Lecture 15
Deformable / Non-Rigid Registration

ch. 11 of *Insight into Images* edited by Terry Yoo, et al.

Methods in Medical Image Analysis - Spring 2015
 BioE 2630 (Pitt) : 16-725 (CMU RI)
 18-791 (CMU ECE) : 42-735 (CMU BME)

Dr. John Galeotti

Registration:
“Rigid” vs. Deformable

- **Rigid Registration:**
 - Uses a simple transform, *uniformly* applied
 - Rotations, translations, etc.

- **Deformable Registration:**
 - Allows a non-uniform mapping between images
 - Measure and/or correct small, varying discrepancies by deforming one image to match the other
 - Usually only tractable for deformations of small spatial extent!
Deformable, i.e. Non-Rigid, Registration (NRR)

- Vector field (aka deformation field) T is computed from A to B
- Inverse warp transforms B into A’s coordinate system
- Not only do we get correspondences, but...
- We also get shape differences (from T)

NRR Clinical Background

- Internal organs are non-rigid
- The body can change posture
 - Even skeletal arrangement can change
- Single-patient variations:
 - Normal
 - Pathological
 - Treatment-related
- Inter-subject mapping: People are different!
 - Atlas-based segmentation typically requires NRR
More Clinical Examples

- Physical brain deformation during neurosurgery
- Normal squishing, shifting and emptying of abdominal/pelvic organs and soft tissues
 - Digestion, excretion, heart-beat, breathing, etc.
- Lung motion during respiration can be huge!
- Patient motion during image scanning

Optical Flow

- Traditionally for determining motion in video—assumes 2 sequential images
- Detects small shifts of small intensity patterns from one image to the next
- Output is a vector field, one vector for each small image patch/intensity pattern
- Basic gradient-based formulation assumes intensity values are conserved over time
Optical Flow Assumptions

- Images are a function of space and time
- After short time dt, the image has moved dx
- Velocity vector $v = dx/dt$ is the optical flow

$$I(x, t) = I(x+dx, t+dt) = I(x+v\cdot dt, t+dt)$$

- Resulting optical flow constraint:

$$C_{of} = I_x \cdot v + I_t = 0$$

Optical Flow Constraint

- Optical flow constraint dictates that when an image patch is spatially shifted over time, that it will retain its intensity values
- Let image A = $I(x, t=0)$ and let B = $I(x, t=1)$
- Then $I_t = A(T) - B$

- This alone is not a sufficient constraint!
NRR Is Ill-Posed

- Review of well-posed problems:
 - A solution exists, is unique, and depends continuously on the data
 - Otherwise, a problem is ill-posed
- Ambiguity within homogenous regions:

Very Ill-Posed Problem

- NRR answer is not unique, and...
- NRR Search-space is often \(\infty \)-dimensional!
- Solution: Regularization
 - Adding a regularization term can provide provable uniqueness and a computable subspace
 - Regularization usually based on continuum mechanics
 - \(T \) is restricted to be physically admissible
 - We’re typically deforming physical anatomy, after all
 - Optimum \(T \) should deform “just enough” for alignment
NRR Regularization Methods

- Numerous continuum mechanical models available for regularization priors
 - Elastic
 - Diffusion
 - Viscous
 - Flow
 - Curvature
- Optimization is then physical simulation over time, \(t \), of trying to deform one image shape to match another
- This optimization has 3 equivalent formulations:
 - Global potential energy minimization
 - Variational or weak form, as used in finite-element methods
 - Euler-Lagrangian (E-L) equations, as used in finite-difference techniques

Langrangian View

- Elastic physical model:
 - How much have we stretched, etc., from our original image coordinates?
 - Simulation calculates the physical model’s resistance to deformation based on the total deformation from time \(t=0 \) to \(t=\text{now} \).
- \(T \) is the final vector field \(\tilde{u}_f \):
 \[
 \tilde{u}_f = \tilde{u}(t=t_{\text{final}}) \\
 A(X + \tilde{u}_f) \sim B(x) \\
 X = x - \tilde{u}_f
 \]
Eulerian View

- Viscous-flow physical model:
 - How much have we flowed from our immediately previous simulation state?
 - Simulation calculates the physical model’s resistance to deformation based on the incremental deformation from time \(t=(\text{now}-1) \) to \(t=\text{now} \).
- \(T \) is the aggregate flow of \(x(t) \), based on accumulated optical flow (i.e. velocity) \(v(t) \):
 \[
 x(t) = x + v(t)
 \]
 \[
 A(x(=t_{\text{final}})) \sim B(x)
 \]

Deformation at time \(t \):

Deformation at time \(t + dt \):

Comparison of Regularization Reference Frames

- Langrangian
 - The entire deformation is regularized
 - Well constrained for “normal” physical deformation
 - Too constrained to achieve “large” deformations
 - Not ideal for many inter-subject mapping tasks
- Eulerian
 - Only the incremental updates are regularized
 - Underconstrained for “normal” physical deformation
 - Readily achieves large, inter-subject deformations
 - Unrealistic transformations can result
Transient Quadratic (TQ) Approach

- Enables better-constrained large deformations

- Uses Lagrangian regularization for specified time interval, followed by a re-gridding strategy
 - After an interval’s deformation reaches a threshold, we begin a new interval for which the last deformation becomes the new starting point
 - TQ thus resets the coordinate system while permanently storing the past state of the algorithm

- Results in a hybrid E+L physical model, resembling soft, stretchable plastic
 - Maintains the elastic regularization for a given time then takes on a new shape until new stresses are applied

Optical Flow Regularized

\[E_D(v) = \int_{\Omega} \Phi(C_{of}) d\Omega + \int_{\Omega} \Psi(v) d\Omega \]

- First term adjusts \(v \) to make the images match (wants \(C_{of} = 0 \) within the bounded domain \(\Omega \))

\[\text{e.g., } \Phi(C_{of}) = C_{of}^2 \]

\[\text{e.g., } \int_{\Omega} \Psi(v) d\Omega = \|Lv\|^2 \]

- Goal: Minimize global potential energy, \(E_D \)
- Second term adds a stabilizing function \(\Psi \), typically a regulator operator \(L \) applied to \(v \)
Optical Flow E-L Regularized

- After deriving the E-L equations & setting their derivative = 0, we find that the...
- Potential energy minimum will occur when:
 \[I_x (I_x \cdot v + I_t) - v_{xx} = 0 \]

- First term minimizes optical flow constraint
- Second term minimizes Laplacian (i.e. roughness) of velocity field \(v \)
- Note that this equation is evaluated *locally*
 - Allows for efficient implementation

Demons Algorithm: Math

- *Very* efficient gradient-descent NRR algorithm
- Originally conceived as having “demons” push image level sets around, but is also...
- Based on E-L regularized optical flow
- Alternates between minimizing each half of the previous equation:
 - Descent in optical flow direction, based on:
 \[I_x (I_x \cdot v + I_t) = 0 \]
 - Smoothing, which estimates \(v_{xx}=0 \) with a difference-of-Gaussian filter, by applying a Gaussian on each iteration
Demons Algorithm: Code

- Initialize solution (i.e. total vector field) = Identity
- Loop:
 - Estimate vector field update
 - Use (stabilized) optical flow
 - Add update to total vector field
 - Blur total vector field (for regularization)

- Allows much larger deformation fields than optical flow alone.
- **Langrangian registration**: blur the total vector field (as above)
- **Eulerian registration**: blur the individual vector-field updates

Choices & Details

- There are many more NRR algorithms available
- Almost all of them are slower than demons, but they may give you better results
- See the text for details, and lots of helpful pictures