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Abstract

Dimensionality reduction is an important issue when
facing high-dimensional data. For supervised dimensional-
ity reduction, Linear Discriminant Analysis (LDA) is one of
the most popular methods and has been successfully applied
in many classification problems. However, there are sev-
eral drawbacks in LDA. First, it suffers from the singularity
problem, which makes it hard to preform. Second, LDA has
the distribution assumption which may make it fail in appli-
cations where the distribution is more complex than Gaus-
sian. Third, LDA can not determine the optimal dimension-
ality for discriminant analysis, which is an important issue
but has often been neglected previously. In this paper, we
propose a new algorithm and endeavor to solve all these
three problems. Furthermore, we present that our method
can be extended to the two-dimensional case, in which the
optimal dimensionalities of the two projection matrices can
be determined simultaneously. Experimental results show
that our methods are effective and demonstrate much higher
performance in comparison to LDA.

1. Introduction

Dimensionality reduction is an important issue when fac-
ing high-dimensional data, and many supervised dimen-
sionality reduction algorithms have been proposed for the
purpose of classification. Among those supervised algo-
rithms, Linear Discriminant Analysis (LDA) is one of the
most popular ones. It has been successfully applied in many
classification tasks such as face recognition. However, there
exist several drawbacks in LDA. First, it often suffer from
the small sample size problem when dealing with high di-
mensional data. In this case, the within-class scatter ma-
trix Sw may become singular, which makes LDA difficult
to perform. Many approaches have been proposed to solve
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this problem [1, 2, 11]. However, these variants of LDA
discard a subspace and some important discriminative in-
formation may be lost. As a result, the globally optimal
subspace may not be found.

Another drawback of LDA is the parametric distribution
assumption implicitly in it. LDA is optimal in the case that
the data distribution of each class is homoscedastic Gaus-
sian, which can not always be satisfied in real world appli-
cations. When the class distribution is more complex, LDA
may fail to find the optimal discriminative projections.

In theory, the available projection dimensionality in LDA
is smaller than the class number [3] , which is insufficient
for some complex problems, especially when the class num-
ber is small. Moreover, based on the criterion of LDA, one
can not determine the optimal dimensionality to be pro-
jected since the optimal value for the criterion in LDA is
monotonic with respect to the projection dimensionality.

How to select a suitable dimensionality for discriminant
analysis? This important issue was often neglected previ-
ously. In this paper, we tend to solve it. We propose a new
criterion, of which the optimal value is not monotonic with
respect to projection dimensionality. Furthermore, based
on this criterion, the optimal value is guaranteed to reach
the maximum in one of the reduced dimensionality. There-
fore, the optimal dimensionality for discriminant analysis
can be effectively determined. Simultaneously, the singu-
larity problem in LDA does not occur naturally.

Recently, a technique called two-dimensional LDA [10]
has been proposed for discriminant analysis. Unlike tra-
ditional LDA treating image as a vector by concatenating
all its row vectors, two-dimensional LDA treats an im-
age as a matrix directly. Although two-dimensional LDA
has many significant merits, the optimal dimensionality
still can not be determined automatically. While for the
two-dimensional method, how to determine the optimal di-
mensionality becomes an even more important problem.
Since there are two projection matrices to be determined
in the two-dimensional method, it is much harder to select
the suitable two dimensionalities compared with the one-
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dimensional case. In this paper, we present that our method
can be extended to the two-dimensional case, in which the
optimal dimensionalities for the two projection matrices can
be determined simultaneously.

The rest of this paper is organized as follows: In Sec-
tion2, we give a brief review and an analysis of LDA. An-
other intrinsic drawback in LDA is deeply analyzed and the
new neighborhood scatter matrices are constructed to solve
this problem. In Section 3 and Section 4, we propose the op-
timal dimensionality discriminant analysis (ODDA) and the
two-dimensional ODDA respectively. In Section 5, the toy
examples and image recognition experiments are presented
to demonstrate the effectiveness of our methods. Finally,
we give the conclusions in Section 6.

