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ABSTRACT
Time management is an important aspect of a success-

ful professional life. In order to have a better understanding
of where our time goes, we propose a system that summa-
rizes the user’s daily activity (e.g. sleeping, walking, working
on the computer, talking, ...) using all-day multimodal data
recordings. Two main novelties are proposed:

• A system that combines both physical and contextual
awareness hardware and software. It records synchro-
nized audio, video, body sensors, GPS and computer
monitoring data.

• A semi-supervised temporal clustering (SSTC) algo-
rithm that accurately and efficiently groups large amounts
of multimodal data into different activities.

The effectiveness and accuracy of our SSTC is demonstrated
in synthetic and real examples of activity segmentation from
multimodal data gathered over long periods of time.

1. INTRODUCTION

Effective time management is an important aspect of a suc-
cessful professional life. Many techniques exist to effectively
manage your time, and several of them include the popular
”to-do list”, that is, making an inventory of your daily sched-
ule. In this paper, we propose a system that summarizes the
user’s daily activity from multimodal sensors. Building a sys-
tem that can compute statistics on the activities done over the
day is a first step towards building intelligent personal agents
able to manage time more efficiently.

Two main novelties are discussed. Firstly, a system that
combines both physical and contextual awareness sensors to
record synchronized audio-visual, body sensing, global posi-
tion and computer monitoring data is described; secondly, we
propose a semi-supervised clustering algorithm able to tem-
porally segment multimodal data efficiently and accurately.
Fig. 1 shows an example of an office scenario recording,
where several synchronized modalities are used to summarize
the user’s activities.

2. SENSORS

In this section, we describe the sensors and the features used
for temporal segmentation of activities.

Fig. 1. Syncronized multimodal recording (body sensor,
video, audio, computer monitoring and GPS.)

2.1. Physical Awareness Sensors

We use the SenseWear armband from BodyMedia (fig. 2.a) as
a physical awareness device. The SenseWear armband [1, 2]
combines five different sensors: 2-axis accelerometers, gal-
vanic skin response, skin temperature, heat flux, and near-
body ambient temperature. The SenseWear is synchronized
with the computer, and it is worn during the entire day on
the upper right arm. We have used sleeping, physical activity,
lying down, and standing up as features for activity segmen-
tation.

2.2. Context Awareness Sensors

For context awareness, we have used the Logiteck Quickcam
camera to record audio and video, a computer monitoring
software to record the programs that the user is running, and
a wearable GPS device (see fig. 1)

The video features consist of a binary stream, where 1
corresponds to detecting the user’s face and 0 otherwise. We
use the OpenCV face detector from Viola and Jones [3], and
color filters to reduce the number of false positives. To extract



Fig. 2. a) Body sensor fixed on the upper arm. b) Wearable
GPS Personal Navigator.

audio features, we compute the Mel Frequency Cepstral Co-
effcients (MFCC) over 20 ms. These features are used to train
a Support Vector Machine (SVM) [4] for classifying the au-
dio signal into four states: user talking, other people talking,
typing, and silence.

To record the interaction of the user with the computer
we use Activity Monitor from Softactivity. We classify at 1
Hz the programs that the user is running into three categories:
work, non-work and internet surfing. Every time an unclassi-
fied program shows up the user is prompted to classify it into
one of those groups.

To track people outdoors, we use a wearable wrist-strap
GPS receiver. The GARMIN Foretrex 201 has an accuracy of
15 m and an updating frequency of 1Hz, see fig. 2(b). Using
the coordinates logged by this device (longitude and latitude)
and the time stamp, we can estimate the mean speed.

3. SEMI-SUPERVISED SPATIO-TEMPORAL
CLUSTERING (SSTC)

Given the set of multimodal features described in the previ-
ous section, our goal is to segment the data into temporally
coherent chunks. In this section, we extend standard clus-
tering algorithms (e.g. K-means or spectral graph methods)
to incorporate temporal coherence and semi-supervised infor-
mation.

