package(ITK REQUIRE) include(#{ITK USE FIZE})
- # Tell Cmake to find and process SimpleTEK find_peckage(SimpleTEK MEGUIRED) include(# (SimpleTEK_USE_FILE})
- # Add executable-include both libraries:
 add_executable (ITE_SimpleITE_Demo.CEX)
 target_link_libraries (ITE_SimpleITE_Demo.
 # (ITE_LIBRARIES) # (SimpleITE_LIBRARIES))