2. Review of Linear Discriminant Analysis

Given the data matrix X = [x1,x2, ...,xn],xi ∈ R
d,

each data xi(i = 1, ..., n) is associated with a class label
from {1, 2, ..., c}. Denote Xi as the data set of class i and
denote ni as the number of data points in class i.

LDA is to learn a linear transformationW : R
d → R

m,
and W ∈ R

d×m. Then the original high-dimensional data
x is transformed into a low-dimensional vector:

y = WT x (1)

With the projection matrix W, LDA tries to maximize the
between-class scatter, while minimizing the within-class
scatter. The within-class scatter matrix Sw and the between-
class scatter matrix Sb are defined as

Sw =
c∑

i=1

∑
xj∈Xi

(xj − mi)(xj − mi)T (2)

Sb =
c∑

i=1

ni(mi − m)(mi − m)T (3)

where mi = 1
ni

∑
xj∈Xi

xj is the mean of the samples in

class i and m = 1
n

∑n
i=1 xi is the mean of all the samples.

The projection matrix W∗ in LDA is learned by solving
the following optimization problem:

W∗ = arg max
W∈Rd×m

tr
(
(WT SwW)−1WT SbW

)
(4)

where tr(·) denotes the trace operator.
It has been known that the solution to this optimization

problem is the m largest eigenvectors of S−1
w Sb, and the

corresponding optimal value is
∑m

i=1 λi, where λi (i =
1, 2, ...,m) are the first m largest eigenvalues of S−1

w Sb and
m is the projection dimensionality[4].

From the solution we can directly see the drawbacks of
LDA. First, when Sw is singular, it is hard to be solved nu-
merically. Second, the rank of Sb is usually equal to c − 1.

This property makes the number of nonzero eigenvalues of
S−1

w Sb smaller than c−1, and thus result in the valid projec-
tion dimensionality not more than c − 1. Between the valid
projection dimensionality m, the optimal value

∑m
i=1 λi

monotonically increase when m increase. Therefore, the
“optimal” dimensionality of LDA is the rank of Sb (usually
c − 1). For the case that data distribution of each class is
homoscedastic Gaussian, it is certainly the genuine optimal
dimensionality. However, for other cases, LDA may not
find the optimal discriminative projections and the optimal
dimensionality, which can be seen in the later toy examples.
In the next section, we will analyze the third drawback and
construct the new scatter matrices to solve it.

3. Constructing the Neighborhood Scatter Ma-
trices

In this section, we analyze the within-class scatter and
the between-class scatter in LDA, and illuminate the reason
why LDA may fail to find the optimal discriminative pro-
jections in some complex cases, especially in the case that
the data distribution is multimodal, i.e., the distribution of
one class consists of multiple clusters.

The within-class scatter matrix in LDA can be easily re-
formulated as the pairwise form as follows:

Sw =
1
2

c∑
i=1

∑
xj∈Xi

1
ni

ni∑
k=1

(xj − x̃k)(xj − x̃k)T (5)

where x̃k ∈ Xi. We denote ‖·‖ as the L2-norm of vector,
i.e., ‖x‖2 = xT x. Then the within-class scatter can be
written as:

tr(Sw) =
1
2

c∑
i=1

∑
xj∈Xi

1
ni

ni∑
k=1

‖xj − x̃k‖2 (6)

For the between-class scatter matrix in LDA, we can re-
formulate it in the pairwise form by utilizing the following
relationship:

St = Sb + Sw (7)

where St is the total scatter matrix. First, St can also be
easily reformulated as the pairwise form as:

St =
1
2

c∑
i=1

∑
xj∈Xi

1
n

n∑
k=1

(xj − x̃k)(xj − x̃k)T (8)

where x̃k ∈ X, and the total scatter can be written as:

tr(St) =
1
2

c∑
i=1

∑
xj∈Xi

1
n

n∑
k=1

‖xj − x̃k‖2 (9)

Then the between-class scatter can be rewritten as the pair-
wise form according to (6), (7) and (9):

tr(Sb) = tr(St) − tr(Sw) (10)
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Figure 1. The blue color circles denote the points come from the
same class i, while the yellow color circles denote the points
come from the classes which are different to class i. (a) LDA
try to minimize the distance of the far-apart pairs in the same
class(dashed red line). (b) The kw-neighbors(green line) and the
kb-neighbors(magenta line) of one data point.