3.1. Discriminative Cluster Analysis (DCA)

DCA [5] is a clustering method that combines both cluster-
ing and discriminative dimensionality reduction in an unsu-
pervised manner. DCA minimizes:

EDCA(B,V,G) = ||(GT G)−
1
2 (GT −VBT D)||F (1)

where D ∈ <d×n (see notation1) is a data matrix such that
each column di corresponds to a sample of multimodal fea-
tures at one time instant. G ∈ <n×c is a dummy indicator

1Bold capital letters denote a matrix D, bold lower-case indicates a col-
umn vector d. dj represents the j column of the matrix D. dij denotes the
scalar in the row i and column j of the matrix D and the scalar i-th element
of a column vector dj . All non-bold letters represent variables of scalar na-
ture. Ik ∈ <k×k is the identity matrix. tr(A) =

P
i aii is the trace of the

matrix A. ||A||F = tr(AT A) = tr(AAT ) designates the Frobenious
norm of a matrix.

matrix, such that
∑

j gij = 1, gij ∈ {0, 1} and gij is 1 if di

belongs to class Cj , c denotes the number of classes and n the
number of samples. B ∈ <d×k and V ∈ <c×k are reduced
rank approximation matrices. Considering the simpler case
where B = Id, after eliminating V, eq. 1 is proportional to:

EDCA(G) ∝ tr(DT (DDT )−1DG(GT G)−1GT ) (2)

Relaxing the constraints on G, so that gij ≥ 0 and G1c = 1n,
a gradient descent strategy can efficiently find a local opti-
mum of eq. 2, see [5] for details.

3.2. Temporal term

DCA does not take into account any temporal coherence of
the cluster labels or incorporate semi-supervised information.
One of the benefits of relating the clustering problem to the
optimization of an objective function (e.g. [5]) is that we can
easily add additional constraints as a penalty term.

In order to penalize non-smooth changes (over time) on
the labels, we encourage that gi and gi+1 have similar val-
ues by minimizing: Et =

∑n−1
i=1 ||gi − gi+1||22 = ||GT −

GT P||F , where P is a known permutation matrix (left shift of
the identity matrix). Moreover, adding dynamic information
and a normalization factor, the temporal term transforms to:

Et = ||(GT G)−
1
2 (GT −AGT P)||F (3)

A encodes the state dynamics and the matrix (GT G)−
1
2 is a

normalization factor for DCA. If G is known, the optimal A
can be computed as: A = GT PT G(GT G)−1.

3.3. Adding semi-supervised information

In this section, we add two types of semi-supervised informa-
tion to the clustering: the must-link term and the cannot-link
term.

LetNs be the set of samples that belong to the same class.
er ∈ <n denotes an indicator vector for data point dr so that
Der = dr. We formulate the must-link supervised additive
term as follows:

EsML
=

∑
i,j∈NS

||gi − gj ||22 = ||GEML||F (4)

where gi−gj = G(ei−ej) and EsML
∈ <c×l is a matrix with

l columns corresponding to the number of pairs of data points
that belong together, and each column contains the vector ei−
ej ∈ Ns that defines a pair of must-link points.

An analogous cannot-link term (EsCL
) can be defined out

of the set ND of cannot-link pairs, defining ECL ∈ <c×l2 as
a matrix, where each column contains the vector ei − ej that
defines a pair of cannot-link points.



3.4. Optimization

Combining all the terms, the semi-supervised spatio temporal
clustering algorithm optimizes:

Esstc(G) = Ecluster + λEt + β1EsML
− β2EsCL

(5)

Ecluster can be K-means, DCA or spectral clustering, see [5]
for the details. The parameters λ, β1, β2 are normalization
factors to make Et, EsML

, EsCL
and Ecluster comparable in

terms of energy.
To cluster, we perform gradient descent in eq. 5 with a line

search strategy. To impose non-negativity constraints on gij ,
we parameterize G as the Hadamard product of two matrices
G = V ◦ V [5] and the updates are given by the following
expressions:

Vn+1 = Vn − η
(

∂Ecluster(Vn)
∂V +

λ∂Et(V
n)

∂V + β1
∂EsML

(Vn)

∂V − β2
∂EsCL

(Vn)

∂V

)
(6)

∂Et(V
n)

∂V = V ◦ (2GAT (GT G)−1A . . .

−2G(GT G)−1AGT GAT (GT G)−1 . . .

+4G(GT G)−1GT PGA(GT G)−1 . . .