From (6) we can see, the within-class scatter in LDA
is calculated from the sum of the squared Euclidean dis-
tances between each data point and all the other data points
which belong to the same class. As LDA tries to minimize
the within-class scatter, it would minimize all the data pairs
which belong to the same class. This strategy is reasonable
for the case that the class distribution is Gaussian. However,
when the data in one class consists of more than one cluster,
imposing all the pairs in the same class to be close is not a
good strategy.

In order to eliminate this drawback, we construct the
neighborhood within-class scatter to substitute the within-
class scatter in LDA. In the same class, instead of calcu-
lating the distances between one data point and all the other
data points, we only calculate the distances between the data
point and its neighbors. As can be seen in Figure 1, by
virtue of the neighborhood, we avoid to calculate the dis-
tances of the pairs which are far away from each other in
the same class, as the dashed red line in Figure 1(a), which
makes us focus more on the improvement of the discrim-
inability of local structure.

Similarly, we can also construct the neighborhood total
scatter and the neighborhood between-class scatter.

We first define the kw-neighbors and kb-neighbors. If xi

belongs to xj’s kw nearest neighbors in the same class, we
say xi belongs to xj’s kw-neighbors, which are denoted as
the green line in Figure 1(b). If xi belongs to xj’s kb nearest
neighbors in the classes that are different to the class of xj ,
we say xi belongs to xj’s kb-neighbors, which are denoted
as the magenta line in Figure 1(b).

Then for each data point xi, we define the within-class
neighborhood Nw(xi) and the between-class neighborhood
Nb(xi). If x belongs to xi’s kw-neighbors and xi also be-
longs to x’s kw-neighbors, then x is in Nw(xi). If x be-
longs to xi’s kb-neighbors and xi also belongs to x’s kb-
neighbors, then x is in Nb(xi).

Denote the number of data points in Nw(xi) as kw(i)
and the number of data points in Nb(xi) as kb(i). Then in
contrast to (6), the neighborhood within-class scatter can be

defined as follows:

tr(S̃w) =
1
2

c∑
i=1

∑
xj∈Xi

1
kw(j)

kw(j)∑
k=1

‖xj − x̃k‖2 (11)

where x̃k ∈ Nw(xj). Similarly, in contrast to (9), the
neighborhood total scatter can be defined as:

tr(S̃t) = 1
2

c∑
i=1

∑
xj∈Xi

1
kw(j)+kb(j)

∑
k

‖xj − x̃k‖2 (12)

where x̃k ∈ Nw(xj)
⋃

Nb(xj). Similar to (10), the neigh-
borhood between-class scatter can be defined as:

tr(S̃b) = tr(S̃t) − tr(S̃w) (13)

Based on (11) ∼ (13), The neighborhood within-class
scatter matrix S̃w and the neighborhood between-class scat-
ter matrix S̃b can be easily formulated as follows:

S̃w =
1
2

n∑
i=1

n∑
j=1

Aw
ij(xi − x̃j)(xi − x̃j)T (14)

S̃b =
1
2

n∑
i=1

n∑
j=1

Ab
ij(xi − x̃j)(xi − x̃j)T (15)

where

Aw
ij =

{ 1
kw(i) x̃j ∈ Nw(xi)

0 otherwise
(16)

and

Ab
ij =




1
kw(i)+kb(i)

x̃j ∈ Nb(xi)
1

kw(i)+kb(i)
− 1

kw(i) x̃j ∈ Nw(xi)
0 otherwise

(17)

From the graph view of LDA [7], it can be seen that if
kw(i) = nc(i) and kb(i) = n−nc(i), where c(i) is the class
label of data point i, the neighborhood scatter matrices S̃w

and S̃b defined here is equal to Sw and Sb in LDA.

4. Optimal Dimensionality Discriminant Anal-
ysis

In this section, we utilize the weighted difference form to
formulate the criterion based on the scatter metrics defined
in Section 3, then the criterion is formulated as follows:

J = tr
(
S̃b − γS̃w

)
(18)

where γ is the weighted coefficient. Our goal is to learn
a projection matrix W ∈ R

d×m, then the criterion in (18)
becomes:

J (W) = tr
(
WT (S̃b − γS̃w)W

)
(19)



We further add a constraint WT W = I to avoid triv-
ial solutions, where I is the m × m identity matrix. Thus
the optimization problem for discriminant analysis can be
formulated as:

W∗ = arg max
W∈R

d×m

WT W=I

tr
(
WT (S̃b − γS̃w)W

)
(20)

Usually the available data is limited and there are noises
in data, so we can make a reasonable assumption that the
performance should be improved when the dimensionality
is reduce by discriminant analysis. Under this assumption,
we could suppose that the criterion in (19) could be zero
as the baseline when no dimensionality reduction is per-
formed, and would reach a positive value when the dimen-
sionality is reduced. Thus, we have

J = tr
(
S̃b − γS̃w

)
= 0 =⇒ γ =

trS̃b

trS̃w

(21)

We further let the projection dimensionality m be a vari-
able and optimize it so that the optimal value of the crite-
rion (19) reaches the maximum. We define matrix S as:

S = S̃b − trS̃b

trS̃w

S̃w (22)

thus the optimization problem can be formulated as:

W∗ = arg max
W∈Rd×m

WT W=I
m∈{1,...,d}

tr
(
WT SW

)
(23)

It is interesting to note that if we substitute S̃t(= S̃b +
S̃w) for S̃b in (22), the matrix S remains unchanged, and
thus does not impact the solution in (23), which is similar to
the property of LDA. Moreover, if S̃b or S̃w in (22) is scaled
with a constant, the solution in (23) is also unchanged. This
scale invariant property is important, especially when we
adopt the difference form (18) as criterion.

Denote W ∈ R
d×m by W = [w1,w2, ...,wm], where

wi(i = 1, 2, ...m) are d-dimensional column vectors. Sup-
pose the value of m is given, according to the result of
Rayleigh quotient [5], when w1,w2, ...,wm are the first m
largest eigenvectors of S, the optimal value of the above op-
timization problem is

∑m
i=1 λi, where λi(i = 1, 2, ...,m)

are the first m largest eigenvalues of S. Thus, when m is
equal to the number of positive eigenvalues of S, the op-
timal value reaches the maximum. Therefore, the optimal
solution to the optimization problem in (23) can be explic-
itly calculated by eigenvalue decomposition.

Note that tr(S) = 0, then
∑d

i=1 λi = 0, which implies
that the optimal value in (23) will definitly reach the maxi-
mum in one of the reduced dimensionality.

It can be verified that null(S̃t) = null(S̃w) ∩ null(S̃b),
where null(·) denotes the null space of matrix. Therefore,

the null space of S̃t does not consist of any useful discrimi-
native information. We could eliminate the null space of S̃t

and then perform the algorithm in this lower dimensional
subspace, which can significantly improve the computation
speed when the dimension of original data is very high.

The algorithm is described in Table 1. We can see that
the singularity problem in LDA does not exist in our algo-
rithm naturally.

0. Preprocessing:

Eliminate the null space of S̃t, and obtain new data

X = [x1,x2, ...,xn] ∈ R
d×n, where rank(X) = d

1. Input:

X = [x1,x2, ...,xn] ∈ R
d×n, kw, kb

2. Calculate S̃w and S̃b according to (14) and (15)

3. Calculate the eigenvalues and the corresponding

eigenvectors of S defined in (22)

4. Select the m largest eigenvectors to form W, where

m is equal to the number of positive eigenvalues of

S.