−2PT GAT (GT G)−1 − 2PG(GT G)−1A)
∂Esi

(Vn)

∂V = V ◦ (2EiET
i G)

Optimizing eq. 5 w.r.t G is a non-convex optimization
problem that, without a good starting point, is likely to get
stuck at a local minimum. To improve clustering results, we
use a top-down approach where a multiresolution scheme is
employed. That is, we first decimate the data and apply the
clustering scheme at the lowest resolution level and propa-
gate the result to higher levels. The multiresolution scheme
has two main benefits: it is faster and more accurate; and, the
first order temporal constraints (i.e. Et) imposed in the lower
resolution are expanded to higher order terms in the full reso-
lution.

4. EXPERIMENTS

In this section, we report results in both synthetic and real ex-
amples of the proposed semi-supervised temporal clustering.

4.1. Synthetic experiments

Fig. 3 shows a two-level piece-wise constant signal at lev-
els 5 and 10, with added Gaussian noise (N(0,0.3)) and some
glitches. These glitches occur naturally in our system by the
discontinuity in the audio-visual classifiers. Ideally, we would
like to segment this 1D signal into a square wave. Using stan-
dard DCA or k-means does not lead to a correct clustering be-
cause of the glitches and noise (see fig. 3 top). However, the
multiresolution version of DCA with temporal consistency
finds the desired solution (see fig. 3 bottom).

Fig. 3. Results of DCA and DCA with temporal coherence.

Fig. 4. Left: natural clustering. Right: clustering with semi-
supervised information.

Fig. 4 illustrates the use of the semi-supervised term. Fig.
4 shows an example where five 2-dimensional Gaussians can
be clustered differently on two clusters based on the super-
vised term (must-link pairwise constraint).

4.2. What did I do today?

For many people (including the authors), it often seems that
at the end of the day not all the expected work has been done.
Inevitably, the same question comes to mind: What did I do
today?. In this section, we use the SSTC algorithm to segment
our daily activity from multimodal data. Later, we provide
statistics of the time spend in each task for user self-awareness
(e.g. amount of time doing low-value jobs such as reading
junk e-mail).

We have collected data every second, over a period of
three days, in an office scenario for two different people. Fig.
1 shows a typical example of all the data gathered at a par-
ticular time instant. All this multimodal data (range from five
to nine hours for each person per day) is manually classified
into eight types of activity: sleeping, walking, away (inside
the building), away (outside the building), working(no PC),
internet surfing, working on computer and talking.

We use our SSTC algorithm to temporally cluster this



Fig. 5. Labeled Data and Output of the clustering algorithm

data. The program runs on Matlab, and we use a multiresolu-
tion strategy with 7 levels. Fig. 5.b shows the results of us-
ing semi-supervised spatio-temporal DCA clustering for six
hours and 10 minutes of recording.

We compare the results obtained from several clustering
methods: k-means, DCA, DCA + temporal term (DCA+TT)
and DCA + temporal + semi-supervised term (DCA+TT+SST).
The accuracy of the clustering is given by the number of cor-
rect samples over the total number of samples. This accu-
racy measure requires correct and precise labeling informa-
tion for each day (user annotated data). Table 1 shows the
clustering accuracy for all the algorithms described in sec-
tion 4 with the data collected. A video with the results of
the clustering for a particular user can be downloaded from
www.cs.cmu.edu/ ∼ ftorre/IcmeV ideo.mpg .

Algorithm one level Multiresolution
K-means 69.23 ± 1.9 % –

DCA 74.01 ± 1.2 % 75.51 ± 4.4%
DCA+TT 76.13 ± 1.3 % 77.79 ± 5.0 %

DCA+TT+SST 83.42 ± 1.1 % 89.51 ± 4.8 %
Table 1. Accuracy for the different clustering methods.

It is also interesting to analyze which activities are easier
to cluster. Table 2 reports the clustering accuracy for each of
the activities.

5. CONCLUSION

In this paper, we have proposed a context and physical aware-
ness system to monitor the daily activities of a user. To tem-
porally segment the activities, we have extended traditional
clustering algorithms by adding side information and tempo-
ral consistency to the clusters. We are currently working on
extending the number of activities and analyzing which fac-
tors make the user more productive.

State Accuracy
Sleeping 64.05±5.2%
Walking 91.02±2.1%

Working no PC 69.45±2.5%
Internet Surfing 89.78±1.4%

Working PC 92.10±2.7%
Talking 60.26±8l.1%

Away(inside) 73.21±6.3%
Away(outside) 94.12±1.3%

Table 2. Activity accuracy.
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