5. Output:

W, m and y = WT x

Table 1. Algorithm of ODDA

5. Two-Dimensional ODDA

For the application to image recognition, traditional dis-
criminant analysis treats each image as a vector, i.e., the
image is converted to a vector by concatenating all its row
vectors consecutively. Recently, two-dimensional LDA has
been proposed for discriminant analysis. The technique
treats an image as a matrix directly, which has three signif-
icant advantages compared with the vector based method.
First, it can utilize the intrinsic spatial structure information
of image. Second, the matrix dimension for eigenvalue de-
composition is much smaller, which can effectively avoid
the curse of the dimensionality dilemma and dramatically
reduce the time and space cost. Finally, it avoids the small
sample size problem and can extract more discriminative
projections than c− 1, even than n− 1, where c is the num-
ber of classes and n is the number of training data.

Although two-dimensional LDA can extract more dis-
criminative projections, the optimal dimensionality still
can not be determined by the algorithm. For the two-
dimensional method, how to determine the optimal di-
mensionality is a more important problem. In the one-
dimensional case, one should only choice the dimension-
ality from 1 to d, while in the two-dimensional case, since



there are two projection matrices to be determined, the num-
ber of possible choices becomes h ∗ w (image height and
width). In this section, we extend our method and propose
the algorithm called two-dimensional optimal dimensional-
ity discriminant analysis (2DODDA).

Let Gi ∈ R
h×w (i = 1, ..., n) be the n images, where h

and w is the height and width of image respectively, n is the
number of images. We consider the two projection matrices
U ∈ R

h×l (1 ≤ l ≤ h) and V ∈ R
w×r (1 ≤ r ≤ w). The

transformation on image data Gi is defined as:

Hi = UT GiV (24)

The criterion in (18) can be reformulated as:

tr(S̃b − γS̃w) =
1
2

n∑
i=1

n∑
j=1

Aij ‖xi − x̃j‖2 (25)

where Aij = Ab
ij − γAw

ij , Aw
ij and Ab

ij are defined in (16)
and (17) respectively. Similarly, in the two-dimensional
case, the criterion can be formulated as:

J = tr(S̃b − γS̃w) =
1
2

n∑
i=1

n∑
j=1

Aij

∥∥∥Gi − G̃j

∥∥∥2

F
(26)

where ‖·‖F is the Frobenius norm of matrix, i.e., ‖M‖2
F =

tr(MT M) for any matrix M.
Like the one-dimensional case in (21), we let the value

of the criterion in (26) be equal to zero, namely,

J =
1
2

n∑
i=1

n∑
j=1

Aij

∥∥∥Gi − G̃j

∥∥∥2

F
= 0 (27)

Then the value of γ in (26) can be calculated according
to (27). It can be verified that the value is just the same as
the one in the one-dimensional case.

Under the projection matrices U and V, the criterion
in (26) becomes:

J (U,V) =
1
2

n∑
i=1

n∑
j=1

Aij

∥∥∥UT GiV − UT G̃jV
∥∥∥2

F

(28)
We define two matrices as follows:

Sv =
1
2

n∑
i=1

n∑
j=1

Aij(Gi − G̃j)VVT (Gi − G̃j)T (29)

Su =
1
2

n∑
i=1

n∑
j=1

Aij(Gi − G̃j)T UUT (Gi − G̃j) (30)

Then (28) can be rewritten as:

J (U,V) = tr
(
UT SvU

)
= tr

(
VT SuV

)
(31)

In the two-dimensional case, our goal is turned to learn
the two projection matrices U ∈ R

h×l and V ∈ R
w×r. We

further add the constraint UT U = Iu and VT V = Iv to
avoid trivial solutions, where Iu is the l × l identity matrix
and Iv is the r × r identity matrix. Thus the optimization
problem for the discriminant analysis can be formulated as:

{U∗,V∗} = arg max
U∈Rh×l

UT U=Iu
V∈Rw×r

VT V=Iv
l∈{1,...,h}
r∈{1,...,w}

J (U,V) (32)

It is very difficult to optimize l, r, U and V simultaneously,
but if one of U and V is known, the optimization problem
becomes easy to be solved. Hence we derive an iterative
algorithm to solve the optimization problem in (32). More
concretely, for a fixed r and V, we can compute the optimal
l and U by solving the following optimization problem:

U∗ = arg max
U∈Rh×l

UT U=Iu
l∈{1,...,h}

tr
(
UT SvU

)
(33)

With the computed l and U, we can then update r and V by
solving another optimization problem as:

V∗ = arg max
V∈Rw×r

VT V=Iv
r∈{1,...,w}

tr
(
VT SuV

)
(34)

The optimization problems in (33) and (34) are just as the
same as that in (23). The detailed procedure is described in
Table 2.

1. Input: Images Gi ∈ R
h×w(i = 1, ..., n) , kw,

kb, iter num

2. Initialize V as an arbitrary colummly orthogonal

matrix.

3. For iter = 1 to iter num

a) Calculate Sv according to (29).

b) Select the l largest eigenvectors of Sv to form

U, where l is equal to the number of positive

eigenvalues of Sv .

c) Calculate Su according to (30).

d) Select the r largest eigenvectors of Su to form

V, where r is equal to the number of positive

eigenvalues of Su.

End For.

4. Output: U, V, l, r and H = UT GV

Table 2. The algorithm for the two-dimensional ODDA
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Figure 2. The two dimensional projections learned by LDA and
ODDA on the ten-dimensional toy dataset.

It is easy to verify that the algorithm described in Table 2
guarantees that the value of criterion in (28) monotonically
monotonously increases with respect to the iteration num-
ber. Although this alternative optimization strategy theoret-
ically can only obtain a locally optimal solution, extensive
experiments on image datasets show that the algorithm es-
sentially converges to the same solution, regardless of the
choice of the initial V, which implies that the algorithm
may always converge to the global optimum for the appli-
cations to image datasets. While in 2DLDA, the value to be
optimized may sway with respect to the iteration number,
which may result in the performance varying irregularly.

6. Experimental Results

6.1. Toy Examples

We present two toy examples to demonstrate the effec-
tiveness of ODDA. In the first example, we generate a ten-
dimensional dataset with three classes, each of which is
sampled from a homoscedastic Gaussian distribution with
the same covariance matrix.

Figure 2 illustrates the results learned by LDA and
ODDA. The projected data of each class are shown by dif-
ferent colors and shapes. The results demonstrate that both
LDA and ODDA can find the optimal discriminative pro-
jections and the optimal dimensionality in the case that the
data distribution of each class is homoscedastic Gaussian.

In the second example, we generate three ten-
dimensional datasets with two classes, three classes and
four classes, respectively. In the first two dimensions, the
classes are distributed in concentric circles, while the other
eight dimensions are Gaussian noise with large variance.
Thus, the optimal projections are the first two dimensions,
and the optimal dimensionality is 2 in all the three datasets.
LDA fails to find the optimal projections for all the three
datasets and fails to determine the optimal dimensionality
for the datasets with two classes and four classes, where the
dimensionality determined by LDA are 1 and 3 respectively.
Figure 3 shows the results learned by ODDA. In all of the
three datasets, ODDA can find the optimal projections, and
the optimal dimensionality determined by ODDA is just the
real optimal number of 2.
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Figure 3. Left figures are the first two dimensions of the origi-
nal datasets, right figures are the corresponding results learned
by ODDA. LDA fails to find the optimal subspace in all the three
cases and the results do not displayed here.

6.2. Real World Image Recognition

We evaluated the algorithms ODDA and 2DODDA on
four popular image databases, and compared it with LDA,
2DLDA [10], and the two variants of LDA: null space LDA
(NLDA) [2] and direct LDA (DLDA) [11].

For NLDA and DLDA, we use PCA as the preprocessing
step to eliminate the null space of St. For LDA, due to the
singularity problem in it, we further reduce the dimension
of data such that Sw is nonsingular.

In each experiment, we randomly select several samples
per class for training and the remaining samples are used for
testing. The average results and standard deviations are re-
ported over 50 random splits. The classification is based on
k-nearest neighbor classifier (k = 1 in these experiments).

It is worth noting that the parameters in our methods are
not sensitive. In the experiments, we simply set kb to 20,
and set kw to t/2 for each data set, where t is the training
number per class.

The experimental results are reported in Table 3. For
LDA, NLDA, DLDA, the projection dimensionality is set to
the rank of Sb. For NLDA, projection dimensionality is set
to the dimensionality of the null space of Sw. Usually, these
dimensionalities are equal to c − 1, where c is the number
of classes. For 2DLDA, as it is hard to select the full di-
mensionalities combination for the two projection matrices,
we let the two dimensionalites be the same number. The



results are recorded under different dimensionalities from
12 to min(h,w)2 and the best result is reported in Table 3,
where the ‘dim’ is the corresponding dimensionalites. For
ODDA and 2DODDA, the dimensionalities are automati-
cally determined, and the ‘dim’ in Table 3 is the average
value of m and l ∗ r over 50 random splits, respectively.

6.2.1 Face Recognition

For the face recognition application, we use two popular
face databases to validate our algorithms.

The AT&T face database includes 40 distinct individu-
als and each individual has 10 different images [9]. Each
image in the database is of size 112×92 and with 256 gray-
levels. Some images are shown in Figure 4(a). Each image
is down-sampled to the size of 28 × 23 to save the com-
putation time and no other preprocessing is preformed. We
randomly select 2,4 or 6 samples per class for training and
the remaining samples for testing.

As can be seen in Table 3, the results of both ODDA
and 2DODDA are much better than those of LDA whether
in terms of accuracy or stability. Compared with 2DLDA,
2DODDA shows a better performance when the training
number is very small.

The UMIST repository is a multiview database, consist-
ing of 575 images of 20 people, each covering a wide range
of poses from profile to frontal views. The size of each
cropped image is 112×92 with 256 gray-levels per pixel [6].
Some images are shown in Figure 4(b). We down-sample
the size of each image to 28 × 23 and no other preprocess-
ing is preformed. 4,6 or 8 samples per class are randomly
selected for training and the remaining samples for testing.

Although NLDA performs best on this data set, our
methods also demonstrate the competitive performances
and still show the better results than those of LDA. Fur-
thermore, 2DODDA outperforms 2DLDA in all the cases.

6.2.2 Object Recognition

The COIL-20 database [8] consists of images of 20 objects
viewed from varying angles at the interval of five degrees,
resulting in 72 images per object. Some images are shown
in Figure 4(c). Each image is down-sampled to the size of
32 × 32 and we randomly select 4,6 or 8 samples per class
for training and the remaining samples for testing.

On this data set, both of our methods demonstrate the
best performances. 2DODDA shows the excellent results in
all the cases and ODDA also demonstrates the better results
than those of LDA, NLDA, DLDA and 2DLDA.

(a) AT&T (b) UMIST

(c) COIL-20 (d) USPS

Figure 4. Some sample images of the four databases

6.2.3 Digit Recognition

In this experiment, we focus on the digit recognition task
using the USPS handwritten 16 × 16 digits data set1. Some
images are shown in Figure 4(d). We randomly select 20,40
or 60 samples per class for training and the remaining sam-
ples for testing.

On this data set, LDA and NLDA do not work well, and
for the cases of 40 and 60 samples per class for training, the
matrix Sw is nonsingular, thus the null space of Sw does not
exist, which makes NLDA not work. Both of our methods
still demonstrate the best performances on this data set. Dif-
ferent from the previous experiments, the optimal dimen-
sionality determined by 2DODDA is much lower than that
determined by ODDA, which implies that a relatively lower
dimensionality may also work well on this data set.

7. Conclusions

Extracting the optimal dimensionality is an important
problem which is often neglected previously. In this paper,
we propose a new method, Optimal Dimensionality Dis-
criminant Analysis (ODDA), to solve this problem. ODDA
focuses more on the improvement of the discriminability of
local structure, which is especially useful when the distri-
bution of each class is more complex than Gaussian. More-
over, ODDA effectively avoids the singularity problem and
can automatically determine the optimal dimensionality for
discriminant analysis. Toy examples and real world experi-
ments on image recognition are presented to validate it.

For the image application, two-dimensional method has
many significant merits. However, determining the optimal
dimensionality becomes an more important problem in the
two-dimensional case. In this paper, we extend our method
and propose the algorithm called 2DODDA. In compari-
son with 2DLDA, 2DODDA can automatically determine
the optimal dimensionalities of the two projection matrices.
Furthermore, our algorithm guarantees that the solution in-
creases monotonically with respect to the iteration number,
and may always converge to the global optimum for the ap-
plications to image datasets. Experiments demonstrate that
2DODDA outperforms 2DLDA in most cases.

1Available at http://www.kernel-machines.org/data



data set method 2 train 4 train 6 train
Acc.(%) Dev.(%) dim Acc.(%) Dev.(%) dim Acc.(%) Dev.(%) dim

AT&T LDA 75.5 2.9 39 89.4 2.1 39 92.2 2.1 39
NLDA 84.3 2.6 39 93.1 2.0 39 95.6 1.4 39
DLDA 78.9 2.9 39 91.1 2.2 39 96.1 1.2 39
2DLDA 83.3 2.1 142 93.8 1.8 82 97.1 1.2 82

ODDA 84.1 2.8 39.0 94.2 1.6 52.7 97.0 1.2 65.6
2DODDA 85.5 2.6 80.3 93.9 1.8 67.7 96.9 1.3 65.1

data set method 4 train 6 train 8 train
Acc.(%) Dev.(%) dim Acc.(%) Dev.(%) dim Acc.(%) Dev.(%) dim

Umist LDA 84.7 3.3 19 91.0 2.3 19 94.1 1.9 19
NLDA 89.6 2.9 19 94.6 1.6 19 97.0 1.5 19
DLDA 80.8 3.2 19 90.0 2.1 19 94.8 2.0 19
2DLDA 87.8 3.6 112 93.8 1.7 112 96.6 1.3 92

ODDA 87.5 3.2 29.6 94.1 1.8 37.6 97.0 1.5 44.2
2DODDA 88.8 2.6 96.8 94.0 1.5 61.4 97.0 1.3 63.2

data set method 4 train 6 train 8 train
Acc.(%) Dev.(%) dim Acc.(%) Dev.(%) dim Acc.(%) Dev.(%) dim

Coil20 LDA 76.8 2.5 19 82.2 1.7 19 85.0 1.7 19
NLDA 81.2 2.8 19 86.3 1.7 19 89.1 1.7 19
DLDA 79.6 2.6 19 86.1 1.7 19 90.1 1.3 19
2DLDA 79.5 3.6 152 86.1 2.3 102 89.3 2.0 82

ODDA 83.1 2.5 24.2 88.6 1.6 32.7 92.1 1.3 40.2
2DODDA 89.9 1.9 96.5 93.8 1.4 90.2 95.8 1.0 90.8

data set method 20 train 40 train 60 train
Acc.(%) Dev.(%) dim Acc.(%) Dev.(%) dim Acc.(%) Dev.(%) dim

USPS LDA 52.8 2.6 9 72.3 1.3 9 82.2 0.9 9
NLDA 52.3 2.7 9 - - - - - -
DLDA 85.8 1.1 9 88.3 0.7 9 89.2 0.5 9
2DLDA 83.3 2.6 82 88.8 1.4 82 90.8 0.9 92

ODDA 87.5 0.9 49.5 89.6 0.6 72.2 90.9 0.5 77.5
2DODDA 85.9 2.6 21.6 90.2 0.8 27.2 91.3 0.6 34.2

Table 3. Experimental results in each data set. The ‘Acc.’ is the accuracy over 50 random splits, the ‘Dev.’ is the standard deviation. For
2DLDA, the ‘dim’ is the corresponding dimensionality of the best result. For ODDA and 2DODDA, the ‘dim’ is the average value of m
and l ∗ r over 50 random splits, respectively.
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